Advanced Model Theory

Moritz Müller

 \sim

1: Preliminaries

Two running examples:

- 1. Theory VSP_K^∞ of infinite vector spaces over a fixed field K: models are determined by dimension. In particular, exactly one model (up to \cong) in each uncountable cardinality κ (i.e., κ -categorical).
- 2. Theory ACF_p of algebraically closed fields of characteristic p: models are determined by transcendence degree. In particular, exactly one model in each uncountable cardinality.

Similarity of arguments – find general argument? General notion of "dimension"? Goal: develop such a general theory and prove:

Morley's theorem Let $\kappa > \aleph_0$. A theory in an at most countable language is κ -categorical if and only if it is \aleph_1 -categorical.

Basic notations, elementary maps, elementary diagrams

2: Types

Definition and characterizations of types, realizability type space, Stone topology homeomorphisms from elementary maps.

3: Saturation

elementary chains and Tarski's lemma existence of κ^+ -saturated elementary extensions back and forth: isomorphism from saturation

 $\kappa\text{-}categorical iff all size <math display="inline">\kappa$ models are saturated: interesting mistake for "if" and uncountable κ

4: Crash course: quantifier elimination

sufficient for primitive existential formulas quantifier elimination criterion Examples VSP_K^{∞} and ACF_p

5: Indiscernibles

Ehrenfeucht-Mostiowski types Ramsey's theorem Indiscernible existence lemma models generated by well-ordered indiscernibles realize few types Few Types theorem

6: ω -stability

 κ -stable theories Example: ACF_p $\aleph_0 < \kappa$ -categorical implies ω -stable ω -stable implies totally transcendental implies κ -stable for all $\kappa > |L|$ κ -stable gives λ^+ -saturated model of size κ (all $\lambda < \kappa$) correction of interesting mistake above

7: Prime extensions

prime extensions and constructible extensions of parameter sets t.t. theories: isolated types are dense t.t. theories: existence of construcible extensions t.t. theories: prime implies atomic Lachlan's lemma Morley downwards

8: Crash course: ω -homogeneity

existence of small ω -homogeneous extensions back and forth: isomorphism from homogeneity algebraic characterization of type equality Beth's definability theorem

9: Vaughtian pairs

no VP implies elimination of \exists^{∞} Vaught's two cardinal theorem $\aleph_0 < \kappa$ -categorical implies no VP

10: Matroids

Definition of independence and bases in matroids Examples: vector spaces, algebraically closed fields Bases exist, their cardinality is unique: dimension dimension formula for restricted and relativized matroids

11: Algebraicity

algebraic formulas and types transitivity of algebraic closure existence of non-algebraic type extensions

12: Strong minimality

minimal and strongly minimal formulas coincide under ω -saturation or \exists^{∞} -elimination existence of minimal formulas for t.t. theories Examples: ACF_p and VSP^{∞}_K are strongly minimal theories strongly minimal types have unique non-algebraic extensions indiscernibility from independence algebraic closure gives matroid on strongly minimal sets Example: for ACF_p dimension is transcendence degree φ -dimensions extension of elementary maps to algebraic closures Strongly minimal theories: models determined by dimension

- models determined by dimension
- model dimensions form an endsegment of cardinals
- $\omega\text{-saturation}$ means infinite dimension
- all models are $\omega\text{-homogeneous}$
- $\kappa\text{-categorical for all }\kappa>\aleph_0$

Baldwin-Lachlan theorem Morley's theorem