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Abstract—This paper presents an energy-aware resource man-
agement for data centers with a heterogeneous server infras-
tructure. The main focus of the paper is on energy-efficient
and performance-conserving resource allocation. The suggested
resource management uses virtualization and consolidation tech-
niques in order to achieve an energy-efficient operation of the
servers in the data center. The resource management itself
consists of a monitoring/controlling module, an analyzer module,
and an optimizer module. The optimizer module uses power con-
sumption models of servers to compute energy-efficient resource
allocations. Service requirement models ensure that the computed
resource allocations consider service requirements on CPU, RAM,
harddisk, and network. The problem of an energy-efficient and
performance-conserving resource allocation is described as a
variant of the variable sized multi-dimensional bin packing
problem. The result is an energy-efficient and performance-
conserving resource management that goes beyond currently
applied performance-based consolidation solutions.

I. INTRODUCTION

Today’s data center infrastructures face spontaneously oc-
curring peak loads and growing future demands by over-
provisioning [1]. Due to this over-provisioning, servers are
underutilized most of the time. The G-Lab infrastructure!,
e.g., shows an average utilization of 10% - 20% [2] with
regard to CPU and network load. The infrastructure itself
consists of about 170 nodes and provides a platform for future
Internet research. Studies show that the power consumption of
underutilized servers is up to 70% of their maximum power
consumption [3]. The standard node in the G-Lab, the Sun Fire
X4150 [4], for instance, consumes approximately 250W in idle
state whereas its power consumption at full load is 363W. This
means that underutilized and idle servers waste a significant
amount of energy. Therefore, the goal of an energy-efficient
resource management is the determination of a resource al-
location that minimizes overprovisioning but is performance-
conserving at the same time. In this context, performance
conservation means that for any resource allocation that is
determined by the optimizer module, service requirements on
CPU, RAM, harddisk and network are fully met.

Server virtualization can be used to consolidate services
on a subset of the physical servers and allows to power off
the unused ones. If resource requirements of services are
considered, the mapping of services unto a subset of physical
servers leads to a multidimensional bin packing problem. A

Uhttp://www.german-lab.de

server is represented by a bin. The dimensions of the bin
represent the resources, e.g. CPU or RAM, that can be utilized
by services. Services are cubes where each edge represents a
certain resource requirement of the service. The length of the
edges stand for the amount of the required resource. The goal
is to pack the cubes into the bins and minimize the number
of used bins. However, the minimization of the number of
bins does not automatically lead to an energy-efficient resource
allocation. In data centers with heterogeneous infrastructure,
servers with varying hardware characteristics may have a dif-
ferent power consumption behavior even if the same services
are running on them. Therefore, the selection of the subset
of the powered-on physical servers and the distribution of
the services on these servers has a high influence on the
overall power consumption. A modified bin packing is needed
that assigns costs to the bins. The costs represent the power
consumption of the servers and change dynamically when the
load on the server’s resources change. The goal is to pack the
cubes into the bins so that the sum of the costs assigned to
the bins is minimized. Power consumption models are needed
as cost functions that calculate server power consumption
based on hardware characteristics and the utilization of CPU,
RAM, harddisk, and network. Furthermore, future resource
requirements of services need to be estimated in order to
determine the dimension of the cubes.

The resource management that is suggested in this paper
realizes an energy-efficient and performance-conserving re-
source allocation in heterogeneous environments.

The remainder of this paper is structured as follows: Section
II gives a short overview on related work, section III describes
the energy-aware optimization approach of this paper. The
main focus of the paper is on the optimization which is
presented in section IV. The paper is concluded by a section
on expected results.

II. RELATED WORK

There are several approaches in recent work that aim at
an energy-efficient resource management in ICT infrastruc-
tures by using virtualization and consolidation techniques
[51[6][7]1[8]1[9]. Subramanian et al., e.g., shows in [5] that
server consolidation and Dynamic Voltage and Frequency
Scaling (DVFES) can be used to save energy. The resource
allocation problem is presented as a variant of the variable-
sized bin packing. However, it is reduced to a one-dimensional



packing problem, since only CPU requirements are considered.
A further simplification is the assumption of a homogeneous
server infrastructure, whereas real-world infrastructures usu-
ally consists of heterogeneous servers. Rusu et al. discuss
in [6] the energy-aware scheduling in server clusters. They
propose a local and a cluster-wide power management to
face over-provisioning. The local power management is ba-
sically DVFS, whereas the cluster-wide power management
calculates the minimum number of servers that are needed
to meet service requirements. Unused servers are turned off.
The presented approach considers the heterogeneity of the
server infrastructure, however, for the determination of the
energy efficiency of the servers the power consumption of
each single server in the cluster is measured for different
loads. In the paper no models are given that describe the
energy efficiency of the servers that would allow a comparison.
The suggested resource managements in [7] and [8] do not
consider the heterogeneity of the supervised infrastructure.
In [9], Srikantaiah et al. describe an energy-aware consoli-
dation in cloud computing environments. For each server an
optimal utilization point of its components is determined that
maximizes the server’s energy efficiency. The energy-efficient
resource allocation is described as a bin packing problem
where, contrary to our approach, the bin size reflects the
energy-efficiency of the represented server. The considered
components are, however, only the CPU and the harddisk. For
the determination of the optimal utilization point, for each
server extensive measurements have to be done, since power
consumption models of server components are not considered
in the suggested approach. Several works have been published
on variants of the bin packing problem [10][11][12]. These
works are closely related to the problem of energy-efficient and
performance-conserving resource allocation. In [10], Epstein
et al. present an on-line algorithm that solves the variable-sized
multidimensional packing problem. In the given problem, bins
have variable size and multiple dimensions. The goal is to
put hypercubes into the bins while minimizing the volume of
the used bins. The suggested algorithm assigns types to the
hypercubes based on the dimensions and bin sizes. The type
allows to determine how often a hypercube fits into a bin.
Finally, a bin is chosen where the component fit is maximized.
However, the costs, in our case the power consumption, is not
considered in this problem. A modified version of the problem
is covered in [11]. Pisinger et al. present an integer-linear
formulation of the two-dimensional bin packing problem with
variable bin sizes and costs. There are two main obstacles that
averts the application of the proposed algorithm for energy-
aware and performance-conserving resource management. On
one hand, the reduction to two dimensions limits the appli-
cation requirements to two resources and on the other hand
costs are fixed for each bin whereas the power consumption
of a server (=cost) is dynamically changing, depending on its
utilization.

III. ENERGY-AWARE CONSOLIDATION APPROACH

Virtualization and consolidation are key enablers for an
energy-efficient resource management. Services can be encap-
sulated within VMs that can be migrated transparently from
one server to another. It is also possible to consolidate several
VMs on a single physical server. Such mechanisms can be
used to save energy in times of low resource utilization. Lowly
utilized VMs do not need to run on separate servers but can be
consolidated on a subset of the available server infrastructure
so that unused servers can be hibernated or even shut down.
If the load on a VM is increasing, a hibernated server can
be woken up by the resource management and the resources
can be reallocated according the resource requirements of the
services and energy efficiency aspects. The main challenge is
to find the most energy-efficient resource allocation that does
not violate service requirements.

A. Energy-Aware Resource Management

The suggested energy-aware resource management, that
consider both, energy efficiency as well as performance,
consists of three building blocks: A monitoring/controlling
module oversees and controls the supervised physical and
virtual infrastructure. Parameters are monitored that are needed
to determine the power consumption of a server as well as
the resource requirements of a service. It also provides a con-
trolling interface for the optimizer that allows powering on/off
physical servers or migrating VMs from one server to another.
The analyzer module is responsible for the interpretation of
the provided monitoring data on the physical infrastructure
and the virtualized services. If a certain threshold is reached,
the analyzer informs the optimizer module on the changed
state. Then the optimizer decides whether any changes in the
resource allocation have to be carried out or not. Furthermore,
the analyzer stores monitoring data within a database that is
used to build application profiles. These profiles allow the
prediction of future resource usage of a service based on
past resource usage patterns and current monitoring data. The
optimizer module is responsible for the resource allocation. It
contains load-based power consumption models of the servers
that allow the estimation of the overall power consumption of
a certain resource allocation. Furthermore it contains resource
requirement models that are used to ensure that all applied
resource allocations fully meet the resource requirements of
the services. The input parameters that are needed for both
models are provided by the monitoring/controlling module.

The interaction of the optimizer, analyzer, and monitor-
ing/controlling modules is shown in Figure 1. The physical
layer contains the physical servers which are responsible for
the energy consumption of the infrastructure that has to be
minimized. On the virtual layer, the virtualized servers can be
found that host the services. The users of the infrastructure
are not aware of the virtualization and do interact only with
the virtualized servers of the virtual layer. The resource
management interacts with both, the physical and the virtual
layer.
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Fig. 1. Energy-Aware Resource Management Framework

IV. OPTIMIZATION

The main focus of this paper is on the optimizer module
which is responsible to find energy-optimal and performance-
conserving resource allocations. To find such allocations, it
needs heuristics that solve a variant of the NP-hard variable-
sized multidimensional bin-packing problem. The optimizer
module consists of three components, the power consumption
models, the service requirement models, and the optimization
logic that are described in the following sections.

A. Power Consumption Models

Power consumption models are needed to find the most
energy-efficient mapping of the VMs unto the servers of the
physical layer. A power consumption model of a server s is
a function f, that estimates the server’s power consumption.
In our modeling approach, which is not in the focus of this
paper, for the server model a hierarchical model was chosen.
The server itself consists of several power-consuming com-
ponents. The main contributing components are CPU, RAM,
harddisk (HDD), network interface card (NIC), mainboard,
power supply unit PSU, and the fans. Therefore, the power
consumption s is the sum of the power consumption of
its components: f; = fopu + fram + fupp + fyic +
fmainboard+ fPsu ~+ ffans- The power consumption functions
of these components consist of a static part, that is determined
only by the hardware characteristics and a dynamic part that
is mainly influenced by the services which are running on
the server. For some static properties a dynamic counterpart
can be found whereas there are static properties without a
corresponding dynamic property. In the case of the CPU,
for instance, the CPU load can be regarded as the dynamic
counterpart of the static number of maximum possible CPU
cycles. On the other hand, no corresponding dynamic property
is existing to the physical dimensions of a fan. Let b be the
total number of static and dynamic input parameters. Then
fs can be written as f, : pifatic 5 pvnamic o pstatic
paynamic y pstatic s x pstatic 5 R, where 2r + 2z = b and
pdynamic . pdynamic denote the dynamic input parameters
that correspond to the static input parameters p;tetic, ... pstatic

and pgfefie, . pstitic stand for the static input parameters

without dynamic counterpart. Table I gives for the significant
server components an overview on the most important static
and dynamic input parameters.

Static input parameters Corresponding dynamic
input parameters

CPU maximum voltage -

maximum frequency

load

fregmaz o5 [T€max

idle power consumption -

number of cores number of loaded cores
RAM number of modules -

size of modules size of allocated RAM

type (e.g. DDR2) -

vendor -

buffered/unbuffered -

frequency -

maximum read/write rate current read/write rate
HDD number of platters -

dimension (e.g. 3.57) -

rotation speed -

size size of allocated space

maximum read/write rate current read/write rate

[ NIC ][ maximum data rate [ current data rate

fan width -

depth -

maximum revolution per revolution per minute

minute

TABLE I
STATIC AND DYNAMIC INPUT PARAMETERS FOR POWER CONSUMPTION
FUNCTIONS OF SERVER COMPONENTS

Since for each component the static properties can be
determined beforehand, a function fsfaf : pf¥mamic o x
dynamic 5 R can be defined that already includes the static
hardware characteristics of the components of s. The calcula-
tion of f5'% can be done at runtime when all corresponding
dynamic input parameters are provided by the monitoring.

It can be noticed that the power consumption of some com-
ponents is highly dependent on dynamic properties whereas
the power consumption of other components is only marginally
influenced by them. The power consumption of the CPU, e.g.,
is highly influenced by the load on its cores whereas the
power consumption of a harddisk is mainly determined by
the rotation of its platters which is load-independent since it
is the same for idle and for loaded states.

Here, the CPU power consumption model of a multi-
core CPU should be given as an example without a detailed
explanation:

n
fCPU = fCPU_idle + Z fcoreiv

=1

where feore = fmam%. fmaz denotes the power con-

sumption of the core at full utilization which is given by
the well-known CMOS circuits power consumption equation
fmaz = V’rglal' “freqmaz - Cepg. Vinae and fregmq, denote
the voltage and the core frequency at maximum utilization,
whereas C. s represents the effective capacitance. load is the
monitored utilization of the core in percentage.



B. Service Requirement Models

Service requirement models describe the resource usage
of services and allow the estimation of their future resource
requirements. Resources in this context are CPU, RAM, HDD,
and NIC. Service requirement models are needed primarily
to ensure that a chosen resource allocation does not violate
the resource requirements of services. But they are also
used as dynamic input parameters for the power consumption
functions f5'%! that were defined in section IV-A.

Table II shows the possible requirements of a service on
various server components.

Service requirement

l [ |
[ CPU ][ number of CPU cycles per second (load) |
[ RAM [ size of needed RAM |
[ HDD [[ HDD read/write rate |
[ NIC ][ minimum data rate |

TABLE II
POSSIBLE SERVICE REQUIREMENTS ON CPU, RAM, HDD, AND NIC

It is essential that the service requirement models are able
to give an accurate estimation on the future CPU, RAM, HDD,
and NIC usage of the services. Based on this estimation the
resource allocation is determined that respects service require-
ments on the one hand and minimizes power consumption on
the other hand.

The simplest approach for estimating future service re-
quirements is to assume that the service requirements will
not change within the next time interval of the length t.
However, the accuracy of this approach is highly dependent on
the frequency of the reevaluation of the service requirements
(what ¢ has to be chosen?) as well as on the resource usage
profile of the service which can be very irregular. In both
cases t has to be small. The disadvantage of a small ¢ is a
growing monitoring overhead due to the frequent polling that
is necessary to keep the difference small between estimated
and actual resource requirements. Due to errors in the esti-
mation, the number of resource reallocations may increase.
This leads to an increased number of migrations that results
in a higher power overall consumption and a degraded service
performance.

An extended version of this simple approach is the analysis
of the past resource usage patterns of services that are collected
and aggregated by the analyzer. Some applications, have
resource usage patterns that can be considered when future
resource usage is estimated. E.g. a web server is usually highly
utilized from 3:00 p.m. to 9:00 p.m. whereas its utilization is
very low from 9:00 p.m. to 8:00 a.m. and moderate between
8:00 a.m. and 3:00 p.m. Based on the currently monitored
resource usage and the service profile from the past, a more
precise estimation of future resource usage can be given.
Therefore, t can be chosen greater than in the simple approach.
Thus, overhead can be minimized.

Future research has to show how fine-granular the resource
usage has to be estimated, which ¢ has to be chosen for which
application.

C. Optimization Logic

The optimization logic is responsible to find an energy-
efficient and performance-conserving resource allocation.
Given is a set Q = {w1,...,w,} of n services, in our case
VMs, each of them with certain requirements on CPU,
RAM, HDD, and NIC. Inside the VM several applications
can run that determine its resource requirements. Let
P = {p1,...,pm} be the set of m physical servers that
host the services in ). The optimization logic has to map
the services in ) to the severs in P by minimizing the
overall power consumption of the servers and ensuring
that all application requirements are fully met. The given
optimization problem can be regarded as a modification of
the variable-sized multidimensional bin packing. We define
the traditional variable-sized multidimensional bin packing
similarly to the definition given in [8].

Definition 1 (Variable-sized multi-dimensional bin packing):
Let A ={ay,...,a,} be a set of n d-dimensional hypercubes.
Each hypercube a; € A has a fixed size, which is
li(a;) x ... x lg(a;). Let S = {s1,...,Sm} be the set of
m d-dimensional bins. The size of a bin s is given by
l1(s) x ... X lg(s). The sizes of the bins can be chosen
from a finite number of sizes. Each hypercube a has to be
assigned to a bin and a position (posi(a),...,posq(a)) so
that 0 < pos;(a) and pos;(a) + l;(a) < I;(s) for 1 < i < d.
Hypercubes have to be positioned in a way that they do not
overlap. The goal is to minimize the volume of the used bins.

Definition 1 can be applied to describe a performance-
conserving resource allocation that does not consider energy
efficiency. Each VM in 2 is represented by a hypercube in
A. For simplification, the dimension d of the hypercubes
is chosen to be 3, representing the requirements on CPU,
RAM, and NIC. In general d can be chosen 4 if besides
CPU, RAM,and NIC requirements also HDD requirements
are considered. The length of the hypercube’s edges defines
the amount of the specific resource that is required by the
VM. In the case of the CPU-dimension, a length of the edge
is given in MHz. A length of 7 would mean that the VM
utilizes a CPU with 7 clock rate to 100%. The ammount of
allocated RAM and network bandwidth that are required by
the VM are given in MB, respectively Mbps. Similar to the
n 3-dimensional cubes that represent the VMs, the m servers
in P are represented by the m 3-dimensional bins in S. The
dimensions of the bins represent the same resources as the
dimensions of the cubes. The length of an edge stands for
the total amount of the server resource that is represented
by the edge. Therefore in the RAM-dimension the length of
the bin’s edge is the total amount of RAM in MB that is
installed in the represented server. The length of the network-
edge is the maximum bandwidth that is provided by the
network interface card. In the case of the CPU dimension the
clock rates of the server’s CPUs and cores are added up to
determine the length of the edge that is representing the CPU.



An algorithm that solves the 3-dimensional variable-sized bin
packing can be used to determine a performance conserving
resource allocation.

However, in order to extend the performance-conserving
resource allocation by energy efficiency, definition 1 has to be
extended by assigning a cost function f5'***¢ to each bin s;.
Let fjf“”c be the power consumption function for server s; as
defined in section IV-A. Furthermore, let A;, = {a1,...a,} be
the set of cubes that are assigned to s;. The input parameters
of f;“f““c are the length of each dimension of the space that is
occupied by the cubes in A;, and other dynamic parameters
that are service-independent. Thus, fjf“”c can be written as
fotatic s 1 (A, )% xla(Ag, ) xpie™ e x . x plunamic — R
with 1;(Ay,) = L(ar) + .. + 1 (a,) = p2mme, 1 < j < d.
The input parameters pgzﬂamic X ... x pdynamic describe
the dynamic hardware properties that are independent of the
service requirements. The optimization goal of the modified
variable-sized multidimensional bin packing is to minimize the
sum of the cost functions of all bins: min ) ;- fstatic,

Si

hyper-cubes
A

Modified bin packing with
optimization goal:

Server S
power

hyper-bins

81500058, Server 1tom
—> Total CPU [MHz]
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Fig. 2. Modified bin packing problem for the minimization of server power
consumption

Figure 2 shows the application of the modified variable-
sized multidimensional bin packing to the energy-optimal
and performance conserving resource allocation. Given is a

set of n services that have to be assigned to m servers
with different hardware capabilities in an energy-efficient way
without the violation of the service requirements. The services
are represented by 3-dimensional cubes whereas the servers
are represented by 3-dimensional bins. The goal is to put the
cubes into the bins while minimizing Y /", fstetic

V. CONCLUSION

In this paper a resource management was presented that
realizes an energy-efficient and performance-conserving re-
source allocation. The suggested management claims to save
significantly more energy than currently applied resource
managements with main focus on performance-based consoli-
dation. Parameters have been identified and discussed that have
an influence on the power consumption of servers and on the
performance of applications. The resource allocation problem
has been described as a variant of the multi-dimensional
variable-sized bin packing problem. Future work will address
the development of algorithms that solves the presented mod-
ified variable-sized multi-dimensional bin packing.
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