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Preface

Logic

Modern mathematical logic emerged during the so-called foundational crisis of mathematics
and Hilbert’s program. From the very beginning work on this program tackled algorithmic
questions, the most important of which was the question what an algorithm actually is.
For example, Hilbert asked in 1928 whether there exists an algorithm deciding the problem

Entscheidung
Input: a sentence ϕ.

Problem: is ϕ valid?

We explain these notions below. Maybe the most important aspect of this question is
that the notion of algorithm had been informal at the time. Church and Turing formalized
this notion in 1936 and gave a negative answer to Hilbert’s question. Thereby logicians
studied the reaches and limits of computers well before they had actually been built,
including the today highly topical question concerning the possibility of AI. Thus, the
historical roots of computer science lie in mathematical logic.

More importantly, logic continues to play an essential role in computer science. This
has been repeatedly and prominently been pointed out.1 In fact, “Logic is for computer
science what calculus is for physics” is an often repeated slogan.2 It has been said that
computer science “is a continuation of logic by other means”3 and even that it “should be

1M. Davis. Influences of mathematical logic on computer science. In: The universal Turing machine:
a half-century survey (2nd ed.). Springer, pp. 289–299, 1995.

J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Vardi, V. Vianu. On the unusual effectiveness
of logic in computer science. Bulletin of Symbolic Logic 7 (2): 213-236, 2001.

A. Blass. Symbioses between mathematical logic and computer science. Annals of Pure and Applied
Logic167 (10): 868-878,2016.

2P. Kolaitis, M. Vardi. Logic as The Calculus of Computer Science. Talk at the NSF/CISE Workshop
on The Unusual Effectiveness of Logic in Computer Science, National Science Foundation, Arlington, 2001.
Available here: https://www.cs.rice.edu/~vardi/logic/

M. Genesereth, V. Chaudhri. Logic in Secondary School Education. Essay available at: http://logic.
stanford.edu/publications/genesereth/logic.pdf

3G. Gottlob. Computer Science as the continuation of logic by other means. Talk at Simpo-
sio Internacional: El legado de Alan Turing, Madrid, 23-24-10-2012. Available here: http://www.

informatics-europe.org/images/ECSS/ECSS2009/slides/Gottlob.pdf

iv
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viewed as a branch of applied logic.”4

What is logic? Better: what is a logic? It is an artificial language, formally defined in
order to avoid the usual ambiguities and vagueness of natural language. Viewed like this
the essential role of logic for computer science should come as no surprise. The definition
of a logic has three parts answering the questions:

1. How to talk?

2. What is truth?

3. How to reason?

Question 1 is answered by the definition of syntax: it is the definition of a set of formal
objects called sentences (or formulas), often certain words over a certain alphabet. Usually
sentences can be encoded by finite binary strings and can thus be processed by computers.

Question 2 is answered in two steps. First one decides what the sentences are supposed
to talk about: one defines a collection of formal objects, let us call them worlds. Second
one defines truth as a relation ⊧ between worlds W and sentences ϕ, usually denoted

W ⊧ ϕ.

Such a definition automatically produces formal definitions of central semantic concepts:

– A sentence ϕ is valid if it is true in all worlds, i.e., W ⊧ ϕ for all worlds W .

– Two sentences ϕ,ψ are logically equivalent if they are true in the same worlds, i.e.,
for all worlds W : W ⊧ ϕ ⇐⇒W ⊧ ψ.

– A theory T (i.e., a set of sentences) logically implies a sentence ϕ if ϕ is true whenever
T is true, i.e., W ⊧ ϕ for all worlds W with W ⊧ T .

. . .

Question 3 is answered by defining a calculus. Usually a calculus is given by syntactically
defined rules allowing to produce new sentences, namely conclusions, from given ones,
namely premisses. Sequences of sentences produced by repeated rule applications are
formal proofs. Being syntactically defined means that the applicability of a rule refers
only to the syntactical form of the premisses and the conclusions, without reference to the
semantics ⊧. Of course, this is key for the automatation of reasoning.

The holy grail of such a definitorial adventure is a

Completeness Theorem T logically implies ϕ if and only if T proves ϕ.

Two philosophical comments. First, Kreisel’s sandwich argument: whatever your infor-
mal notion of “implies” is it typically seems safe to assume that T “implies” ϕ implies that

4stated by Leivant in: K. Bruce, P. Kolaitis, D. Leivant and M. Vardi. Panel: logic in the computer
science curriculum. ACM SIGCSE Bulletin 30: 376–377, 1998.
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T logically implies ϕ. It is also typically seems more than safe to assume that T “implies”
ϕ is implied by T proves ϕ. By the completeness theorem it is thus safe to assume that
T proves ϕ if and only if T “implies” ϕ. This is a significant philosophical insight: the
informal notion of “implication” is captured by the formal notion of proof.

Second: it is an often repeated line of argument that AI is not “real intelligence”
because computers have no access to the “meaning” of sentences but “merely manipulate
symbols” (e.g. Searle’s room in the analytical philosophy of mind). Such arguments are
dubious in the presence of a completeness theorem.

Algorithms

Formal definitions of computations can be given e.g. via the notion of a Turing machine.
This is outside the scope of this course but assumed as background knowledge of the reader.
However, the course is accessible already from an intuitive understanding of computations
as follows.

An input is any finitary object, say encoded by a finite binary string. A computation is
a sequence of simple modifications of the input string ending with an output string. The
algorithm is a sequence of instructions, say program lines, that given any input produces
a computation on it. A (decision) problem is formalized a set Q of binary strings. It
represents the intuitive problem

Q
Input: a binary string x.

Problem: is x in Q?

For example, the Entscheidungsproblem is formally viewed as the set of binary
strings encoding valid sentences ϕ. An algorithm decides Q if, given as input a binary
string x, produces a computation with output 1 if x ∈ Q, and 0 if x ∉ Q.

A function t ∶ N → N bounds the runtime of an algorithm if, on an input of length n,
the computation has length ⩽ t(n).

What is an efficient algorithm? In this course we follow the historical suggestion of
Cobham and Edmonds (1965) and view an efficient algorithm as one with polynomially
bounded runtime, that is, the function t above can be taken to be a polynomial.

We are interested only in asymptotic runtime bounds and use the O-notation. Saying
that a function f ∶ N→ N is O(g) for another function g ∶ N→ N means that there is c ∈ N
such that f(n) ⩽ cg(n)+ c for all n ∈ N. Dually, we say f is Ω(g) if g is O(f), equivalently,
there is c ∈ N such that f(n) ⩾ ⌊g(n)/c⌋ for all n ∈ N. Often we write e.g. 2n or n3 to
denote g. E.g. f is bounded by a polynomial if and only if f is O(nc) for some c ∈ N.



Chapter 1

Propositional logic

This chapter introduces propositional logic and closely follows the outline in the Preface. It
defines syntax and semantics and then semantic concepts in the canonical way. It proceeds
giving two calculi for formal reasoning, first Gentzen’s sequent calculus, then Resolution.

There are extra sections. Section 1.5 showcases how propositional logic is used in
computer science to model basic computational problems. Such modeling is preliminary to
employ powerful Sat solvers in software engineering. Section 1.7 showcases how Resolution
is used for algorithm analysis. Section 1.8 is advanced material on Resolution lower bounds,
implying lower bounds on the runtime of certain Sat solvers.

1.1 Syntax

For n ∈ N write [n] ∶= {1, . . . , n}, understanding [0] = ∅.
An alphabet A is a non-empty set of letters. We write A∗ ∶= ⋃n∈NAn and refer to its

elements as words (over A). For n ∈ N and w = (a1, . . . , an) ∈ An we call ∣w∣ ∶= n the length
of w; we omit parentheses and write w = a0⋯an. We say a letter a ∈ A occurs in w if a = ai
for some i ∈ [n], and call such i an occurrence of a. There is exactly on word of length 0,
the empty word ε. Given two words w = a1⋯an and w′ = a′1⋯a′m of lengths n and m we
write ww′ for the word a1⋯ana′1⋯a′m of length n +m. A (proper) prefix of a word w is a
word w′ such that w = w′w′′ for some (non-empty) word w′′.

Example 1.1.1. For A ∶= {0,1}, the set A∗ = {0,1}∗ is the set of binary strings.

Definition 1.1.2 (Syntax). Let Var ∶= {X0,X1, . . .} be a set of (pairwise distinct) propo-
sitional variables. The set of (propositional) formulas ( is the smallest set F of words over
the alphabet

∧, ¬, (, ), X0,X1, . . .

satisfying for all words ϕ,ψ:

(F1) Var ⊆ F ;

(F2) if ϕ ∈ F , then ¬ϕ ∈ F ;

1
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(F3) if ϕ,ψ ∈ F , then (ϕ ∧ ψ) ∈ F .

Remark 1.1.3. Occasionally we shall use another set Var′ of variables. The set of (propo-
sitional) formulas with variables Var′ is defined in the same way replacing (F1) by Var′ ⊆ F .

Remark 1.1.4. This is well-defined: let F be the collection of sets of words satisfying
(F1)-(F3). Then F ≠ ∅ because it contains the set of all words. Then ⋂F = ⋂F ∈F F
satisfies (F1)-(F3). Clearly, it is contained in all F ∈ F .

Lemma 1.1.5 (Unique readability). For every formula ϕ exactly one of the following
holds:

1. ϕ ∈ Var.

2. ϕ = ¬ψ for some formula ψ; then ϕ is a negation (of ψ).

3. ϕ = (ψ ∧ χ) for some formulas ψ,χ; then ϕ is a conjunction (of ψ,χ).

Moreover in case 2, ψ is uniquely determined, and in case 3, ψ,χ are uniquely determined.

Proof. At most one of these cases holds: clear, since first symbols are different. At least
one of the cases holds: if F is the set of formulas and none of the cases holds for ϕ, then
F ∖ {ϕ} satisfies (F1)-(F3), contradiction.

Claim: No formula is a proper prefix of another.

This implies uniqueness in case 3 as follows: if (ψ ∧ χ) = (ψ′ ∧ χ′) then ψ = ψ′ since
otherwise one would be a prefix of the other; then also χ = χ′ follows.

To prove the claim, assume for contradiction that there exists a formula that has a
proper prefix that is a formula too. Choose such a formula ϕ of minimal length. Let ϕ′ be
a formula that is a proper prefix of ϕ. We derive a contradiction showing that none of the
3 cases can happen for ϕ.

If ϕ ∈ Var, then ϕ′ = ε but ε is not a formula since F ∖ {ε} satisfies (F1)-(F3).
Assume ϕ = ¬ψ for some formula ψ. Then ϕ′ starts with ¬, so there is a formula ψ′

such that ϕ′ = ¬ψ′. Then ψ′ is a proper prefix of ψ. This contradicts the minimality of ϕ.
Assume ϕ = (ψ ∧ χ). Then ϕ′ starts with (, so ϕ′ = (ψ′ ∧ χ′) for some formulas ψ′, χ′.

By minimality of ϕ, neither ψ is a proper prefix of ψ′, nor vice-versa. Then ψ = ψ′. Then
χ′ is a proper prefix of χ, in contradiction to the minimality of ϕ.

Lemma 1.1.6 (Induction on syntax). Let P be a set of formulas such that for all formu-
las ϕ,ψ:

1. Var ⊆ P ;

2. if ϕ ∈ P , then ¬ϕ ∈ P ;

3. if ϕ,ψ ∈ P , then (ϕ ∧ ψ) ∈ P .

Then P is the set of all formulas.
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Proof. Assume there exist formulas not in P . Let ϕ be a formula outside P of minimal
length. Then ϕ is not a variable by 1, not a negation by 2 and not a conjunction by 3.
This contradicts the previous lemma.

One can argue without Lemma 1.1.5: let F be the set of formulas, then the assumptions
state P ⊆ F and P satisfies (F1)-(F3). As F is smallest, F ⊆ P .

Exercise 1.1.7. Show that every formula has the same number of occurrences of ( as of ).

Lemma 1.1.5 also enables definitions by recursion.

Example 1.1.8. There is exactly one function sub defined on the set of formulas that
satisfies for all formulas ϕ,ψ and X ∈ Var:

1. sub(X) ∶= {X};

2. sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ);
3. sub((ϕ ∧ ψ)) = {(ϕ ∧ ψ)} ∪ sub(ϕ) ∪ sub(ψ).

Elements of sub(ϕ) (distinct from ϕ) are (proper) subformulas of ϕ.

Proof. We show by induction on n ∈ N that there exists exactly one function sn whose
domain is the set of formulas of length ⩽ n and that satisfies (1)-(3). For n ∶= 0, let s0 be the
empty function. For n > 0, let sn agree with sn−1 on formulas of length < n, and for formulas
of length n, define sn as follows. If ϕ is a variable X (and n = 1), then sn(X) ∶= {X}. If
ϕ = ¬ψ, then sn(ϕ) ∶= {ϕ} ∪ s∣ψ∣(ψ). If ϕ = (ψ ∧ χ), then sn(ϕ) ∶= {ϕ} ∪ s∣ψ∣(ψ) ∪ s∣χ∣(χ).
Observe that sn is well-defined by Lemma 1.1.5. It is clear that this is the only possibility
in order to satisfy (1)-(3).

Define sub(ϕ) ∶= s∣ϕ∣(ϕ). Then (1)-(3) are obvious.

Exercise 1.1.9. Show that every formula ϕ has at most ∣ϕ∣ many subformulas.

1.2 Semantics

Roughly, the “worlds” propositional logic is supposed to talk about are sequences of 0s
and 1s, with variables denoting bits – formally:

Definition 1.2.1. A (total) assignment is a function β ∶ Var → {0,1}. For V ⊆ Var we
let β↿V denote the restriction of β to V : it has domain V and maps every X ∈ V to
β(X); conversely, β is an extension of β↿V . We refer to β↿V as a partial assigment or an
assignment to V .

Truth is determined by Tarski’s T-conditions:

Definition 1.2.2 (Semantics). For a (total) assignment β and a formula ϕ we define β ⊧ ϕ
by recursion on ϕ:

(T1) if ϕ ∈ Var, then: β ⊧ ϕ if and only if β(ϕ) = 1;
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(T2) if ϕ = ¬ψ for some formula ψ, then: β ⊧ ϕ if and only if β /⊧ ψ;

(T3) if ϕ = (ψ∧χ) for some formulas ψ,χ, then: β ⊧ ϕ if and only if both β ⊧ ψ and β ⊧ χ.

We read β ⊧ ϕ as ϕ is true under β or β satisfies ϕ. We read β /⊧ ϕ as ϕ is false under β
or β falsifies ϕ. The truth value of ϕ under β is 1 or 0 depending on whether β ⊧ ϕ or not.

Exercise 1.2.3. Show that there exists exactly one relation ⊧ between assignments and
formulas satisfying (T1)-(T3).

Definition 1.2.2 should be read as a description of a recursive algorithm:

Proposition 1.2.4. There is an efficient algorithm that given a formula ϕ and a partial
assignment β defined on all variables occuring in ϕ, outputs the truth value of ϕ under β.

Proof. The algorithm checks whether ϕ is a variable X or a negation ¬ψ or a conjunction
(ψ ∧ χ). In the first case it outputs β(X). In the second it recurses on ψ and outputs
1 − b where b is the bit returned by the recursive call. In the third case, it recurses on ψ.
If this recursive call returns 0, it outputs 0. Else it recurses on χ and outputs the bit this
recursive call returns.

To see that this algorithm is efficient observe every recursive call is on a subformula
of ϕ, so there are at most ∣sub(ϕ)∣ ⩽ ∣ϕ∣ many recursive calls. Each recursive call involves
a check and the computation of certain subformulas, plus possibly the retrieval of a value
of β from the input; this is clearly efficient.

Remark 1.2.5. For formulas ϕ,ψ we use the following abbreviations:

(ϕ ∨ ψ) ∶= ¬(¬ϕ ∧ ¬ψ)
(ϕ→ ψ) ∶= ¬(ϕ ∧ ¬ψ)
(ϕ↔ ψ) ∶= ((ϕ→ ψ) ∧ (ψ → ϕ))

We call (ϕ ∨ ψ) is a disjunction (of ϕ and ψ). Then for all assignments β:

β ⊧ (ϕ ∨ ψ) if and only if: β ⊧ ϕ or β ⊧ ψ.
β ⊧ (ϕ→ ψ) if and only if: if β ⊧ ϕ, then β ⊧ ψ.
β ⊧ (ϕ↔ ψ) if and only if: ϕ,ψ have the same truth value under β.

Example 1.2.6. Let β be an assignment. The following are equivalent:

β ⊧ ((¬X ∧ Y ) ∨Z)
β ⊧ (¬X ∧ Y ) or β ⊧ Z
β ⊧ ¬X and β ⊧ Y, or β(Z) = 1

β /⊧X and β(Y ) = 1, or β(Z) = 1

β(X) = 0 and β(Y ) = 1, or β(Z) = 1.
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Exercise 1.2.7. Let (ϕ ∣ ψ) abbreviate (¬ϕ ∧ ¬ψ), Show every formula is equivalent to
one built from variables and ∣ alone.

For ϕ a formula with variables in V and an assignment β, we say β ⊧ ϕ if γ ⊧ ϕ for
some total assignment γ extending β (i.e., γ↿V = β). We now check the obvious fact that
this notation is well-defined in that it does not depend on the choice of γ:

Lemma 1.2.8 (Coincidence). Let ϕ be a formula with variables in V ⊆ Var, i.e., only
variables from V occur in ϕ. Let β, γ be assignments with β↿V = γ↿V . Then

β ⊧ ϕ ⇐⇒ γ ⊧ ϕ.

Proof. Induction on syntax. The claim holds for all variables X:

β ⊧X ⇐⇒ β(X) = 1 ⇐⇒ γ(X) = 1 ⇐⇒ γ ⊧X.

If the claim holds for ϕ, then also for ¬ϕ:

β ⊧ ¬ϕ ⇐⇒ β /⊧ ϕ ⇐⇒ γ /⊧ ϕ ⇐⇒ γ ⊧ ¬ϕ.

If the claim holds for ϕ,ψ, then also for (ϕ ∧ ψ):

β ⊧ (ϕ ∧ ψ) ⇐⇒ β ⊧ ϕ and β ⊧ ψ ⇐⇒ γ ⊧ ϕ and γ ⊧ ψ ⇐⇒ γ ⊧ (ϕ ∧ ψ).

1.2.1 Truth tables

The following table shows how basic formulas evaluate:

X Y ¬X (X ∧ Y ) (X ∨ Y ) (X → Y ) (X ↔ Y )
1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1

Here e.g. the second row considers an assignment β with β(X) = 1 and β(Y ) = 0. The
other entries state that the truth value under β of ¬X is 0, of (X ∧ Y ) is 0, and so on.

For the formula ((¬X ∧ Y ) ∨Z) of Example 1.2.6 we produce the table

X Y Z ¬X (¬X ∧ Y ) ((¬X ∧ Y ) ∨Z)
1 1 1 0 0 1
1 1 0 0 0 0
1 0 1 0 0 1
1 0 0 0 0 0
0 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 0 1
0 0 0 1 0 0
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E.g. the last column is produced applying the above table for ∨ to the 5th and 3rd column.
The satisfying partial assignments are exactly those with a 1 in the last column, the first is
β(X) = β(Y ) = β(Z) = 1, the second β(X) = β(Z) = 1, β(Y ) = 0, and so on. The falsifying
partial assignments are exactly those with a 0 in the last column.

1.3 Semantic concepts

Definition 1.3.1. Let ϕ,ψ be formulas and T a set of formulas.

1. ϕ is satisfiable if there exists an assignment satisfying ϕ.

2. ϕ is valid or tautological if every assignment satisfies ϕ.

3. ϕ,ψ are (logically) equivalent, symbolically ϕ ≡ ψ, if (ϕ↔ ψ) is valid.

4. T is satisfiable if there exists an assignment β with β ⊧ T , i.e., β ⊧ χ for all χ ∈ T .

5. T (logically) implies ϕ, symbolically T ⊧ ϕ, if β ⊧ ϕ for all assignments β with β ⊧ T .

Example 1.3.2. These properties can be read-off truth tables. E.g. ((¬X ∧ Y ) ∨ Z) is
satisfiable (not valif) because the last column contains a 1 (a 0).

Remark 1.3.3.

1. ϕ is valid if and only if ¬ϕ is unsatisfiable.

2. T ∪ {ϕ} ⊧ ψ if and only if T ⊧ (ϕ→ ψ).
3. T ⊧ ϕ if and only if T ∪ {¬ϕ} is unsatisfiable.

Examples 1.3.4. For all formulas ϕ,ψ,χ:

(ϕ ∧ (ψ ∧ χ)) ≡ ((ϕ ∧ ψ) ∧ χ), (ϕ ∨ (ψ ∨ χ)) ≡ ((ϕ ∨ ψ) ∨ χ)
(ϕ ∧ (ψ ∨ χ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)), (ϕ ∨ (ψ ∧ χ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ), ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ)
(ϕ→ ψ) ≡ (¬ϕ ∨ ψ), (ϕ→ ψ) ≡ (¬ψ → ¬ϕ)
(ϕ→ (ψ → χ)) ≡ ((ϕ ∧ ψ) → χ)
(ϕ→ ψ) ∧ (ϕ→ χ)) ≡ (ϕ→ (ψ ∧ χ)), ((ϕ→ χ) ∧ (ψ → χ)) ≡ ((ϕ ∨ ψ) → χ).

The first line states associativity of ∧,∨, the second the distributive laws, the third the de
Morgan laws.

Definition 1.3.5. Let n > 0 and Φ ∶= {ϕ1, . . . , ϕn} a set of formulas. Their disjunction and
conjunction are

⋁Φ ∶=
n

⋁
i=1

ϕi ∶= ϕ1 ∨⋯ ∨ ϕn and ⋀Φ ∶=
n

⋀
i=1

ϕ1 ∶= ϕ1 ∧⋯ ∧ ϕn,
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where we omit parentheses (recall associativity); the ϕi are disjuncts and conjuncts of the
respective formulas. Write ¬1ϕ for ¬ϕ, and, ¬0ϕ or for ϕ. A literal has the form ¬bX for a
variable X and b ∈ {0,1}. A clause is a disjunction of literals, and a term is a conjunction of
literals. A disjunctive normal form (DNF) is a disjunction of terms. A conjunctive normal
form (CNF) is a conjunction of clauses. That is, DNFs and CNFs have the forms

n

⋁
i=1

ni

⋀
j=1

λij and
n

⋀
i=1

ni

⋁
j=1

λij

respectively, where n,ni ∈ N>0, and the λij are literals. If k ∈ N>0 and all ni ⩽ k, we speak
of a k-DNF and k-CNF, respectively.

Proposition 1.3.6 (Expressive completeness). Let n > 0. For every set P ⊆ {0,1}n there
exists a formula ϕ in the variables X1, . . . ,Xn that defines P :

P = {β(X1)⋯β(Xn) ∈ {0,1}n ∣ β ⊧ ϕ}. (1.1)

Moreover, ϕ can be chosen both as a DNF and a CNF.

Proof. Let x = x1⋯xn ∈ {0,1}n. For all assignments β:

β ⊧ Tx ∶= ¬1−x1X1 ∧⋯ ∧ ¬1−xnXn ⇐⇒ β(X1)⋯β(Xn) = x,
β ⊧ Cx ∶= ¬x1X1 ∨⋯ ∨ ¬xnXn ⇐⇒ β(X1)⋯β(Xn) ≠ x.

Thus, for all assignments β:

β ⊧ ⋁
x∈P

Tx ⇐⇒ there is x ∈ P : β ⊧ Tx ⇐⇒ β(X1)⋯β(Xn) ∈ P,

β ⊧ ⋀
x∈{0,1}n∖P

Cx ⇐⇒ for all x ∈ {0,1}n ∖ P : β ⊧ Cx ⇐⇒ β(X1)⋯β(Xn) ∈ P.

Corollary 1.3.7. For every n, there are up to logical equivalence exactly 22n many formulas
in the variables X1, . . . ,Xn.

Proof. For every P ⊆ {0,1}n choose ϕP defining it. These are 22n many pairwise non-
equivalent formulas. Given any formula ϕ in the variables X1, . . . ,Xn let P ⊆ {0,1}n be
the set it defines. Then ϕ is logically equivalent to ϕP .

Corollary 1.3.8. Every formula is equivalent both to a CNF and to a DNF.

Example 1.3.9. DNFs and CNFs can be read-off truth tables. E.g. for ((¬X ∧ Y ) ∨ Z)
(is already a DNF but) the equivalent DNFs and CNFs read-off the truth table are

− “row 1” ∨ “row 3” ∨ “row 5” ∨ “row 6” ∨ “row 7”

= (X ∧ Y ∧Z) ∨ (X ∧ ¬Y ∧Z) ∨ (¬X ∧ Y ∧Z) ∨ (¬X ∧ Y ∧ ¬Z) ∨ (¬X ∧ ¬Y ∧Z),
− “not row 2” ∧ “not row 4” ∧ “not row 8”

= (¬X ∨ ¬Y ∨Z) ∧ (¬X ∨ Y ∨Z) ∧ (X ∨ Y ∨Z).
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1.3.1 Huge DNFs

We show that the move from a formula to a equivalent DNF sometimes necessarily increases
the length of the formula enormously.

Proposition 1.3.10. For every ` ∈ N there is a formula ϕ` such that

1. ∣ϕ`∣ ⩽ 10 ⋅ 22`;

2. every DNF equivalent to ϕ` has length at least 22`−1.

Proof. 1: For n > 0 let Parn ⊆ {0,1}n consist of the binary strings with an odd number of
occurrences of 1. Observe Par20 is defined by ϕ0 ∶=X1 and, for ` > 0, Par2` is defined by

ϕ` ∶= (ϕ`−1 ∧ ¬ϕ′`−1) ∨ (¬ϕ`−1 ∧ ϕ′`−1),
where ϕ′`−1 is ϕ`−1 with variables X1, . . . ,X2`−1 replaced by X2`−1+1, . . . ,X2` . Hence

∣ϕ`∣ ⩽ 4 ⋅ ∣ϕ`−1∣ + 9 ⩽ 4(4∣ϕ`−2∣ + 9) + 9 = 42∣ϕ`−2∣ + 4 ⋅ 9 + 9 ⩽ ⋯
⩽ 4`∣ϕ0∣ + 4`−1 ⋅ 9 +⋯ + 4 ⋅ 9 + 9 ⩽ 4` + 9 ⋅ 4`.

2: Let ψn be a DNF defining Parn with a minimal number of terms. Then all terms
are satisfiable. Assume there is a term T in ψn such that not all of X1, . . . ,Xn occur
in T , say, Xi does not occur. Choose an assignment β satisfying T . Then β ⊧ ψn, so
β(X1)⋯β(Xn) ∈ Parn. Let γ be as β but with the value on Xi flipped, i.e., γ(Xj) = β(Xj)
for all j ∈ [n] ∖ {i} and γ(Xi) ∶= 1 − β(Xi). Then γ ⊧ T by the coincidence lemma, so
γ ⊧ ψn. But γ(X1)⋯γ(Xn) ∉ Parn, a contradiction.

Hence each term is satisfied by at most one assignment to X1, . . . ,Xn. But there are
2n−1 such assignments β with β(X1)⋯β(Xn) ∈ Parn.

Remark 1.3.11. A DNF determining the parity of 267 bits (i.e., defining Par267) has
more disjuncts than there are atoms in the observable universe.

Exercise 1.3.12. There does not exist an efficient algorithm that, given a formula ϕ,
outputs a equivalent DNF. Same for CNFs.

Proposition 1.3.13. There is an efficient algorithm that, given a formula ϕ, outputs an
equisatisfiable CNF ϕ′, i.e., ϕ′ is satisfiable if and only if ϕ is satisfiable.

Proof. For every ψ ∈ sub(ϕ) let Xψ be a variable. For every ψ ∈ sub(ϕ) the algorithm
computes clauses as follows:

– if ψ =X ∈ Var compute: (¬Xψ ∨X), (¬X ∨Xψ);
– if ψ = ¬χ compute: (¬Xψ ∨ ¬Xχ), (Xχ ∨Xψ);
– if ψ = (ψ0 ∧ ψ1) compute: (¬Xψ ∨Xψ0); (¬Xψ ∨Xψ1), (¬Xψ0 ∨ ¬Xψ1 ∨Xψ).
Let χ be the conjunction of these clauses. Set ϕ′ ∶= (χ ∧Xϕ). It is clear that ϕ′ can

be efficiently computed (recall ∣sub(ϕ)∣ ⩽ ∣ϕ∣). To see ϕ′ is equisatisfiable to ϕ it suffices to
show for all assignments β:

β ⊧ χ ⇐⇒ for all ψ ∈ sub(ϕ): β(Xψ) is the truth value of ψ under β.

This is proved by a straightforward induction on syntax.
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1.3.2 Decision trees

Assume you have a (question, formally a) formula and want to know its truth value under
an assignment hidden in the world. How many values of variables do you need to find out?
A strategy intended to minimize this number is a decision tree.

Definition 1.3.14. A binary tree is a non-empty finite set T ⊆ {0,1}∗ of nodes, closed
under prefixes and such that t0 ∈ T whenever t1 ∈ T for all t ∈ {0,1}. A node is inner if it
is a proper prefix of another; otherwise it is a leaf; the root is the empty string ε. T is full
if whenever t ∈ T then either both t0, t1 or none is in T . The height of T is maxt∈T ∣t∣.

A decision tree repeats querying variables, each query depending on the answers re-
ceived so far, and finally outputs a bit.

Definition 1.3.15. Let X̄ = X1⋯Xn be a tuple of variables. A decision tree (with vari-
ables X̄) is a pair (T, `) such that T is a full binary tree and the labeling ` maps every leaf
into {0,1} and every inner node t to some variable in X̄; we say t queries `(t). We require
that no proper prefix of a non-leaf t queries the same variable as t.

A partial assignment β defined on the variables X̄ determines a leaf t(β) ∈ T , namely
the unique leaf t = t1⋯t∣t∣ ∈ T such that for all i ∈ [∣t∣], ti = β(Xj) where j ∈ [n] is such that
`(t1⋯ti−1) =Xj. The output of (T, `) on β is `(t(β)).

(T, `) is equivalent to a formula ϕ in the variables X̄ if for all assignments β to X̄ the
output of (T, `) on β is the truth value of ϕ under β.

Remark 1.3.16. Every formula ϕ in the variables X̄ ∶=X1⋯Xn is equivalent to a decision
tree with variables X̄ of height n.

Proof. The tree queries all variables and outputs the truth value of ϕ. Formally, T ∶=
{0,1}⩽n with `(t) ∶=X∣t∣+1 for ∣t∣ < n, and for leaves t ∈ {0,1}n set `(t) to be the truth value
of ϕ under the assignment Xi ↦ ti.

Example 1.3.17. Every decision tree equivalent to a formula defining Parn ⊆ {0,1}n has
height n.

Proof. Assume (T, `) has height < n. For an assignment β choose i ∈ [n] such that `(t) ≠
Xi for all prefixes t of t(β); this exists because ∣t(β)∣ < n. Let γ agree with β except
γ(Xi) = 1 − β(Xi). Then t(β) = t(γ), so the tree has the same output, but exactly one of
β(X1)⋯β(Xn), γ(X1)⋯γ(Xn) is in Parn.

Theorem 1.3.18. Let n > 0 and k ∈ [n] and ϕ be a formula in the variables X̄ =X1⋯Xn.

1. If ϕ is equivalent to a decision tree of height k, then ϕ is equivalent both to a k-DNF
and to a k-CNF.

2. If ϕ is equivalent to both a k-DNF and a k-CNF, then ϕ is equivalent to a decision
tree of height ⩽ k2.
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Proof. 1: Let (T, `) be a decision tree of height k that is equivalent to ϕ. Let t = t1⋯t∣t∣
range over the leafs that output 1 and let s = s1⋯s∣s∣ range over the leafs that output 0.
Then ϕ is equivalent to both

⋁t⋀i<∣t∣ ¬1−ti+1`(t1⋯ti) and ⋀s⋁i<∣s∣ ¬si+1`(s1⋯si).

2: Let ψ = T1∨T2∨⋯ and χ = C1∧C2∧⋯ be equivalent to ϕ, where the Ti conjunctions
of ⩽ k literals and the Cj are disjunctions of ⩽ k literals. We can assume that all Ti are
satisfiable and that all Cj are falsifiable (otherwise omit them).

We specify a decision tree by informally describing what variables to query or stop with
an output, given answers b1, . . . , br−1 to previous queries Xi1 , . . . ,Xir−1 , in other words,
given the partial assignment that maps Xij to bj. Formally, this is a node t = t1⋯tr−1

with bj = tj+1, `(t1⋯tj) = Xij for all j < r. Naturally, we say a partial assignment satisfies
(falsifies) Ti if it satisfies (falsifies) all (some) of its conjuncts.

The tree proceeds in rounds. In each round a partial assignment β is given; in the first
round β is the empty assignment. The tree outputs 1 if β satisfies some Ti or all Cj. It
outputs 0 if β falsifies all Ti or some Cj. Otherwise it queries the variables of Ti0 outside
the domain of β; here, i0 is minimal such that β does not falsify Ti0 .

Key observation: if Cj is not satisfied by β, then some of its variables is queried.

Otherwise the variables in Cj outside the domain of β are disjoint from the variables
in Ti0 outside the domain of β; but then there exists an assignment extending β that
satisfies Ti and falsifies Cj – contradicting ψ ≡ χ.

Thus, after ⩽ k rounds, β is defined on all variables of all Cj or satisfies Cj. Then the
tree halts with an output. Since every round queries ⩽ k variables, the height is ⩽ k2.

1.4 Formal reasoning I: Gentzen’s Logischer Kalkül

Definition 1.4.1. A sequent is a pair (Γ,∆) of finite sets of formulas Γ,∆, written Γ⇒∆.
Γ⇒∆ is valid if ((⋀Γ) → (⋁∆)) is valid, equivalently, Γ ⊧ ⋁∆.

Definition 1.4.2. An LK-proof is a finite sequence of sequents such that every sequent in
it is a conclusion of an LK-rule with premisses appearing earlier in the sequence. There
are the following LK-rules, written Premisses

Conclusion . We write e.g. Γ, ϕ instead of Γ ∪ {ϕ}.

Axiom
Γ, ϕ⇒∆, ϕ

Weakening
Γ⇒∆

Γ′⇒∆′
if Γ ⊆ Γ′,∆ ⊆ ∆′

¬-left
Γ⇒∆, ϕ

Γ,¬ϕ⇒∆
¬-right

Γ, ϕ⇒∆

Γ⇒∆,¬ϕ

∧-left
Γ, ϕ,ψ⇒∆

Γ, (ϕ ∧ ψ) ⇒∆
∧-right

Γ⇒∆, ϕ Γ⇒∆, ψ

Γ⇒∆, (ϕ ∧ ψ)
An LK-proof is a proof of its last sequent. A sequent is LK-provable if there is an LK-proof
of it. A formula ϕ is LK-provable if so is ⇒ ϕ (i.e. ∅⇒ {ϕ}).
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Remark 1.4.3. Define LK+-proof like LK-proofs but additionally allowing the rules:

∨-left
Γ, ϕ⇒∆ Γ, ψ⇒∆

Γ, (ϕ ∨ ψ) ⇒∆
∨-right

Γ⇒∆, ϕ,ψ

Γ⇒∆, (ϕ ∨ ψ)

→-left
Γ⇒∆, ϕ Γ, ψ⇒∆

Γ, (ϕ→ ψ) ⇒∆
→-right

Γ, ϕ⇒∆, ψ

Γ⇒∆, (ϕ→ ψ)

↔ -left
Γ, ϕ,ψ⇒∆ Γ⇒∆, ϕ,ψ

Γ, (ϕ↔ ψ) ⇒∆
↔ -right

Γ, ϕ⇒∆, ψ Γ, ψ⇒∆, ϕ

Γ⇒∆, (ϕ↔ ψ)

Then LK+-provable sequents are LK-provable.

Proof. In an LK+-proof replace applications of →-left and →-right by the “proof trees”:

Γ, ψ⇒∆

Γ⇒∆, ϕ Γ⇒∆,¬ψ
Γ⇒∆, (ϕ ∧ ¬ψ)

Γ,¬(ϕ ∧ ¬ψ) ⇒∆

Γ, ϕ⇒∆, ψ

Γ, ϕ,¬ψ⇒∆

Γ, (ϕ ∧ ¬ψ) ⇒∆

Γ⇒∆,¬(ϕ ∧ ¬ψ)

More precisely, an application is replaced by a sequence of sequents suitably listing the
sequents in these trees. Proceed similarly for the other rules.

Example 1.4.4. Below is an LK+-proof of ¬(X∧Y ) ⇒ (¬X∨¬Y ) numbered and annotated
with the rules applied, and the same proof displayed as a “proof tree”.

1 X ⇒X,¬Y Axiom
2 ⇒X,¬X,¬Y ¬-right on 1
3 Y ⇒ ¬X,Y Axiom
4 ⇒ Y,¬X,¬Y ¬-right on 3
5 ⇒ (X ∧ Y ),¬X,¬Y ∧-right on 2,4
6 ⇒ (X ∧ Y ), (¬X ∨ ¬Y ) ∨-right on 5
7 ¬(X ∧ Y ) ⇒ (¬X ∨ ¬Y ) ¬-left on 6

X ⇒X,¬Y Y ⇒ Y,¬X
⇒X,¬X,¬Y ⇒ Y,¬X,¬Y

⇒ (X ∧ Y ),¬X,¬Y
⇒ (X ∧ Y ), (¬X ∨ ¬Y )
¬(X ∧ Y ) ⇒ (¬X ∨ ¬Y )

Intuition: proof trees are constructed bottom-up. Start with the sequent Γ ⇒ ∆ to be
proved. Read it as an assumption “all formulas in Γ are true and all formulas in ∆ are
false” that you wish to refute. All rules are self-explanatory when read bottom-up in this
way. E.g. at the branching point above (∧-right) we have “all (X ∧ Y ),¬X,¬Y are false”
and make a case distinction: “all X,¬X,¬Y are false” or “all Y,¬X,¬Y are false”. Each
leaf of the tree is the desired contradiction: a formula is assumed both true and false.

Exercise 1.4.5. Define a new connective (ϕ⊕ψ) with intended meaning “either ϕ or ψ”.
Which ⊕-left and ⊕-right rules would you add?

Remark 1.4.6.

1. (Soundness) For every LK-rule: if all premisses are valid, then so is the conclusion.
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2. (Inversion) For every LK-rule except Weakening: if the conclusion is valid, then all
premisses are valid.

Theorem 1.4.7 (LK completeness). A sequent or formula is valid if and only if it is
LK-provable. In fact, every valid formula ϕ has an LK-proof of length ⩽ 2∣ϕ∣.

Proof. It suffices to consider sequents. ⇐ we show, given an LK-proof S1, . . . , Sk, that all
sequents Si are valid. This follows from Remark 1.4.6 (1) by a simple induction.
⇒: let Γ ⇒ ∆ be valid. We proceed by induction on the number of ∧,¬ occurrences

in it. If this number is 0, all formulas in Γ ∪∆ are variables. Then there exists a variable
appearing in both Γ∪∆ – otherwise an assignment mapping all variables in Γ to 1 and all
in ∆ to 0, shows Γ⇒∆ is not valid. Hence, Γ⇒∆ is the conclusion of Axiom.

If Γ (resp. ∆) contains a negation ¬ϕ or a conjunction (ϕ ∧ ψ), then Γ ⇒ ∆ is the
conclusion of ¬-left or ∧-left (resp. ¬-right or ∧-right). The premisses are valid by Re-
mark 1.4.6 (2), so LK-provable by induction. Hence Γ⇒∆ is LK-provable.

For the second statement, choose sn minimal such that every valid sequent with n
occurrences of ∧,¬ has an LK-proof of length sn. By the above we have the recurrence
sn+1 ⩽ 2sn + 1 with s0 = 1. As n < ∣ϕ∣, our claim follows:

sn ⩽ 2sn−1 + 1 ⩽ 2(2sn−2 + 1) + 1 = 22sn−2 + 2 + 1 ⩽ ⋯ ⩽ 2ns0 + 2n−1 + ... + 1 = 2n+1.

Remark 1.4.8. Inspecting the proof we see that the above holds for LK without Weak-
ening and requiring in Axiom that there appears a variable on both sides.

The theorem implies that the set of provable sequents is not increased when adding any
sound rule (i.e., preserving validity). An important example is Cut:

Γ⇒∆, ϕ Γ, ϕ⇒∆

Γ⇒∆
.

1.4.1 Compactness theorem and applications

Theorem 1.4.9 (Compactness). A set of formulas T is satisfiable if and only if every
finite subset of T is satisfiable.

Proof. ⇒ is trivial. ⇐: let Tn be the set of formulas in T in the variables X1, . . . ,Xn. By
Corollary 1.3.7, Tn contains only finitely many formulas up to logical equivalence. Let Bn

be the set of partial assignments to the variables X1, . . . ,Xn that satisfy Tn. Then Bn ≠ ∅
by assumption. Hence B ∶= ⋃nBn is infinite.

Choose b1 ∈ {0,1} such that {β ∈ B ∣ β(X1) = b1} is infinite. Choose b2 ∈ {0,1} such
that {β ∈ B ∣ β(X1) = b1, β(X2) = b2} is infinite. And so on.

Let γ be the total assignment Xi ↦ bi. We claim γ ⊧ T . It suffices to show γn ∶=
γ↿{X1, . . . ,Xn} ∈ Bn for all n > 0. But there exists β ∈ B extending γn (even infinitely
many). Say β ∈ Bm for m ⩾ n. As β ⊧ Tm ⊇ Tn we have β↿{X1, . . . ,Xn} = γn ⊧ Tn.
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Exercise 1.4.10. Let A be a (possibly infinite) alphabet. A tree T over A is a prefix
closed subset of A∗. It is finitely branching if for every t ∈ T the set {a ∈ A ∣ ta ∈ T} is
finite. Show: if T is infinite, then there is an infinite branch: a sequence a1, a2, . . . such
that a1⋯an ∈ T for all n ∈ N>0.

Definition 1.4.11. Let T be a set of formulas and ϕ a formula. T proves ϕ, symbolically
T ⊢ ϕ, if there is a finite T0 ⊆ T such that T0 ⇒ ϕ is LK-provable.

Theorem 1.4.12 (Deductive LK completeness). Let T be a set of formulas and ϕ a
formula. Then T ⊧ ϕ if and only if T ⊢ ϕ.

Proof. The following are equivalent: T ⊧ ϕ, T ∪ {¬ϕ} is unsatisfiable, T ∪ {¬ϕ} is unsatis-
fiable for some finite T0 ⊆ T (compactness), T0 ⇒ ϕ is valid for some finite T0 ⊆ T , T0 ⇒ ϕ
is LK-provable for some finite T0 ⊆ T (Theorem 1.4.7), T ⊢ ϕ.

We recall some graph terminology. A directed graph G is a pair (V,E) where V is a
non-empty set of vertices, and E ⊆ V 2 a set of edges that is irreflexive (i.e, (v, v) ∉ E for all
v ∈ V ). If additionally E is symmetric (i.e., if (v, v′) ∈ E, then (v, v′) ∈ E for all v, v′ ∈ V ),
then G is a graph. A graph H = (W,F ) is a subgraph of G if W ⊆ V and F ⊆ E; it is
induced if F = E ∩W 2. Roughly, induced subgraphs are obtained by deleting vertices, and
subgraphs by additionally deleting edges.

Example 1.4.13. A graph G is 3-colorable if there exists a function c ∶ V → [3] such that
c(v) ≠ c(v′) for all (v, v′) ∈ E. An infinite graph G = (V,E) is 3-colorable if and only if
every finite subgraph is 3-colorable.

Proof. We prove this only for the case that V is countable. Then we can choose for every
v ∈ V variables X1

v ,X
2
v ,X

3
v . Write G = (V,E). Let TG be the set of the following formulas

for all v ∈ V and all (u,w) ∈ E

(X1
v ∨X2

v ∨X3
v),

(¬X1
v ∨ ¬X2

v), (¬X2
v ∨ ¬X3

v), (¬X1
v ∨ ¬X3

v),
(¬X1

u ∨ ¬X1
w), (¬X2

u ∨ ¬X2
w), (¬X3

u ∨ ¬X3
w).

Intuitively, X i
v is true if and only if v has color i. The first line states that v gets at

least one color, the second that v gets at most one colour, the third that (u,w) is not
monochromatic. We now verify these intuitions by showing that TG is satisfiable if and
only if G is 3-colorable.

Assume G is 3-colourable, say via c ∶ V → [3]. Define β(X i
v) ∶= 1 if c(v) = i, and

β(X i
v) ∶= 0 otherwise. Then β ⊧ TG.

Assume γ ⊧ ϕG. Let v ∈ V . By the first two lines, there is exactly one i ∈ [3] such that
γ(X i

v) = 1. Define c(v) to be this i. Let (u,w) ∈ E. By the 3rd line, c(u) ≠ c(w).
By compactness, TG is satisfiable if every finite subset is 3-colorable. Such a finite

subset is included in TH for a finite subgraph H of G, so is satisfiable if H is 3-colorable.
Hence G is 3-colorable if every finite subgraph is. The converse is trivial.
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1.5 Sat modelling

This subsection shows by means of examples how basic computational problems can be
modeled by the problem Sat. This is practically relevant for software engineering be-
cause there are powerful Sat solvers that show a remarkable and theoretically not well-
understood efficiency on real world inputs.

Proposition 1.5.1. There exists an algorithm that decides the problem

Sat
Input: a propositional formula ϕ.

Problem: is ϕ satisfiable?

Proof. Compute the set V of variables occurring in ϕ. Compute a list of all partial as-
signments β to V and check for each such β, using the algorithm from Proposition 1.2.4,
whether β ⊧ ϕ. If at least one check clears, output 1; else output 0.

Remark 1.5.2 (P versus NP). The above algorithm is not efficient: if ϕ has n variables,
then there are 2n many assignments to consider. The hypothesis P ≠ NP is equivalent to
the statement that efficient algorithms do not exist, i.e., runtime ⩽ nO(1) is impossible. The
Exponential Time Hypothesis states that even runtime ⩽ 2o(n) is impossible.

P versus NP is the core problem of theoretical computer science and, more generally,
one of “the three greatest problems of mathematics”.1 The pivotal role of Sat stems from
the Cook-Levin theorem (1973) stating, roughly speaking, that every NP problem can in a
certain sense be modeled by Sat. We showcase this by examples. It is known that if any
of the problems mentioned in this subsection admits an effective algorithm, then P = NP.

Proposition 1.5.3. There is an efficient algorithm deciding Sat if and only if there is an
efficient algorithm deciding

3Sat
Input: a 3-CNF ϕ.

Problem: is ϕ satisfiable?

Proof. “Only if” is trivial. “If”: the algorithm of Proposition 1.3.13 outputs 3-CNFs.

Example 1.5.4. Consider the computational problem

3Col
Input: a (finite) graph G.

Problem: is G 3-colourable?

There is an efficient algorithm that, given a (finite) graph G, computes a CNF ϕG that
is satisfiable if and only if G is 3-colourable.

1S. Smale. Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives,
American Mathematical Society, Providence, RI, 271–294, 2000.
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Proof. Set ϕG ∶= ⋀TG from Example 1.4.13.

Example 1.5.5. A vertex cover of a graph G = (V,E) is a set C ⊆ V such that for all
(u, v) ∈ E we have u ∈ C or v ∈ C. Consider the problem

Vertex Cover
Input: a graph G and k ∈ N.

Problem: does G have a vertex cover of size at most k?

There is an efficient algorithm that, given a graph G and k ∈ N, outputs a CNF ϕG,k
that is satisfiable if and only if G has a vertex cover of size at most k.

Proof. Write G = (V,E) and let k ∈ N>0. Use variables Xi,v for v ∈ V and i ∈ [k]. For every
v, v′ ∈ V, v ≠ v′, and i ∈ [k] consider the clauses:

⋁v∈V Xi,v, (¬Xi,v ∨ ¬Xi,v′).

Let χ be the conjunction of all these clauses. Then for all assignments β:

β ⊧ χ ⇐⇒ {(i, v) ∣ β(Xi,v) = 1} is the graph of a function from [k] into V .

Let ϕG,k be the conjunction of χ and for every (u, v) ∈ E the clause

⋁i∈[k]Xi,u ∨⋁i∈[k]Xi,v.

For k = 0 set ϕG,k ∶=X if E = ∅, and ϕG,k ∶= (X ∧¬X) otherwise. Clearly, ϕG,k is as desired
and efficiently computed – provided k ⩽ ∣G∣. For k > ∣V ∣, re-define ϕG,k ∶= ϕG,∣V ∣.

Example 1.5.6. A partition of as set S is a a family P of pairwise disjoint sets with
S = ⋃P = ⋃P ∈P P . Consider the problem

Set Cover
Input: a family F of sets.

Problem: does F contain a partition of ⋃F?

There is an efficient algorithm that, given a family of sets F , outputs a CNF ϕF that
is satisfiable if and only if F contains a partition of ⋃F .

Proof. If F = ∅, let ϕF be some satisfiable formula. Otherwise choose variables XS for
S ∈ F and let ϕF be the conjunction of (¬XS ∨¬XS′) for all S,S′ ∈ F with S ∩S′ ≠ ∅, and

⋁a∈S∈F XS for all a ∈ ⋃F .

Exercise 1.5.7. A clique in a graph G = (V,E) is a set C ⊆ V such that (u, v) ∈ E for all
distinct u, v ∈ C. Consider the problem

Clique
Input: a graph G and k ∈ N.

Problem: does G contain a clique of size k?
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Show that there exists an efficient algorithm that, given a graph G and k ∈ N, outputs
a formula ϕG,k that is satisfiable if and only if G contains a clique of size k.

Exercise 1.5.8. A dominating set in a graph G = (V,E) is a set D ⊆ V such that for all
v ∈ V ∖D there is u ∈D with (u, v) ∈ E. Consider the problem

Dominating Set
Input: a graph G and k ∈ N.

Problem: does G contain a dominating set of size k?

Show that there exists an efficient algorithm that, given a graph G and k ∈ N, outputs
a formula ϕG,k that is satisfiable if and only if G contains a dominating set of size k.

1.5.1 Horn formulas

Example 1.5.9. A path in a directed graph G = (V,E) is a finite sequence v0, . . . , vk of
pairwise distinct vertices such that (vi, vi+1) ∈ E for all i < k; it is from v0 and to vk.

Reachability
Input: a directed graph G and vertices s, t.

Problem: is there a path from s to t in G?

There is an efficient algorithm that, given a directed graph G and vertices s, t, outputs
a CNF ϕG,s,t that is satisfiable if and only if there does not exist a path from s to t in G.

Proof. Let G = (V,E) be a directed graph and s, t ∈ V . For every v ∈ V let Xv be a variable.
Define ϕG,s,t as the conjunction of Xs,¬Xt and (¬Xu ∨Xv) for every (u, v) ∈ E.

Assume β ⊧ ϕG,s,t. Then β(Xs) = 1, β(Xt) = 0. Assume there is a path s = v0, . . . , vk = t
in G. It suffices to show β(Xvi) = 1 for all i ⩽ k. This is clear, for i = 0. For i + 1, we have
β(Xvi) = 1 by induction, so β(Xvi+1) = 1 because β ⊧ (¬Xvi ∨Xvi+1).

Assume there is no path from s to t in G. Set β(Xv) ∶= 1 if there is a path from s to v
in G; otherwise β(Xv) ∶= 0. Then β(Xs) = 1 and β(Xt) = 0. Assume β falsifies a clause
(¬Xu ∨Xv) where (u, v) ∈ E. Then β(Xu) = 1 and β(Xv) = 0. Hence there is a path from
s to u in G but not to v – nonsense.

Note ϕG,s,t is a Horn formula in the following sense.

Definition 1.5.10. A clause (¬b1X1∨⋯∨¬bnXn) for variables X1, . . . ,Xn and bits b1, . . . , bn
is Horn if at most one bi is 0. A Horn formula is a conjunction of Horn clauses.

Theorem 1.5.11. There is an efficient algorithm deciding

Horn Sat
Input: a Horn formula ϕ.

Problem: is ϕ satisfiable?
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Proof. For a clause C = (¬b1X1∨⋯∨¬bnXn) consider the set {¬b1X1, . . . ,¬bnXn} of literals.
We denote this set again by C. The algorithm takes as input a conjunction ϕ of clauses C;
let C be the set of these clauses C, each viewed as a set of literals as above. Say an
assignment β satisfies C, symbolically β ⊧ C, if it satisfies some literal in each C ∈ C.
Observe that this happens if and only if β ⊧ ϕ. The algorithm is as follows:

1. while there exists X ∈ Var with {X} ∈ C.
2. choose such an X

3. C ← C ∖ {C ∈ C ∣X ∈ C}
4. C ← {C ∖ {¬X} ∣ C ∈ C}
5. if ∅ ∈ C, then output 0

6. else output 1

This algorithm is efficient because each while loop decreases ∣C∣, and can be efficiently
executed. To prove the output in line 5 is correct, it suffices to show that the while loop
preserves truth, i.e., for all β: if β ⊧ C and the while loop updates C to C′, then β ⊧ C′.
But since {X} ∈ C and β ⊧ C, we have β(X) = 1. Let C ′ ∈ C′, say C ′ = C ∖ {¬X} for C ∈ C.
Then β satisfies some λ ∈ C. Then λ ≠ ¬X, so λ ∈ C ′. Hence β satisfies C ′.

To prove the output in line 6 is correct, note it is only reached if every C ∈ C contains
a negation. This is satisfiable: take the all 0 assignment. It thus suffices to prove that the
while loop preserves unsatisfiability: if C′ is satisfiable, then so is C. But if β ⊧ C′, then
γ ⊧ C where γ maps X to 1 and otherwise agrees with β.

Corollary 1.5.12. There is an efficient algorithm deciding Reachability.

1.6 Formal reasoning II: Resolution

In the previous section we replaced a clause by the set of its disjuncts (literals), and a CNF
by a set of clauses. It is common to call also sets of literals clauses and we do so for the rest
of this chapter. Crucially, we allow the empty clause ∅. Look at the algorithm for Horn
Sat. Its while loop replaces clauses {X} and C with ¬X ∈ C by a new clause C ∖ {X}
which is implied in the obvious sense. Resolution is a formal proof system that operates
with clauses and is based on this simple derivation rule. We adapt our terminology:

Definition 1.6.1. A partial assignment β satisfies a clause C, symbolically β ⊧ C, if β ⊧ λ
for some λ ∈ C (a literal); it falsifies C if is falsifies every λ ∈ C. A clause C is tautological
if X,¬X ∈ C for some variable X. β satisfies a set of clauses C, symbolically β ⊧ C, if β ⊧ C
for all C ∈ C. If such β exists, C is satisfiable. C implies a clause C, symbolically C ⊧ C, if
β ⊧ C for every total assignment β with β ⊧ C.

Remark 1.6.2. Every partial assignment falsifies the empty clause C = ∅, and every
partial assignment satisfies the empty set of clauses C = ∅.
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It is important that the definition of C ⊧ C refers to total assignments. E.g. for C ∶= ∅
and C ∶= {X,¬X} we have C ⊧ C but there is a partial assignment β with β ⊧ C and β /⊧ C,
namely the empty assignment.

Definition 1.6.3. Let C be a set of clauses. A Resolution proof of C from C is a finite
sequence C1, . . . ,C` of clauses such that C` = C and for all i ∈ [`] one of the following holds:

– Ci ∈ C, i.e., C is an input clause;

– Ci = {X,¬X} for some variable X, i.e., C is an axiom;

– there is j < i such that Cj ⊆ Ci, i.e., Ci is a weakening of Cj;

– there are j, k < i and a variable X ∈ Cj such that ¬X ∈ Ck and Ci = (Cj ∖ {X}) ∪
(Ck ∖ {¬X}), i.e., Ci is a cut of Cj,Ck (on X).

A Resolution refutation of C is a Resolution proof of ∅ from C.

Exercise 1.6.4. Make precise and prove: Resolution is “the same” as the sequent calculus
operating with sequents made up of variables only and rules Axiom, Weakening and Cut.

Lemma 1.6.5 (Strong soundness). Let ` ∈ N, C1, . . . ,C` a Resolution proof and β be a
partial assignment. If β satisfies every axiom and input clause in the proof, then β ⊧ C`.

Proof. We show β ⊧ Ci for all i ∈ [`] by induction on i. If Ci is an input clause or an axiom
this follows by assumption. If Ci is a weakening of Cj for j < i, then β ⊧ Cj by induction,
so β ⊧ Ci. If Ci is a cut of Cj,Ck for j, k < i, say on X ∈ Cj we distinguish cases. If β does
not satisfy X, then it satisfies some literal λ ∈ C ∖ {X} and λ ∈ Ci; otherwise, β(X) = 1
and β /⊧ ¬X, so β satisfies some literal λ ∈ Ck ∖ {¬X}; then λ ∈ Ci.

The qualifier “strong” comes from the use of partial assignments (recall Remark 1.6.2).
We now show that refutations can dispense with weakenings and tautological clauses.

Lemma 1.6.6. Let C be a set of clauses and ` ∈ N. If there is a Resolution refutation of
C of length `, then there is one of length ⩽ ` in which every clause is non-tautological, and
every clause is in C or a cut of earlier clauses.

Proof. Let C1, . . . ,C` = ∅ be a refutation of C. First delete all tautological clauses. The
result is still a Resolution refutation: if Ci is non-tautological but a cut of Cj,Ck with, say,
Cj tautological, then C is a weakening of Ck. We denote the result again by C1, . . . ,C`.

For i = 1, . . . , n replace Ci by C ′
i ⊆ Ci as follows. If Ci ∈ C, set C ′

i ∶= Ci. If Ci is a
weakening of Cj, then also of C ′

j. Set C ′
i ∶= Cj. If Ci is a cut of Cj,Ck distinguish cases.

Say, the cut is on X ∈ Cj. If both X ∈ C ′
j and ¬X ∈ C ′

k, then let C ′
i be the cut of C ′

j,C
′
k

on X. Otherwise Ci is a weakening of C ′
j or C ′

k. Set C ′
i ∶= C ′

j or C ′
i ∶= C ′

k.
Then C ′

1, . . . ,C
′
` is a Resolution refutation where weakenings just repeat clauses. Delete

these repetitions.
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Definition 1.6.7. Let β be a partial assignment and C a clause that is not satisfied by β.
Let C↿β be the clause obtained by removing from C all literals that are falsified by β.

For a set of clauses C let

C↿β ∶= {C↿β ∣ C ∈ C and β /⊧ C}.

Notation: if X1, . . . ,Xn lists the domain of β and bi ∶= β(Xi) ∈ {0,1}, we write

C[X1/b1, . . . ,Xn/bn] ∶= C↿β and C[X1/b1, . . . ,Xn/bn] ∶= C↿β.

Exercise 1.6.8. Let C be a set of clauses, C a clause and β a partial assignment.

1. C↿β = ∅ if and only if β falsifies C.

2. C↿β = ∅ if and only if β ⊧ C.
3. C↿β is satisfiable if and only if some extension γ of β satisfies C.

Lemma 1.6.9. Let ` ∈ N, C be a set of clauses and β a partial assignment. If C has a
Resolution refutation of length `, then C↿β has a Resolution refutation of length ⩽ `.

Proof. Let C1, . . . ,C` = ∅ be a Resolution refutation of C. By Lemma 1.6.6 we can assume
every Ci is in C or a cut. Let Cν1 , . . . ,Cν`′ be the subsequence of clauses not satisfied by β.
Note ν`′ = `. We claim Cν1↿β, . . . ,Cν`′↿β = ∅ is a Resolution refutation of C↿β.

Assume Cνi is a cut of Cj,Ck for j, k < νi, say on X. First case: β is defined on X.
Then β satisfies one of Cj,Ck, say Cj. Then β does not satisfy Ck: otherwise it satisfies a
literal not involving X in Ck and this literal is in Cνi - but β does not satisfy Cνi . Hence
Ck = Cνk′ for some νk′ < νi. Then Cνi↿β is a weakening of Cνk′↿β.

Second case: β is not defined on X. As β does not satisfy Cνi is does not satisfy Cj,Ck,
so they equal Cνj ,Cνk for some νj, νk < νi. Then Cνi↿β is a cut of Cνj↿β,Cνk↿β on X.

Theorem 1.6.10 (Refutation completeness). A set of clauses C is unsatisfiable if and only
if C has a Resolution refutation.

Proof. ⇐ follows from Lemma 1.6.5. ⇒: assume C is unsatisfiable; by compactness we
can assume C is finite. We proceed by induction on the number n of variables occurring
in (some clause in) C. If n = 0, then ∅ ∈ C. Assume n > 0 and let X be a variable in C.
By Exercise 1.6.8 (3), both C[X/0] and C[X/1] are unsatisfiable. By induction they have
refutations. Say, C1, . . . ,C` = ∅ is a refutation of C[X/0]. Then C1 ∪ {X}, . . . ,C` ∪ {X} =
{X} becomes a Resolution proof if we add some weakenings. Namely, if Ci is an input
clause or axiom that does not contain X, then insert Ci before Ci ∪ {X}. Similarly we get
a proof of {¬X} from a refutation of C[X/1]. Compose the proofs and add a final cut on
X to get a Resolution refutation of C.

Exercise 1.6.11. This proof, like many proofs by induction, can be read computationally:
it implicitly specifies a recursive algorithm that computes a refutation given as input an
unsatisfiable C. Describe this algorithm. How long, at most, is the constructed refutation?
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Exercise 1.6.12. Show that there is an efficient algorithm deciding

2-Sat
Input: a 2-CNF ϕ.

Problem: is ϕ satisfiable?

Infer Corollary 1.5.12. Further infer that there is an efficient algorithm deciding

Bipartite
Input: a graph G = (V,E).

Problem: is G bipartite, i.e., are there disjoint V0, V1 ⊆ V such that E ⊆ (V0 ×V1)∪
(V1 × V0)?

Hint: a cut of clauses each of size ⩽ 2 has again size ⩽ 2.

Theorem 1.6.13 (Deductive Resolution completeness). Let C be a set of clauses and C a
clause. There is a Resolution proof of C from C if and only if C ⊧ C.

Proof. ⇒ is Lemma 1.6.5. ⇐: let ¬C be the set of clauses {¬1−bX} for every literal ¬bX ∈ C.
Then C∪¬C is unsatisfiable. By refutation completeness, it has a refutation C1, . . . ,C` = ∅.
Then C1∪C, . . . ,C`∪C = C is a Resolution proof of C from tautological clauses and clauses
D ∪C with D ∈ C. Adding some weakenings gives a proof from C.

Remark 1.6.14. The use of weakenings above cannot be avoided. E.g., every Resolution
proof of C ∶= {X} from C ∶= {∅} requires it. The use of axioms {X,¬X} can also not be
avoided since every proof of C ∶= {X,¬X} from C ∶= ∅ requires it.

1.6.1 Linear and SLD Resolution

Definition 1.6.15. Let C be a set of clauses. A linear Resolution proof from C is a
sequence of clauses C1, . . . ,C` such that C1 ∈ C and for every 1 < i ⩽ `, Ci is a cut of Ci−1

and a side clause Di which is an input clause (i.e., in C) or equals Cj for some j < i.
A linear Resolution proof is SLD is all Ci are negative, i.e., contain only negative literals

– a literal is negative if it starts with ¬ and otherwise positive.

Remark 1.6.16. In an SLD Resolution proof all side clauses contain exactly one positive
literal. Hence only Horn clauses are involved, i.e., clauses with a most one positive literal.

We now strengthen Theorem 1.6.10.

Theorem 1.6.17 (Linear refutation completeness). If C is an unsatisfiable set of clauses,
then there is a linear Resolution refutation of C.

Proof. We can assume that C is minimally unsatisfiable, i.e., every proper subset of C is
satisfiable. We show that then C has a linear refutation starting with any C ∈ C. We
proceed by induction on the number n of variables in C. If n = 0, C = {∅} and there is
nothing to show. Assume n > 0. Given C ∈ C we distinguish two cases.
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First case: ∣C ∣ = 1, say, C = {¬1−bX} for a variable X and b ∈ {0,1}. Let C′ be a
minimally unsatisfiable subset of C[X/b]. Then there exists C ′ ∈ C′ with C ′ ∪ {¬bX} ∈ C:
otherwise C′ ⊆ C ∖ {C} is satisfiable.

By induction, there is a linear refutation C ′ = C ′
1, . . . ,C

′
` = ∅ of C′, hence of C[X/b].

The input side clauses D′
i are in C[X/b]. If they are in C, then C,C ′

1, . . . ,C
′
` is a linear

refutation of C: the initial cut has side clause C ′ ∪ {¬bX}. Otherwise, there are i with
D′
i∪{¬bX} ∈ C, say i0 is minimal such. Using these side clauses instead and adding ¬bX to

all C ′
i , i ⩾ i0, gives a linear proof of ¬bX from C. A final cut with C gives a linear refutation.

Second case: ∣C ∣ > 1. Choose a literal in C, say ¬bX for a variable X and b ∈ {0,1}.
Let C′ ⊆ C[X/b] be minimally unsatisfiable. We claim C[X/b] = C ∖ {¬bX} ∈ C′. Indeed,
C[X/b] ∖ {C[X/b]} is satisfiable: since C is minimally unsatisfiable, there is β ⊧ C ∖ {C};
then β /⊧ C, so β(X) = b, so β ⊧ (C ∖ {C})[X/b].

By induction, there is a linear refutation C ′
1, . . . ,C

′
` = ∅ of C′ with C ′

1 = C[X/b] = C ∖
{¬bX}. For an input side clause D′

i there is Di ∈ C such that Di =D′
i or Di =D′

i∪{¬bX} ∈ C.
Adding ¬bX to all C ′

i , gives a linear proof of {¬bX} from C with side clauses Di. It starts
with C ′

1 ∪ {¬bX} = C.
Observe D ∶= (C ∖ {C}) ∪ {¬bX} is unsatisfiable, C ∖ {C} is satisfiable, so a minimally

unsatisfiable subset of D contains {¬bX}. The first case gives a linear refutation of D
starting with {¬bX}. Putting the above proof of {¬bX} in front, gives a linear refutation
of C that starts with C.

Corollary 1.6.18 (SLD refutation completeness). Every unsatisfiable set of Horn clauses
has a SLD Resolution refutation.

Proof. A minimally unsatisfiable C′ ⊆ C contains a negative clause C (otherwise the all 1
assignment satisfies it). By the previous proof there is a linear refutation C1, . . . ,C` = ∅
of C′, hence of C, that starts with C1 = C. As side clauses are Horn, all Ci are negative.

Exercise 1.6.19. Show that there exists an efficient algorithm that, given an unsatisfiable
set of Horn clauses, outputs a SLD Resolution refutation of it.

Hint: this is implicitly done by the algorithm in Theorem 1.5.11.

Remark 1.6.20. It is not known whether linear Resolution efficiently simulates general
Resolution. Is there c ∈ N such that for all ` ∈ N: if C has a refutation of length `, then it
has a linear one of length ⩽ `c?

The name SLD stands for “Linear Resolution with Selection function for Definite
clauses” and comes from logic programming. We explain what this is in Section 2.9.

1.7 Treelike Resolution

In general a Resolution proof can derive a clause and use it in many later derivation steps
as a premiss of cut or weakening. A proof is treelike if it is used at most once. The formal
definition needs care because, given a clause in a proof, it is not uniquely determined how
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it is derived: it can be from different earlier clauses and different occurrences of these. Not
even the rule used is visible, e.g., an input clause might as well as be a cut, or a cut can
be a weakening (cut a tautological clause with itself).

We recall some standard terminology: given a directed graph (V,E), the in-degree (out-
degree) of a vertex v ∈ V is the number of u ∈ V such that (u, v) ∈ E ((v, u) ∈ E). (V,E)
is acyclic if it contains no directed cycle (i.e., a path from a vertex to itself of length > 1).
Dag stands for directed acyclic graph.

We naturally view binary trees T as dags. More precisely, we say (V,E) is isomorphic
to T if there is a bijection B ∶ V → T such that for all u, v ∈ V we have:

(u, v) ∈ E ⇐⇒ B(u) = B(v)b for some b ∈ {0,1}.

Definition 1.7.1. Let C be a set of clauses and C a clause. Let C1, . . . ,C` = C be a
Resolution proof of C from C. A proof-dag of the proof is a directed graph ([`],E) such
that every i ∈ [`] has in-degree 0,1 or 2. In the first case, Ci is an axiom or input clause,
in the second a weakening from Cj where j < i is such that (j, i) ∈ E, and in the third Ci
is a cut of Cj,Ck where j, k < i are such that (j, i), (k, i) ∈ E.

The proof is treelike if it has a proof-dag such that every i ∈ [`] has out-degree ⩽ 1

Note a proof-dag is a dag because (i, j) ∈ E implies j < i. For emphasis, usual Resolution
proofs are sometimes called daglike.

Proposition 1.7.2. Let C be a set of clauses, C a clause and ` ∈ N. The following are
equivalent.

1. There is a treelike Resolution proof of C from C of length ⩽ `.
2. There is a Resolution proof of C from C with a proof-dag isomorphic to a binary tree

of size ⩽ `.
3. There is a binary tree T of size ⩽ ` and a map c from T to clauses such that

(a) if t is a leaf, then c(t) is an axiom or in C;

(b) if t0 ∈ T, t1 ∉ T , then c(t) is a weakening of c(t0);

(c) if t0, t1 ∈ T , then c(t) is a cut of c(t0), c(t1);

(d) c(ε) = C.

Proof. 2 ⇒ 1 is trivial. For 3 ⇒ 2, let t1, . . . , t∣T ∣ list T such that i < j if ∣ti∣ > ∣tj ∣. Then
c(t1), . . . , c(t∣T ∣) is a refutation of C with a proof-dag isomorphic to T .

For 1⇒ 3 the idea is to start walking from C taking steps to one of the premisses. Since
in each step we have at most 2 possibilities, the walks are determined by binary strings
and these form T . We now formalize this.

Let C1, . . . ,C` = C be a proof with proof-dag ([`],E) such that every ν ∈ [`] has out-
degree ⩽ 1. For a binary string t = t1⋯ts with s ⩽ ` define νt ⩽ ` as follows – intuitively
νt = 0 means “fail”. If s = 0, i.e., t = ε, let νt ∶= `. If s > 0 write t′ ∶= t1⋯ts−1. If νt′ ∶= 0
or νt′ has in-degree 0 in ([`],E), set νt ∶= 0. If νt′ has in-degree 1 in ([`],E), set νt ∶= 0 if
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ts = 1 and otherwise let νt satisfy (νt, ν) ∈ E. If νt′ has in-degree 2 in ([`],E), let ν0, ν1 ∈ [`]
satisfy (ν0, ν), (ν1, ν) ∈ E and set νt ∶= νts .

Let T be the set of binary strings t with νt ≠ 0. This is a binary tree and setting
c(t) ∶= Cνt satisfies (a)-(d).

To see ∣T ∣ ⩽ `, it suffices to show that t↦ νt is an injection on T . Assume there is t ∈ T
such that νt = νt′ for some t′ ∈ T ∖ {t}. Choose such t of minimal length, and a witnessing
t′ for t. It is easy to see that νt′′ < ` for all t′′ ≠ ε. Hence both t, t′ are non-empty. Write
t = t−b and t′ = t′−b′. If t− = t′−, then b ≠ b′ and clearly νt ≠ νt′ . So t− ≠ t′−. By minimality of t,
νt− ≠ νt′− . But νt = νt′ has an edge to both νt− , νt′− , so out-degree ⩾ 2. Contradiction.

Remark 1.7.3. In the proof of 1⇒ 3, the assumption of treelikeness is used only to show
that ∣T ∣ ⩽ `. Without this assumption we get ∣T ∣ ⩽ 2`+1 in (3). Interestingly, we shall prove
later that the exponential blow-up moving from a daglike to a treelike refutation can, in
general, not be avoided (Section 1.8.1).

We give a simple direct proof of completeness of treelike Resolution:

Proposition 1.7.4 (Treelike refutation completeness). Let n ∈ N. If C is an unsatisfiable
set of clauses in n variables, then it has a treelike Resolution refutation of length 3 ⋅ 2n.

Proof. We verify Proposition 1.7.2 (c) for the binary tree

T ∶= {t ∈ {0,1}∗ ∣ ∣t∣ ⩽ n} ∪ {t0 ∣ t ∈ {0,1}n}.

Then ∣T ∣ = 2n+1 + 2n as claimed. For t = t1 . . . tm with m < n define

c(t) ∶= {¬t1X1, . . . ,¬tmXm}.

Note c(ε) = ∅ and c(t) is a cut on X∣t∣+1 of c(t0), c(t1). For t of length n let β be an
assignment with t = β(X1)⋯β(Xn). Then β falsifies c(t). Since C is unsatisfiable, there is
C ∈ C such that β falsifies C. Then C ⊆ c(t). Define c(t0) ∶= C.

Exercise 1.7.5 (Treelike deductive completeness). Let C be a set of clauses and C a clause
such that C ⊧ C. Then there is a treelike resolution proof of C from C of length O(2n).

Exercise 1.7.6 (Search decision trees). Suppose you have an unsatisfiable set of clauses C,
the world hides an assignment, and you look for a falsified clause in C. How many values
do you need to uncover? A C-labeled decision tree (T, `) is defined like a decision tree
(Definition 1.3.15) but ` maps every leaf of T to a clause from C (instead of 0 or 1). It
solves the search problem of C if β /⊧ `(t(β)) for every assignment β.

1. For every treelike Resolution refutation of C there is one at most as long and with
proof-dag isomorphic to some binary tree T such that for some `, (T, `) is a C-labeled
decision tree that solves the search problem of C.

2. For every C-labeled decision tree that solves the search problem of C, there is a treelike
Resolution refutation of C with proof-dag isomorphic to T .
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1.7.1 DPLL algorithms

DPLL stands for Davis, Putnam, Logemann, and Loveland.

Definition 1.7.7. A DPLL algorithm, given as input a set of clauses C, proceeds as follows.

1. if C = ∅ then output 1

2. else if ∅ ∈ C, output 0

3. else choose a variable X occurring in C
4. recurse setting C ← C[X/0]
5. if this recursive call returns 1, output 1

6. else recurse setting C ← C[X/1]
7. if this recursive call returns 1, output 1

8. else output 0

Here choose in line 3 refers to some to-be-specified algorithm that, given a non-empty set
of clauses C, outputs a variable occurring in C.
Exercise 1.7.8. Every DPLL algorithm decides

CNF-SAT
Input: a set of clauses C.

Problem: is C satisfiable?

Remark 1.7.9. In engineering practice, the choice of the subroutine choose can drasti-
cally affect the observed runtimes on real-life inputs. DPLL algorithms are a basic version
of so-called Sat-solvers, some of which are surprisingly fast on real-life instances. How-
ever, if P ≠ NP, then there are no efficient DPLL algorithms. We shall prove later, without
relying on any unproven hypotheses like P ≠ NP, that all DPLL algorithms must have even
exponential runtime (in the worst case).

We show that rejecting runs of DPLL algorithms “are” treelike Resolution refutations.

Theorem 1.7.10. If C is a finite unsatisfiable set of clauses, then the number of steps
of every DPLL algorithm on C, is at least as large as the minimal length of a treelike
Resolution refutation of C.

Proof. Every recursive call is determined by a binary string b1⋯bw (for some w ∈ N) and
has an associated sequence of variables X1⋯Xw. It then either rejects in line 2 or chooses
a variable Xw+1 in line 3 and has two recursive calls in lines 4 and 6 determined by b1⋯bw0
and b1⋯bw1. The call determined by b1⋯bw recurses on C[X1/b1, . . . ,Xw/bw]. Set

Cb1⋯bw ∶= {¬b1X1, . . . ,¬bwXw}.
If the algorithm does not reject in line 2, then it recurses. The crucial observation is

that then Cb1⋯bw is a cut of Cb1⋯bw0 and Cb1⋯bw1 on Xw+1.
If the algorithm rejects in line 2, then ∅ ∈ C[X1/b1, . . . ,Xw/bw]. This means that

[X1/b1, . . . ,Xw/bw] falsifies some clause C ∈ C. This means C ⊆ Cb1⋯bw . In this case
additionally define Cb1⋯bw0 ∶= C. Setting c(b) ∶= Cb satisfies Proposition 1.7.2 (c).
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1.8 Resolution lower bounds

In this section we give a natural example of a small set of clauses OPn encoding the “Or-
dering principle” that has short daglike Resolution refutations but every treelike refutation
must be exponentially long. Second we give a natural example of a small set of clauses
PHPn encoding the “Pigeonhole principle” such that every daglike Resolution refutation
must be exponentially long. By Theorem 1.7.10 these results imply:

Corollary 1.8.1. For every sufficiently large n ∈ N, every DPLL algorithm makes at least
2Ω(n) many steps on input OPn or PHPn.

Our use of “exponential” is not precise: as PHPn and OPn have size m ⩾ n3, the lower
bound is actually only 2Ω(m1/3).

1.8.1 Separation of treelike and daglike Resolution

Recall, an order on a set S is a relation R ⊆ S2 that is irreflexive (i.e., (a, a) ∉ R for all
a ∈ S) and transitive (i.e.,(a, b), (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ S). If S is finite,
it has a minimal element, so there is no function mapping any element to an R-smaller
one. This is expressed by the following set of clauses being unsatisfiable:

Definition 1.8.2 (Ordering principle). Let n ∈ N>0 and Rij, Fij be variables for i, j ∈ [n].
Let OPn contain for every i, j, j′, k ∈ [n], j ≠ j′, the clauses

{¬Rii}, {¬Rij,¬Rjk,Rik},
{Fi1, . . . , Fin}, {¬Fij ∨ ¬Fij′}, {¬Fij,Rji}.

Note OPn has O(n2) variables and O(n3) clauses.

Proposition 1.8.3. OPn is unsatisfiable for every n ∈ N>0.

Proof. Assume β ⊧ OPn. By the first group of clauses, R ∶= {(i, j) ∈ [n]2 ∣ β(Rij) = 1} is
an order on [n]. By the second group, we get a function F mapping i to j if β(Fij) = 1. F
maps every i ∈ [n] to an R-smaller element. This is impossible.

Proposition 1.8.4 (St̊almark). For every n ∈ N there are Resolution refutations of OPn

of length O(n3).

Proof. For i, k ∈ [n] let Ci
k = {R1i, . . . ,Rki}. We consecutively for k = n, . . . ,1 derive all

C1
k , . . . ,C

k
k . Then C1

1 = {R11} and a cut with {¬R11} gives the empty clause.
To start derive Ci

n for every i ∈ [n − 1]: cut {Fi1, . . . , Fin} consecutively with with
{¬Fij,Rji} for j = 1, . . . , n to get {R1i, . . . ,Rni} = Ci

n.
Assume C1

k+1, . . . ,C
k
k+1 have been derived. For every i ∈ [k] derive Ci

k as follows. For
every j ∈ [k] cut Ci

k+1 on R(k+1)i with {¬Rj(k+1),¬R(k+1)i,Rji} to get Dj ∶= Ci
k ∪{¬Rj(k+1)}.

Cut Ck+1
k+1 consecutively for j = 1, . . . , k with Dj to get Ci

k ∪ {R(k+1),(k+1)}; a cut with the
axiom {¬R(k+1)(k+1)} gives Ci

k.
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The refutation consists of the O(n3) input clauses, the O(n2) clauses Ci
k, and, for every

i, k, additionally n clauses Dj, and n intermediate clauses from the consecutive cuts. In
total, the proof has length O(n3).

Note this length is almost optimal because ∣OPn∣ ⩾ n3. We aim to show:

Theorem 1.8.5. For every sufficiently large n ∈ N, every treelike Resolution refutation of
OPn has length ⩾ 2n/6.

For the proof we need the following combinatorial lemma.

Lemma 1.8.6 (Spira). For a finite binary tree T there exists t ∈ T such that Tt ∶= {t′ ∈ T ∣
t is a prefix of t′} has size

⌊∣T ∣/3⌋ ⩽ ∣Tt∣ ⩽ 2∣T ∣/3.

Proof. The desired t is computed by the following algorithm.

1. t← ε

2. while ∣Tt∣ > 2∣T ∣/3
3. if t1 ∉ T or ∣Tt0∣ ⩾ ∣Tt1∣, then t← t0

4. else t← t1

5. output t

Obviously, the output t satisfies ∣Tt∣ ⩽ 2∣T ∣/3. Assume ∣Tt∣ < ⌊∣T ∣/3⌋. Note t ≠ ε, say t = t′0
for some t′ ∈ T . Then t1 ∉ T or ∣Tt1∣ ⩽ ∣Tt0∣ < ⌊∣T ∣/3⌋. Hence ∣Tt′ ∣ ⩽ 2⌊∣T ∣/3⌋ − 2 + 1 < 2∣T ∣/3
(with the +1 counting t′ ∈ Tt′).

Proof of Theorem 1.8.5. Informally, the proof can be outlined as follows: given a refutation
of length `, represent it by a binary tree T and clause labeling c. Choose t according to
Spira’s lemma. If c(t) can be satisfied by a “good” (partial) assignment, do so and delete
Tt. This gives a refutation with a new input clause c(t). Otherwise delete everything
outside Tt. This gives a proof of c(t), a clause that is unsatisfiable by “good” assignments.
Repeat, always considering “good” assignments extending the current one. After O(log ∣T ∣)
steps arrive at T ′ of constant size and a “good” assignment β. Being “good” allows to
extend β′ to a “good” assignment that satisfies all old input clauses. This is a contradiction
– provided the various extensions of “good” assignments exist. They do if ` is small.

The “good” assignments are βı̄ where ı̄ = i1⋯is ∈ [n]s with s ⩽ n and pairwise distinct
iν . It is defined on Rij if i = iν , j = iµ for certain ν,µ ∈ [s]; then it maps Rij to 1 if µ < ν,
and to 0 otherwise. It is defined on Fij if i = iν for some ν ∈ [s − 1]; then it maps Fij to 1
if j = iν+1, and to 0 otherwise.

It should be clear that βı̄ does not falsify any clause in OPn. A good extension of βı̄
is a partial assignment βı̄′ where ı̄ is a prefix of ı̄′. If βı̄ is undefined on Rij or Fij, then
there is a good extension βı̄′ of βı̄ with ∣̄ı′∣ ⩽ s + 2 that evaluates the variable: prolongue ı̄
by those of i, j that do not appear in ı̄.
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Assume OPn has a treelike refutation of length `. Choose T, c according to Proposi-
tion 1.7.2 (c). In particular, ∣T ∣ ⩽ `.

By a subtree of T we mean a set of the form {t0t ∣ t ∈ T ′} ⊆ T for t0 ∈ T and a binary
tree T ′; t0 is the root of the subtree. The subtree is full if for all t it contains either both
or none of t0, t1, if both t0, t1 ∈ T . Obviously, Spira’s lemma applies to subtrees.

We construct full subtrees T 0, T 1, . . . of T and tuples ı̄0, ı̄1, . . . such that for all r:

(a) T r and c↿T r “is” (satisfies (a)-(d) of Proposition 1.7.2 (3)) a treelike Resolution proof
of c(tr) from a set of clauses OPn ∪ Cr.

(b) Cr contains only clauses satisfied by βı̄r .

(c) no good extension of βı̄ satisfies c(tr) where tr is the root of T r.

We start with T 0 ∶= T and let ı̄0 be the empty tuple; t0 = ε, C0 = ∅. Assume T r, ı̄r is
constructed. Choose t ∈ T r according to Spira’s lemma and do the following:

– if there exists a good extension of βı̄r that satisfies c(t), then choose such βı̄r+1 with
∣̄ır+1∣ ⩽ ∣̄ır∣ + 2; set T r+1 ∶= (T r ∖ T rt ) ∪ {t}; then Cr+1 = Cr ∪ {t}, tr+1 = tr.

– else set ı̄r+1 ∶= ı̄r and T r+1 ∶= T rt ; then Cr+1 = Cr, tr+t = t.

By construction ∣T r+1∣ ⩽ ∣T r∣−⌊∣T r∣/3⌋+1 or ∣T r+1∣ ⩽ 2∣T r∣/3. In both cases ∣T r+1∣ ⩽ 3∣T r∣/4
as long as ∣T r∣ ⩾ 100, so ∣T r+1∣ ⩽ (3/4)r+1`. Fix the first r such that ∣T r∣ < 100. Then

r ⩽ ⌈2.5 log `⌉.

We strive for a contradiction as follows. Consider those < 100 leaves of T r labeled by a
clause C in OPn or an axiom {X,¬X}. Consecutively choose good expansions to satisfy all
of them: if the clause has ⩽ 3 variables, choose a good extension that evaluates all of them
by prolonging the current tuple by ⩽ 6 points; since good assignments cannot falsify clauses
from OPn or axioms, it is satisfying. For a yet unsatisfied clause Ci ∶= {Fi1, . . . Fin} ∈ OPn,
the current tuple ends in i or does not contain i; choose a new j and prolongue the tuple
by j or i j, to satisfiy Fij and hence the clause.

By (a) and (b), the result βı̄′ satisfies all clauses labeling leaves of T r and ∣̄ı′∣ < ∣̄ır∣+600.
By strong soundness (Lemma 1.6.5), βı̄′ satisfies c(tr). This contradicts (c).

This contradiction needs βı̄′ to be well-defined. It is if ∣̄ır∣ + 600 ⩽ n. As ∣̄ır∣ ⩽ 2r we
conclude 2r + 600 > n, so 5 log ` + 2 + 600 > n. This implies the theorem.

1.8.2 Haken’s theorem

Definition 1.8.7 (Pigeonhole principle). Let n ∈ N>0. Let Xij be a variable for i ∈ [n + 1]
and j ∈ [n]. PHPn contains for every i, i′ ∈ [n + 1], i ≠ i′, and j ∈ [n] the clauses

{Xi1, . . . ,Xin}, {¬Xij,¬Xi′j}
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Note PHPn has (n+1)n many variables and O(n3) many clauses. Intuitively, Xij being
true means “pigeon i flies to hole j”. The clauses state that every pigeon flies to some
hole, and no two pigeons occupy the same hole.

Proposition 1.8.8. PHPn is unsatisfiable for every n ∈ N>0.

Proof. Assume β ⊧ PHPn. For every i ∈ [n + 1] choose j ∈ [n] such that that β(Xij) = 1 –
it exists because β ⊧ {Xi1, . . . ,Xin}. Let f ∶ [n+ 1] → [n] be the function mapping i to the
chosen j. Then f is injective: otherwise there are i, i′ ∈ [n + 1], i ≠ i′, and j ∈ [n] such that
j = f(i) = f(i′); then β(Xij) = β(Xi′j) = 1, contradicting β ⊧ {¬Xij,¬Xi′j}.

Theorem 1.8.9 (Haken). For all sufficiently large n ∈ N, every Resolution refutation of
PHPn has length at least 2n/140.

Proof. Informally, the proof can be outlined as follows: show that every refutation of
length ` of PHPn contains “n-wide” clauses. Find a “good” partial assignment β that
satisfies all “n-wide” clauses and apply it to the given refutation. Being “good” ensures
that the result is a refutation of PHPm for some m ⩽ n. This refutations contains no
clauses that are “n-wide”. If m is sufficiently large, it contains no “m-wide” clauses, a
contradiction. A “good” β yielding sufficiently large m exists if ` is small.

Let n ∈ N>0. A matching M is a bijection from a subset dom(M) ⊆ [n+1] onto a subset
im(M) ⊆ [n]. The partial assignment βM is defined on Xij if i ∈ dom(M) or j ∈ im(M);
then it maps Xij to 1 if M(i) = j, and to 0 otherwise.

Claim 1: Let M be a matching and r ∶= ∣dom(M)∣. Then PHPn↿βM equals PHPn−r up to
renaming variables.

Proof. We show that the clauses in PHPn↿βM are as in PHPn but with i ranging over
[n + 1] ∖ dom(M) and j ranging over [n] ∖ im(M).

Suppose {Xi1, . . . ,Xin}↿βM is in PHPn↿βM . Then βM does not satisfy {Xi1, . . . ,Xin},
so i ∉ dom(M). Then βM falsifies Xij if and only if j ∈ im(M). Hence {Xi1, . . . ,Xin}↿βM =
{Xij ∣ j ∈ [n] ∖ im(M)}.

Suppose {¬Xij,¬Xi′j}↿βM is in PHPn↿βM . Then βM does not satisfy {¬Xij,¬Xi′j}.
Then j ∉ im(M) and i, i′ ∉ dom(M). ⊣

We are interested in assignments βM for maximal matchings M . Note im(M) = [n] and
dom(M) = [n+1]∖ iM for some iM ∈ [n+1]. In particular, βM is total. Observe βM ⊧ ¬Xij

if and only if βM ⊧ Xij′ for some j′ ≠ j. For a clause C let the clause C̃ contain Xij if
Xij ∈ C or ¬Xij′ ∈ C for some j ≠ j′. Then βM ⊧ C if and only if βM ⊧ C̃. In particular,
C, C̃ have the same supports: a set S ⊆ [n + 1] is a support of a clause C if βM ⊧ C for
every maximal matching M with iM ∉ S. Let s(C) be the minimal size of a support of C.

Note [n + 1] is a support of any clause – trivially, because there are no matchings
defined on [n + 1]. It is the only support of the empty clause, so s(∅) = n + 1. An
axiom C ∶= {¬Xij,¬Xi′j} is satisfied by all βM for maximal M , so s(C) = 0. An axiom
C ∶= {Xij, . . . ,Xin} has support {i} and s(C) = 1.

Claim 2: For every clause C we have ∣C̃ ∣ ⩾ s(C)(n + 1 − s(C)).
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Proof. If s(C) = n + 1 or s(C) = 0 there is nothing to show, so assume 0 < s(C) ⩽ n and
let S be a support of C of size s(C). Let i ∈ S and i′ ∈ [n + 1] ∖ S. Then there exists a
maximal matching M with iM = i such that βM /⊧ C, so βM /⊧ C̃. Let M ′ be the maximal
matching with iM ′ = i′ and M ′(i) ∶= M(i′) and M ′(i′′) = M(i′′) for all i′′ ∉ {i, i′′}. Then
S ⊆ dom(M ′), so βM ′ ⊧ C, so βM ′ ⊧ C̃. Hence there is a variable in C̃ mapped to 1 by M ′

but not by M . The only such variable is XiM(i′), so XiM(i′) ∈ C̃.

Thus, C̃ contains the pairwise distinct variables XiM(i′) for (i, i′) ∈ S × ([n + 1] ∖ S). ⊣

Key Claim: Every refutation of PHPn contains a clause C with ∣C̃ ∣ > n2/9.

Proof. If C is a weakening of C ′, then s(C) ⩽ s(C ′). If C is a cut of C ′,C ′′, or, more
generally, {C ′,C ′′} ⊧ C, then s(C) ⩽ s(C ′) + s(C ′′): if S′, S′′ are supports of C ′,C ′′, then
S′ ∪ S′′ is a support of C. We already noted that clauses C ∈ PHPn have s(C) ⩽ 1 and
s(∅) = [n + 1]. Let C be the first clause in the refutation with s(C) ⩾ n/3. Then C is a
cut of clauses with smaller support, so n/3 ⩽ s(C) < 2n/3. By Claim 2, s(C) > n2/9. ⊣

Let C1, . . . ,C` = ∅ be a refutation of PHPn.

Let V1 be the set of ((n + 1)n many) variables and W1 ∶= {ν ∈ [`] ∣ ∣C̃ν ∣ ⩾ (n + 1)n/100}.
We claim that there exists Xi1j1 ∈ V1 such that Xi1j1 ∈ C̃ν for ⩾ ∣W1∣/100 many ν ∈ W1.
Otherwise there are < ∣V1∣ ⋅ ∣W1∣/100 pairs (X,ν) such that X ∈ V1 ∩ C̃ν and ν ∈W1. On the
other hand, there are ⩾ ∣W1∣ ⋅ (n + 1)n/100 such pairs – a contradiction.

Let V2 be the set of Xij ∈ V1 with i1 ≠ i, j1 ≠ j, and let W2 be the set of ν ∈W1 such that
C̃ν does not contain Xi1j1 and contains ⩾ (n+1)n/100 variables in V2. Note ∣W2∣ ⩽ 0.99∣W1∣.
We claim that there exists Xi2j2 ∈ V2 that Xi2j2 ∈ C̃ν for ⩾ ∣W2∣/100 many ν ∈W2. Otherwise
there are < ∣V2∣ ⋅ ∣W2∣/100 < (n+ 1)n∣W2∣/100 pairs (X,ν) such that X ∈ V2 ∩ C̃ν and ν ∈W2.
On the other hand, there are ⩾ ∣W2∣ ⋅ (n + 1)n/100 such pairs – a contradiction.

We continue like this producing W1,W2, . . . until Wr = ∅. Then r ⩽ log(`)/∣ log(0.99)∣ <
70 log(`) because ∣Wr∣ ⩽ 0.99r ⋅ ∣W1∣ ⩽ 0.99r` < 1. Let M be the matching that maps i1
to j1,. . . and ir to jr, and is undefined elsewhere. Then for all ν ∈ W either βM ⊧ Cν
or ∣C̃ν↿βM ∣ < (n + 1)n/100. By the proof of Lemma 1.6.9, applying βM to C1, . . . ,C`,
we get a refutation of PHPn↿βM consisting of clauses Cν↿βM for certain ν ∈ [`] with
∣C̃ν↿βM ∣ < (n + 1)n/100.

By Claim 1, this is a refutation of PHPn−r up to a copy of variables. Up to copying,
we can assume dom(M) = {n + 1 − r, . . . , n + 1} and im(M) = {n − r, . . . , n} and we indeed
have a refutation of PHPn−r. Let Ĉ be defined as C̃ but in the variables of PHPn−r. By
the Key Claim (for n − r instead of n and ˆ instead of )̃, our refutation contains a clause
D with ∣D̂∣ ⩾ (n− r)2/9. Say, D = Cν↿βM where ν ∈ [`]. It is easy to check that D̂ ⊆ C̃ν↿βM
(even = holds). Thus (n + 1)n/100 > (n − r)2/9. If ` < 2n/140, we get a contradiction:

(n + 1)n/100 > (n − 70 log `)2/9 > (1 − 70/140)2n2/9 ⩾ n2/36.

Remark 1.8.10. Originally, Haken had 577 instead 140 but this constant is of no interest
whatsoever and we make no effort to optimize it.



Chapter 2

First-order logic

This chapter introduces first-order logic and is structured similarly as the chapter on propo-
sitional logic. Following the outline in the Preface it defines syntax and semantics and then
semantic concepts in the canonical way. It proceeds with Gentzen’s sequent calculus and
then Resolution. As a slight deviation, in order to establish some initial intuition, it starts
defining structures, the “worlds” first-order logic talks about. Most, if not all, objects
of study in mathematics are naturally viewed as structures. An important example from
computer science is a database. In fact, it is Codd’s seminal suggestion dating 1970 to
identify databases with (typically finite) relational structures.

2.1 Structures

What is meant by the real numbers R? Is it the set of reals, the ordered set of reals,
the field of reals, the ordered field of reals or what? When defining an artificial language
talking about R it is necessary to make a choice. This is the choice of a language:

Definition 2.1.1. A language L is a set of relation symbols and function symbols; each
symbol has an associated arity r ∈ N. Function symbols of arity 0 are constants.

An L-structure A is a pair (A, (sA)s∈L) where A ≠ ∅ is the universe and sA is the
interpretation of s ∈ L in A:

– if s = R ∈ L is an r-ary relation symbol, then RA ⊆ Ar;
– if s = f ∈ L is an r-ary function symbol, then fA ∶ Ar → A.

If c ∈ L is a constant, then cA maps the empty tuple to some a ∈ A: we identify cA with a.

Notation: If L = {s1, . . . , sn} we write an L-structure A = (A, (sA)s∈L) as (A, sA1 , . . . , sAn).

Examples 2.1.2.

1. Let L = ∅. Then R = (R) is the set of reals.

30
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2. Let L = {<} for a binary relation symbol <. Then R = (R,<R) is the ordered set of
reals on R where <R is the usual order on R.

3. Let L = {+, ⋅,−,0,1} with +, ⋅ binary function symbols, − a unary function symbol,
and 0,1 constants. Then R = (R,+R, ⋅R,−R,0R,1R) is the field of reals where +R, ⋅R
are addition and multiplication on R, −R maps r ∈ R to −r (additive inverse), and
0R ∶= 0,1R ∶= 1.

4. Let L = {+, ⋅,−,0,1. <}. Then R = (R,+R, ⋅R,−R,0R,1R <R), with the interpretations
defined as before, is the ordered field of reals.

Definition 2.1.3. Let L be a language, L′ ⊆ L and A be an L-structure. The L′-reduct of
A = (A, (sA)s∈L) is the L′-structure

A↿L′ ∶= (A, (sA)s∈L′).

Conversely, A is an L-expansion of A↿L′.

Example 2.1.4. The language of Peano arithmetic is LPA ∶= {0, S,+, ⋅,<} where 0,+, ⋅,<
are as above and S is a unary function symbols. The standard model of arithmetic N has
universe N and interprets 0,+⋅,< by 0, addition, multiplication and order on N, and S by
the successor, i.e., SN ∶ N→ N is given by SN(n) = n + 1.

From now on we adapt our notation for (directed) graphs to the new formalism:

Example 2.1.5. Let E be a binary relation symbol. A directed graph is an {E}-structure
G = (G,EG) where EG is irreflexive (i.e., (g, g) ∉ EG for all g ∈ G). G is a graph if
additionally EG is symmetric (i.e., (g, g′) ∈ EG implies (g′, g) ∈ EG for all g, g′ ∈ G).

Here is a way how to see words as structures:

Example 2.1.6. Let A be an alphabet. Let LA ∶= {<} ∪ {Pa ∣ a ∈ A} where < is a binary
relation symbol and the Pa are unary relation symbols. Let w = a1⋯an ∈ An be a word
(over A) of length n > 0. The word structure S(w) has universe [n] and interprets < by
the usual order on [n] and Pa by the occurrences of a in w, that is,

P
S(w)
a ∶= {i ∈ [n] ∣ ai = a}.

Codd’s relational model of databases works as follows.

Example 2.1.7 (Relational database). L is relational if it contains only relation symbols.
A database is given by tables like

ID Author Title Publisher Year
1 Codd A Relational Model... ACM Press 1970
2 Gutenberg Printing for dummies Mainzer 1452
3 Caesar My life with Asterix SPQR -44
4 Darwin Adam and Eve Vatican Press 1862
5 Codd Relational completeness... Prentice-Hall 1972

Item e
1 1.90
4 99.00
3 8.99
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This is viewed as a {Works,Price}-structure D where Works is a 5-ary relation symbol and
Price a binary one. The universe D of D consists of all cell entries, say as words over the
usual alphabet and rational numbers. Rows display tuples in WorksD and PriceD, e.g. (4,
Darwin, Adam and Eve, Vatican Press, 1862) ∈ WorksD and (1, 1.90) ∈ PriceD.

The column names ID, Author,. . . are called “attributes” and are not (but could) be
incorporated in D; ID exemplifies a so-called “key” used to link entries across tables.

Example 2.1.8 (The world of efficient algorithms). We define a structure E with universe
{0,1}∗ that interprets the language PV. PV contains an r-ary relation symbol QA for every
efficient algorithm A that decides an r-ary relation Q ⊆ ({0,1}∗)r. We let QE

A ∶= Q.
Further, PV contains a r-ary function symbol fA for every efficient algorithm A that

computes a function from ({0,1}∗)r to {0,1}∗. We let fE
A be this function.

For example, there is a binary relation symbol <∈ PV such that <E contains pre-
cisely those pairs (a, b) ∈ ({0,1}∗)2 such that a preceeds b in the lexicographic order:
ε,0,1,00,01,11,000, . . ..

By Corollary 1.5.12 there is a unary relation symbol Q ∈ PV such that QE is Reach-
ability, that is, QE contains precisely those a ∈ {0,1}∗ that encode (in some reasonable
sense) triples (G,s, t) such that G is a finite directed graph with a path from s to t.

Conceptually, two structures are “the same” if they are isomorphic:

Definition 2.1.9. Let L be a language and A,B be L-structures with universes A,B. A
function π ∶ A → B is an homomorphism from A to B, symbolically π ∶ A →h B, if for all
r ∈ N, all r-ary relations symbols R ∈ L, all r-ary function symbols f ∈ L and all ā ∈ Ar:

– ā ∈ RA Ô⇒ π(ā) ∈ RB;

– π(fA(ā)) = fB(π(ā)).

Here, we write π(ā) = (π(a1), . . . , π(ar)) for ā = (a1, . . . , ar) ∈ Ar. If above we require
⇐⇒ instead of Ô⇒, and π is injective, then it is an (algebraic) embedding of A into B,
symbolically π ∶ A→a B.

If π is a bijective embedding, then π is an isomorphism from A onto B, symbolically
π ∶ A ≅B. If such π exists, A and B are isomorphic, symbolically A ≅B.

The reader has seen ad hoc definitions of homomorphisms of groups, rings, fields, graphs
and what not. We trust she notices that the above unifies all these notions.

Exercise 2.1.10. Let K be a field and L ∶= {+,−,0} ∪K with binary +, unary −, con-
stant 0 and every λ ∈ K a unary function symbol. K-vectorspaces are L-structures in the
straightforward way. Show that homomorphism means linear map.

Exercise 2.1.11. Show that a graph G′ is isomorphic to an (induced) subgraph of a graph
G if and only if there is an injective homomorphism (an embedding) of G′ into G.
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Exercise 2.1.12. Let bin ∶ N→ {0,1}∗ map n ∈ N to its binary expansion b1⋯b` where ` ∶=
⌈log(n+1)⌉ and n = ∑`

i=1 bi ⋅2`−i. Conversely, let num ∶ {0,1}∗ → N map a = a1⋯a∣a∣ ∈ {0,1}∗
to n ∈ N such that bin(n) = 1a1⋯a∣a∣.

Show that bin ∶N→a E↿L and num ∶ E↿L→a N for a suitable L ⊆ PV.

We now unify the notions of induced subgraph, subgroup, subring, subfield,. . .

Definition 2.1.13. Let L be a language and A,B be L-structures with universes A,B. A
is a substructure of B and B is an extension of A, symbolically A ⊆ B, if A ⊆ B and for
all r ∈ N, all r-ary relations symbols R ∈ L, all r-ary function symbols f ∈ L:

– RA = RB ∩Ar;
– fA = fB↿Ar.

Exercise 2.1.14. The following are equivalent.

1. There is an embedding of A into B.

2. A is isomorphic to a substructure of B.

3. B is isomorphic to an extension of A.

2.2 Syntax

Let L be a language. We define first-order formulas as words over the alphabet

), (, ∧, ¬,∃, =̇, x0, x1, . . .

plus the symbols in L; Var ∶= {x0, x1 . . .} is the set of (individual) variables.

Definition 2.2.1 (Syntax: terms). The set of L-terms is the smallest set T of words such
that Var ⊆ T and

if r ∈ N and f ∈ L is an r-ary function symbol and t1 . . . tr ∈ T , then ft1⋯tr ∈ T .

In particular, if c ∈ L is a constant, then c is an L-term.

Notation: for better readability we sometimes use infix notation for binary function
symbols f ∈ L, that is, we write (t f t′) instead of ftt′.

Example 2.2.2. In the language LPA of Peano arithmetic, e.g.

⋅ + x0x1x2, ⋅ + 0x1 + x5Sx1

are LPA-terms. Using infix notation they read

((x0 + x1) ⋅ x2), ((0 + x1) ⋅ (x5 + Sx1)).



CHAPTER 2. FIRST-ORDER LOGIC 34

Exercise 2.2.3. Find 4 different ways to assign arities to functions symbols +, ⋅ such that
⋅ + x0x1x2 is an {+, ⋅}-term. For a certain choice of arities, can ++ or ⋅ + + be {+, ⋅}-terms?

Lemma 2.2.4 (Unique readability of terms). For every L-term t, either t = x for some
x ∈ Var or t = ft1⋯tr for some r ∈ N, some r-ary functions symbol f ∈ L and L-terms
t1, . . . , tr. In the second case, r, f and t1, . . . , tr are uniquely determined.

Proof. It is easy to see that exactly one case holds. For uniqueness assume

ft1⋯tr = gu1⋯us

for f, g ∈ L function symbols and L-terms ti, uj. Then f = g, so r = s, and it suffices to
show t1 = u1, . . . , tr = ur. This follows from the

Claim: no proper prefix of an L-term is an L-term.

Assume there is an L-term t with a proper prefix t′ that is an L-term. Choose such t
of minimal length, and a witnessing t′ for it. Then t is not a variable nor a constant since
t′ would then be the empty word and this is not an L-term. Hence t = ft1⋯tr with r > 0.
Then t′ = ft′1⋯t′r. Since t ≠ t′ there is a minimal i ∈ [r] such that ti ≠ t′i. Then ti is a proper
prefix of t′i or vice-versa. But both ti, t′i are shorter than t, a contradiction.

Definition 2.2.5 (Syntax: formulas). The set of L-formulas is the smallest set F of words
such that

(F1) if t0, t1 are L-terms, then t0=̇t1 ∈ F ;

(F2) if r ∈ N and R ∈ L is an r-ary relation symbol and t1, . . . , tr are L-terms, then
Rt1⋯tr ∈ F ;

(F3) if ϕ ∈ F , then ¬ϕ ∈ F ;

(F4) if ϕ,ψ ∈ F , then (ϕ ∧ ψ) ∈ F ;

(F5) if ϕ ∈ F and x ∈ Var, then ∃xϕ ∈ F .

Lemma 2.2.6 (Unique readability of formulas). For every L-formula ϕ exactly one of the
following holds.

1. ϕ = t0=̇t1 for some L-terms t0, t1; then ϕ is atomic.

2. ϕ = Rt1⋯tr for some r ∈ N, some r-ary relation symbol R ∈ L and L-terms t1, . . . , tr;
then ϕ is atomic.

3. ϕ = ¬ψ for some L-formula ψ; then ϕ is a negation (of ψ);

4. ϕ = (ψ ∧ χ) for some L-formulas ψ,χ; then ϕ is a conjunction (of ψ and χ);

5. ϕ = ∃xψ for some x ∈ Var and some L-formula ψ.

Moreover, in case 1, t0, t1 are uniquely determined; in case 2, r,R, t1, . . . , tr are uniquely
determined; in case 3, ψ is uniquely determined; in case 4, ψ,χ are uniquely determined;
in case 5, ψ is uniquely determined.

Exercise 2.2.7. Prove this.
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2.3 Semantics

Let L be a language and A an L-structure with universe A.

2.3.1 Semantics of terms

Definition 2.3.1. An assignment (in A) is a function β ∶ Var → A. For an L-term t we
define tA[β], the value of t in A under β, by recursion on t:

– if t = x for somex ∈ Var, then tA ∶= β(t);
– if t = ft1⋯tr with r ∈ N, f ∈ L an r-ary function symbol, and L-terms t1, . . . , tr, then

tA[β] ∶= fA(tA1 [β], . . . , tAr [β]).

As usual this definition should be read as a specification of a recursive algorithm.

Example 2.3.2. Let N be the standard model of arithmetic and β given by β(xi) ∶= i+ 1.

(+x0 ⋅ x1x2)N[β] = +N(xN0 [β], (⋅x1x2)N[β]) = +N(β(x0), ⋅N(xN1 [β], xN2 [β]))
= +N(1, ⋅N(β(x1), β(x2))) = +N(1, ⋅N(2,3)) = 7

Lemma 2.3.3 (Coincidence lemma for terms). Let t be an L-term and let V ⊆ Var contain
all variables occurring in t. Let β, γ be assignments in A such that β↿V = γ↿V . Then

tA[β] = tA[γ].

Proof. We proceed by induction on t, that is, we show:

1. the claim holds for variables;

2. if r ∈ N and f ∈ L is an r-ary function symbol and the claim holds for t1, . . . , tr, then
the claim holds for ft1⋯tr.

1 is obvious. For 2 argue

(ft1⋯tr)A[β] = fA(tA1 [β], . . . , tAr [β]) = fA(tA1 [γ], . . . , tAr [γ]) = (ft1⋯tr)A[γ],

where the middle equality follows because γ, β agree on the variables in the ti.

Definition 2.3.4. An L-term is closed if no variable occurs in it.

Notation: if t is closed, the value tA[β] does not depend on β and we write tA for it.
Writing t = t(x1 . . . , xk) means the variables in t are among x1, . . . , xk. We set

tA[a1, . . . , ak] ∶= tA[β]

where β is an assignment in A with β(x1) = a1, . . . , β(xk) = ak. Note this is well-defined,
i.e., independent from the choice of β, by the coincidence lemma.

For ā = a1⋯ak ∈ Ak write β[x̄/ā] for the assignment that maps xi to ai and every other
variable y to β(y). Note tA[ā] = tA[β[x̄/ā]] for every assignment β.
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Lemma 2.3.5. Assume B ⊆ A. Then tB[β] = tA[β] for every L-term t and every assign-
ment β in B.

Proof. If t = x is a variable, then tB[β] = β(x) = tA[β]. If t = ft1⋯tr and the clai holds
for the ti, then tB[β] = fB(tB1 [β], . . . , tBr [β]) = fA(tA1 [β], . . . , tAr [β]) = tA[β] where the
replacement of fB by fA uses B ⊆ A.

Exercise 2.3.6. Assume B is an L-structure and π ∶B→h A a homomorphism. Then for
every L-term t and every assignment β in B: π(tB[β]) = tA[π ○ β].

Lemma 2.3.7. Let A0 ⊆ A and assume A0 ≠ ∅ or L contains a constant. Then there is a
unique substructure B ⊆ A with universe

B = {tA[β] ∣ t L-term , β ∶ Var→ A0}.

Further B ⊆ C for every C ⊆ A with universe C ⊇ A0. We write ⟨A0⟩A for B and say B is
generated by A0 in A.

Proof. Uniqueness is clear: every B ⊆ A is the universe of at most one substructure of A,
namely the one with interpretations given by the restrictions of the interpretations in A.
For existence we only need that these restrictions “live” on B: fA ∶ Br → B for every r ∈ N
and every r-ary function symbol f ∈ L. Let b1, . . . , br ∈ B, say bi = tAi [βi]. We can assume
the ti have disjoint variables (otherwise make copies). Then there is β that agrees with
all βi on the variables in ti. By the coincidence lemma for terms, tAi [βi] = tAi [β]. Then
fA(b1, . . . , br) = tA[β] for t ∶= ft1⋯tr. Hence, fA(b1, . . . , br) ∈ B.

Given C ⊆ A with C ⊇ A0, first note B ⊆ C: given b ∈ B choose suitable t, β such that
b = tA[β]; then b = tC[β] by the coincidence lemma for terms; hence, b ∈ C.

Then B ⊆ C follows easily. E.g., for an r-ary relation symbol R ∈ L we have RB =
RA ∩Br = (RA ∩Cr) ∩Br = RC ∩Br.

2.3.2 Semantics of formulas

We define truth by Tarski’s T-conditions for first-order logic.

Definition 2.3.8. For an L-formula ϕ and an assignment β in A we define β satisfies ϕ
in A, or ϕ is true in A under β, symbolically A ⊧ ϕ[β] by recursion on ϕ:

(T1) if ϕ = t0=̇t1 for L-terms t0, t1, then:

A ⊧ ϕ[β] ⇐⇒ tA0 [β] = tA1 [β];

(T2) if ϕ = Rtr⋯tr for r ∈ N, R ∈ L an r-ary relation symbol and L-terms t1,⋯, tr, then:

A ⊧ ϕ[β] ⇐⇒ (tA1 [β], . . . , tAr [β]) ∈ RA;
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(T3) if ϕ = ¬ψ for some L-formula ψ, then:

A ⊧ ϕ[β] ⇐⇒ A /⊧ ψ[β];

(T3) if ϕ = (ψ ∧ χ) for L-formulas ψ,χ, then:

A ⊧ ϕ[β] ⇐⇒ both A ⊧ ψ[β] and A ⊧ χ[β];

(T4) if ϕ = ∃xψ for some x ∈ Var and L-formula ψ, then:

A ⊧ ϕ[β] ⇐⇒ there is a ∈ A: A ⊧ ψ[β[x/a]].

Notation: for L-formulas ϕ,ψ the abbreviations (ϕ∨ψ), (ϕ→ ψ), (ϕ↔ ψ) are defined as
in propositional logic. Further,

∀xϕ ∶= ¬∃x¬ϕ.

Then A ⊧ ∀xϕ[β] if and only if for all a ∈ A: A ⊧ ϕ[β[x/a]].

Example 2.3.9. Let G = (G,EG) be a graph, β an assignment in G and

ϕ = ∃x0∃x1(Ex0x1 ∧ ∃x2(Ex0x2 ∧Ex1x2)).

The following are equivalent to G ⊧ ϕ[β].

there are g0, g1 ∈ G: G ⊧ (Ex0x1 ∧ ∃x2(Ex0x2 ∧Ex1x2))[β[x0x1/g0g1]]
there are g0, g1 ∈ G: G ⊧ Ex0x1[β[x0x1/g0g1]]

and G ⊧ ∃x2(Ex0x2 ∧Ex1x2)[β[x0x1/g0g1]]
there are g0, g1 ∈ G: (β[x0x1/g0g1](x0), β[x0x1/g0g1](x1)) ∈ EG

and there is g2 ∈ G ∶ G ⊧ (Ex0x2 ∧Ex1x2)[γ] for γ ∶= β[x0x1x2/g0g1g2]
there are g0, g1, g2 ∈ G: (g0, g1) ∈ EG

and (γ(x0), γ(x2)), (γ(x1), γ(x2)) ∈ EG

there are g0, g1, g2 ∈ G: (g0, g1), (g0, g2), (g1, g2) ∈ EG

G contains a triangle.

Note G ⊧ ϕ[β] is independent of β. The reason is that all variables are quantified.

Definition 2.3.10. For every L-formula define the set free(ϕ) of free variables of ϕ by
recursion on ϕ:

– if ϕ is atomic, then free(ϕ) is the set of variables occurring in ϕ;

– if ϕ = ¬ψ for some ψ, then free(ϕ) ∶= free(ψ);
– if ϕ = (ψ ∧ χ) for some ψ,χ, then free(ϕ) ∶= free(ψ) ∪ free(χ);
– if ϕ = ∃xψ for some ψ and x ∈ Var, then free(ϕ) ∶= free(ψ) ∖ {x}.
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Example 2.3.11. Let E be a binary relations symbol and ϕ = (∃x0Ex0x1 ∧ ∃x2Ex1x0).

free(ϕ) = free(∃x0Ex0x1)∪ free(∃x2Ex1x0) = ({x0, x1}∖{x0})∪({x1, x0}∖{x2}) = {x0, x1}.

Lemma 2.3.12 (First coincidence lemma). Let ϕ be an L-formula and β, γ assignments
in A such that β↿free(ϕ) = γ↿free(ϕ). Then

A ⊧ ϕ[β] ⇐⇒ A ⊧ ϕ[γ].

Proof. We proceed by induction on ϕ, that is, we show:

1. the claim holds for atomic L-formulas;

2. if the claim holds for ψ, then also for ¬ψ;

3. if the claim holds for ψ,χ, then also for (ψ ∧ χ);
4. if the claim holds for ψ, then also for ∃xψ.

For 1, consider an atomic L-formula of the form Rt1⋯tr. Then tAi [β] = tAi [γ] by the
coincidence lemma for terms, so A ⊧ Rt1⋯tr[β] and A ⊧ Rt1⋯tr[β] are equivalent to
(tA1 [β], . . . , tAr [β]) = (tA1 [γ], . . . , tAr [γ]) ∈ RA. The case t0=̇t1 is similar.

2 and 3 are trivial. For 4, let ϕ = ∃ψ and argue

A ⊧ ϕ[γ] ⇐⇒ there is a ∈ A: A ⊧ ψ[β[x/a]]
⇐⇒ there is a ∈ A: A ⊧ ψ[γ[x/a]] ⇐⇒ A ⊧ ϕ[γ];

for the middle equivalence note that γ[x/a], β[x/a] agree on free(ψ) ⊆ free(ϕ) ∪ {x} if β, γ
agree on free(ϕ) and we assume the claim holds for ψ.

Lemma 2.3.13 (Second coincidence lemma). Let L′ ⊆ L and ϕ be an L′-formula and β
and assignment in A. Then

A ⊧ ϕ[β] ⇐⇒ A↿L′ ⊧ ϕ[β]

Proof. A straightforward induction on terms shows tA[β] = tA↿L′[β]. The claim then follows
for atomic ϕ. The cases ϕ = ¬ψ, (ψ ∧ χ) are easy. The case ϕ = ∃xψ is also easy:

A ⊧ ϕ[β] ⇐⇒ there is a ∈ A ∶ A ⊧ ψ[β[x/a]]
⇐⇒ there is a ∈ A ∶ A↿L′ ⊧ ψ[β[x/a]] ⇐⇒ A↿L′ ⊧ ϕ[β]

where the middle equivalence follows from the inductive assumption that our claim holds
for ψ (and all assignments).

Notation: Writing ϕ = ϕ(x1, . . . , xk) means free(ϕ) ⊆ {x1, . . . , xk}. We say ā = (a1,⋯, ak) ∈
Ak satisfies ϕ(x̄) in A and write

A ⊧ ϕ[a1, . . . , ak]

to mean A ⊧ ϕ[β[x̄/ā]] for some assignment β in A.
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Remark 2.3.14. In database theory, first-order logic is referred to as the relational cal-
culus. A notational variant is the relational algebra. Many declarative languages to spec-
ify database queries have been suggested, and those translatable to first-order logic are
called Codd complete. The most important one is SQL and has higher expressive power.
SQL can express connectness of graphs and we shall see later that first-order logic can’t
(Example 2.6.18). Another important query language is DATALOG. It can express con-
nectedness but not all first-order queries.

Exercise 2.3.15. Recall D from Example 2.1.7. Write formulas ϕ(x), ψ(x) such that ϕ(x)
is satisfied in D by precisely the authors of books without a price, and ψ(x) by those who
wrote more than one book. Expand D by interpreting a binary relation symbol < by the
usual order <D on the rational numbers in D. Write a formula ψ(x) satisfied by exactly
the title of the most expensive book.

Exercise 2.3.16. Write an LPA-formula ϕ(x, y) such that (p, q) ∈ N2 satisfies ϕ(x, y) in
N if and only if (p, q) is a prime twin. Write an LPA-sentence that is true in N if and only
if Goldbach’s conjecture is true.

Definition 2.3.17. An L-sentence is an L-formula ϕ with free(ϕ) = ∅. Then we say A
satisfies ϕ or ϕ is true in A or A is a model of ϕ, symbolically

A ⊧ ϕ,

if A ⊧ ϕ[β] for some (equivalently, every) assignment β in A. A theory T is a set of
L-sentences. A is a model of T if A ⊧ T , i.e., A ⊧ ϕ for all ϕ ∈ T .

Exercise 2.3.18. Recall L = {+,−,0} ∪ K from Example 2.1.10. Write an L-theory T
whose models are precisely the K-vectorspaces.

Exercise 2.3.19 (Isomorphism lemma). Let A,B be L-structures and π ∶ A ≅ B. For all
L-formulas and assignments β in A: A ⊧ ϕ[β] ⇐⇒ B ⊧ ϕ[π ○ β].

Definition 2.3.20. An L-formula is quantifier free if ∃ does not occur in it.
A universal L-formula has the form ∀x̄ϕ where x̄ = x1⋯xk is a k-tuple of variables for

some k ∈ N and ϕ is quantifier free; here we write ∀x̄ instead ∀x1⋯∀xk.
Similarly, an existential L-formula is one of the form ∃x̄ϕ for quantifier free ϕ.

Exercise 2.3.21. Let A ⊆B and β be an assignment in A. Show:

1. If ϕ is quantifier free, then: A ⊧ ϕ[β] ⇐⇒ B ⊧ ϕ[β].
2. If ϕ is universal, then: B ⊧ ϕ[β] Ô⇒ A ⊧ ϕ[β].
3. If ϕ is existential, then: A ⊧ ϕ[β] Ô⇒ B ⊧ ϕ[β].

Exercise 2.3.22. Let ϕ be a universal L-sentence. Then A ⊧ ϕ if and only if ⟨A0⟩A ⊧ ϕ
for all finite ∅ ≠ A0 ⊆ A.
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2.4 Semantic concepts

Let L be a language.

Definition 2.4.1. Let ϕ,ψ be formulas and Φ a set of formulas.

1. ϕ is satisfiable if A ⊧ ϕ[β] for some L-structure A and some assignment β in A.

2. ϕ is valid if A ⊧ ϕ[β] for every L-structure A and every assignment β in A

3. ϕ,ψ are (logically) equivalent, symbolically ϕ ≡ ψ, if (ϕ↔ ψ) is valid.

4. Φ is satisfiable if there exists an L-structure A and an assignment β in A such that
A ⊧ Φ[β], i.e., A ⊧ χ[β] for all χ ∈ Φ.

5. Φ (logically) implies ϕ, symbolically Φ ⊧ ϕ, if A ⊧ ϕ[β] for every L-structure A and
every assignments β in A with A ⊧ Φ[β].

Remark 2.4.2.

1. ϕ is valid if and only if ¬ϕ is unsatisfiable.

2. Φ ∪ {ϕ} ⊧ ψ if and only if Φ ⊧ (ϕ→ ψ).
3. Φ ⊧ ϕ if and only if Φ ∪ {¬ϕ} is unsatisfiable.

Example 2.4.3. Let ϕ,ψ be L-formulas and z ∉ free(ϕ). Then

¬∃xϕ ≡ ∀x¬ϕ, ¬∀xϕ ≡ ∃x¬ϕ
∃x(ϕ ∨ ψ) ≡ (∃xϕ ∨ ∃xψ), ∀x(ϕ ∧ ψ) ≡ (∀xϕ ∧ ∀xψ),
(ϕ ∧ ∃zψ) ≡ ∃z(ϕ ∧ ψ), (ϕ ∨ ∃zψ) ≡ ∃z(ϕ ∨ ψ),
(ϕ ∧ ∀zψ) ≡ ∀z(ϕ ∧ ψ), (ϕ ∨ ∀zψ) ≡ ∀z(ϕ ∨ ψ).

2.4.1 Prenex forms

Definition 2.4.4. An L-formula is prenex if it has the form

Q1x1⋯Qkxkϕ

where k ∈ N, the xi are pairwise distinct, the Qi are ∃ or ∀, and ϕ is quantifier free.

Proposition 2.4.5. Every L-formula is equivalent to a prenex one.

Proof. We proceed by induction on ϕ. Abbreviate Q1y1⋯Qkyk by Q̄ȳ. If ϕ is atomic,
then it is prenex (with k = 0). If ϕ(x̄) = ¬ψ(x̄), by induction ψ(x̄) ≡ Q̄ȳχ(x̄, ȳ) for some
quantifier free χ(x̄, ȳ). Then ϕ(x̄) ≡ ¬Q̄ȳχ(x̄, ȳ). Let Q̄′ȳ be obtained from Q̄ȳ by swapping
∃/∀. Then ϕ(x̄) ≡ Q̄′ȳ¬χ(x̄, ȳ) follows using row 1 in Example 2.4.3.

If ϕ(x̄) = (ψ0(x̄) ∧ ψ1(x̄)), suppose ψ0(x̄) ≡ Q̄0ȳ0χ0(x̄, ȳ0) and ψ1(x̄) ≡ Q̄1ȳ1χ1(x̄, ȳ1).
Let ȳ′0, ȳ

′
1 be copies of ȳ0, ȳ1 consisting of variables that do not occur in the formulas. Let

χ1(x̄, ȳ′1) be obtained form χ1(x̄, ȳ1) by replacing the variables ȳ1 by ȳ′1. It is easy to
check that Q̄1ȳ1χ1(x̄, ȳ1) ≡ Q̄1ȳ′1χ1(x̄, ȳ′1). Similarly, Q̄0ȳ0χ0(x̄, ȳ0) ≡ Q̄0ȳ′0χ0(x̄, ȳ′0). Then
ϕ(x̄) ≡ Q̄0ȳ′0Q̄1ȳ′1(χ0(x̄, ȳ′0) ∧ χ1(x̄, ȳ′1)) follows using rows 3 and 4 in Example 2.4.3.
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Example 2.4.6. This proof implicitly specifies an efficient recursive algorithm computing
equivalent prenex formulas. Given ((∃yExy ∧ ¬∃xExy) ∧ ¬∀yEyx) it works as follows:

(∃yExy ∧ ∀x¬Exy) ∧ ∃y¬Eyx)
(∃y′Exy′ ∧ ∀x′¬Ex′y) ∧ ∃y¬Eyx)
(∃y′∀x′(Exy′ ∧ ¬Ex′y) ∧ ∃y¬Eyx)
(∃y′∀x′(Exy′ ∧ ¬Ex′y) ∧ ∃y′′¬Ey′′x)
∃y′∀x′∃y′′((Exy′ ∧ ¬Ex′y) ∧ ¬Ey′′x)

2.4.2 Tautologies

We now aim to show that equivalences observed for propositional logic continue to hold.
More precisely, e.g. the equivalences in Example 1.3.4 hold for first-order formulas ϕ,ψ,χ.

Definition 2.4.7. An L-formula ϕ is a tautology if there is a propositional tautology α,
say in propositional variables X̄ ∶= X1⋯Xn such that ϕ is obtained from replacing the
propositional variables by L-formulas ψ̄ = ψ1⋯ψn. More precisely, this means ϕ = α[X̄/ψ̄]
defined by recursion (writing some extra parentheses):

Xi[X̄/ψ̄] ∶= ψi, (¬α0)[X̄/ψ̄] ∶= ¬(α0[X̄/ψ̄]), (α0 ∧ α1)[X̄/ψ̄] ∶= (α0[X̄/ψ̄] ∧ α1[X̄/ψ̄]).

Example 2.4.8. E.g. (∃y∀xExy → ∀x∃yExy) or (x0=̇x0 ∨ ¬x1=̇x1) are valid but not
tautologies. Tautologies are e.g. (x0=̇x0∨¬x0=̇x0) or (∀x0Ex0x1 → ((∃x7Ex7x7∧¬Ex1x2) →
∀x0Ex0x1)) – take α ∶= (X1 → (X2 →X1)).

Example 2.4.9. The equality axioms EqL (for language L) are valid and not tautological;
these are for r ∈ N and r-ary function symbols f ∈ L and r-ary relation symbols R ∈ L:

∀x x=̇x, ∀xy(x=̇y → y=̇x), ∀xyz((x=̇y ∧ y=̇z) → x=̇z),
∀x1⋯xry1⋯yr((⋀ri=1 xi=̇yi) → fx1⋯xr=̇fy1⋯yr),
∀x1⋯xry1⋯yr((⋀ri=1 xi=̇yi) → (Rx1⋯xr → Ry1⋯yr)).

Proposition 2.4.10. Tautologies are valid.

Proof. In the notation above, show for every L-structure A and every assignment β in A:

A ⊧ (α[X̄/ψ̄])[β] ⇐⇒ βprop ⊧ α

where βprop is a propositional assignment that maps Xi to 1 if A ⊧ ψi[β], and to 0 otherwise.
This is a trivial induction on α.

Definition 2.4.11. An L-literal is an atomic L-formula or a negation thereof. A DNF
is an L-formula of the form ⋁ni=1⋀nij=1 λij, a CNF is an L-formula of the form ⋀ni=1⋁nij=1 λij
where n,ni ∈ N and the λi, λij are L-literals.
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Corollary 2.4.12. Every quantifier free L-formula is equivalent to both a DNF and a CNF.

Proof. Let ϕ be quantifier free. It can be seen as a propositional formula where the
propositional variables are atomic L-formulas. More precisely, ϕ = α[X̄/ψ̄] where α is
a propositional formula and ψ̄ is a tuple of atomic L-formulas. If (α ↔ α′) is a valid
propositional formula, then (α ↔ α′)[X̄/ψ̄] = (α[X̄/ψ̄] ↔ α′[X̄/ψ̄]) is a valid L-formula
by Proposition 2.4.10, so α[X̄/ψ̄], α′[X̄/ψ̄] are equivalent L-formulas. By Corollary 2.4.12
α′ can be chosen as a propositional DNF or CNF.

Exercise 2.4.13. Replacing within a subformula occurrence ψ by an equivalent formula χ
leads to an equivalent formula. Prove this as follows. Let P ∉ L be a 0-ary relation symbol,
ϕ an L ∪ {P}-formula and ψ,χ L-formulas. Let ϕ[P /ψ] be obtained from ϕ by replacing
every occurrence of P by ψ. Define this by recursion on ϕ. Then prove

ψ ≡ χ Ô⇒ ϕ[P /ψ] ≡ ϕ[P /χ].

2.5 Skolemization

Let L be a language and A an L-structure.

2.5.1 Substitutions

Informally: suppose you have a formula ϕ(x) = . . . x . . . x . . ., and a term s. Substituting s
for x gives ϕ[x/t] ∶= . . . t . . . t . . .. The truth of ϕ[x/t] should be equivalent to the element
denoted by s satisfying ϕ(x).

Some care is needed here: let β be an assignment in A, ϕ(x) ∶= ∀y x=̇y and t ∶= y.
Then ϕ[x/t] = ∀y y=̇y is a valid sentence, so true in A. The “element denoted by t” is
tA[β] = β(y) =∶ a. That it “satisfies ϕ(x)” means A ⊧ ϕ[a] – if and only if A = {a}.

Intuitively, the problem is that a variable in t gets quantified within ϕ after substitution.
We now proceed formally and carefully verify a corrected version of the initial intuition.

Definition 2.5.1. A substitution is a function σ with finite domain dom(σ) ⊆ Var and
values in the set of L-terms. For an L-term t define tσ by recursion:

– if t = y is a variable, then yσ ∶= σ(y) if y ∈ dom(σ), and yσ = y otherwise.

– if t = ft1⋯tr for some r ∈ N, f ∈ L and t1, . . . , tr, then tσ ∶= ftσ1⋯tσ.

For an L-formula ϕ define ϕσ by recursion:

– if ϕ = t0=̇t1 for some t0, t1, then ϕσ ∶= tσ0 =̇ tσ1 ;

– if ϕ = Rt1⋯tr for r-ary R ∈ L and L-terms ti, then ϕσ = Rtσ1⋯tσr ;

– if ϕ = ¬ψ for some ψ, then ϕσ ∶= ¬ψσ;

– if ϕ = (ψ ∧ χ) for some ψ,χ, then ϕσ ∶= (ψσ ∧ χσ);
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– if ϕ = ∃yψ for some ψ and y ∈ Var, then ϕσ ∶= ∃yψσ′ for σ′ ∶= σ↿(dom(σ) ∖ {y}).

If x1, . . . , xk lists dom(σ) and ti ∶= σ(xi) we denote σ by [x1/t1, . . . , xk/tk] and ϕσ, tσ by
ϕ[x1/t1, . . . , xk/tk], t[x1/t1, . . . , xk/tk]. Further, if ϕ = ϕ(x1, . . . , xk, x̄) we write

ϕ(t1, . . . , tk, x̄) ∶= ϕσ.

Note substitution is “simultaneous”: Exy[x/y, y/z] = Eyz and (Exy[x/y])[y/z] = Ezz.

Definition 2.5.2. Let x be a variable, t an L-term and ϕ an L-formula. Recursively define
x is free for t in ϕ:

– x is free for t in every atomic L-formula;

– x is free for t in ¬ψ if and only if x is free for t in ψ;

– x is free for t in (ψ ∧ χ) if and only if x is free for t in both ψ and χ;

– x is free for t in ∃yψ if and only if either x = y, or, y ≠ x and x is free for t in ψ and
y does not occur in t.

Observe that if t is closed, then x is free for t in ϕ for all x,ϕ.

Lemma 2.5.3 (Substitution). Let x be a variable, t an L-term, β an assignment in A and
a ∶= tA[β] ∈ A.

1. For every L-term s: (s[x/t])A[β] = sA[β[x/a]].
2. For every L-formula ϕ with x free for t in ϕ:

A ⊧ (ϕ[x/t])[β] ⇐⇒ A ⊧ ϕ[β[x/a]].

Proof. 1 is proved by a straightforward induction on t. We prove 2 by induction on ϕ. If ϕ
is atomic, the claim follows from 1: e.g., if ϕ = t0=̇t1 then the l.h.s. means (t0[x/t])A[β] =
(tt[x/t])A[β],and the r.h.s. means tA0 [β[x/a]] = tA1 [β[x/a]]; these are equivalent by (1).

The cases that ϕ is a negation or a conjunction are easy. Suppose ϕ = ∃yψ. In case
y = x, ϕ[x/t] = ϕ and we have to show A ⊧ ϕ[β] ⇐⇒ A ⊧ ϕ[β[x/a]]. This follows from the
first coincidence lemma because x ∉ free(ϕ).

So assume y ≠ x. Then x is free for t in ψ and y does not occur in t. Then ϕ[x/t] =
∃y(ψ[x/t]), so A ⊧ (ϕ[x/t])[β] if and only if A ⊧ (ψ[x/t])[γb] for some b ∈ A where
γb ∶= β[y/b]. By induction this is equivalent to

A ⊧ ψ[γb[x/tA[γb]]].

But by the coincidence lemma for terms, tA[γb] = tA[β[y/b]] = tA[β] = a, so γb[x/tA[γb]] =
(β[y/b])[x/a] = (β[x/a])[y/b] as y ≠ x. Thus, the above is equivalent to

A ⊧ ψ[(β[x/a])[y/b]].

That this holds for some b ∈ A means A ⊧ ∃yψ[β[x/a]].
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Exercise 2.5.4. Let ϕ be an L-formula, x ∈ Var and t an L-term.

1. Rename bounded variables to get ϕ′ equivalent to ϕ such that x is free for t in ϕ′.

2. If x is free for t in ϕ(x, x̄), then (ϕ(t, x̄) → ∃xϕ(x, x̄)) is valid.

Exercise 2.5.5. Let T be an L-theory, ϕ(x̄) an L-formula, and c̄ a tuple of constants
outside L. Show that T ⊧ ∀x̄ϕ(x̄), T ⊧ ϕ(x̄) and T ⊧ ϕ(c̄) are equivalent.

2.5.2 Skolemization

Definition 2.5.6. Let ϕ(x̄) be a prenex L-formula, i.e., it is of the form

∀x̄1∃y1∀x̄2∃y2⋯∀x̄k∃yk∀x̄k+1ψ(x̄, x̄1, y1, x̄2, y2, . . . , x̄k, yk, x̄k+1)

where k ∈ N, ψ is quantifier free, the variables displayed are pairwise distinct, and some
tuples x̄i may be empty. Let ri be the length of x̄i (ri = 0 is allowed).

Let f1, . . . , fk /∈ L be function symbols; the arity of fi is r1 + ⋯ + ri. Let σ be the
substitution yi ↦ fix̄1⋯x̄i. A Skolemization of ϕ is the L ∪ {f1, . . . , fk}-formula:

ϕSk ∶= ∀x̄1⋯x̄k+1ψ
σ = ∀x̄1⋯x̄k+1 ψ(x̄, x̄1, f1x̄1, x̄2, f2x̄1x̄2, . . . , x̄k, fkx̄1⋯x̄k, x̄k+1).

The notation ϕSk suppresses the choice of new function symbols.

Example 2.5.7. Continuing Example 2.4.6 for ((∃yExy ∧ ¬∃xExy) ∧ ¬∀yEyx) gives a
Skolemization ∀x′((Exc ∧ ¬Ex′y) ∧ ¬Efx′x) for a constant c and unary f .

Another equivalent prenex formula is computed

((∃yExy ∧ ¬∃xExy) ∧ ¬∀yEyx),
∀x′((∃yExy ∧ ¬Ex′y) ∧ ¬∀yEyx),
∀x′∃y′((Exy′ ∧ ¬Ex′y) ∧ ¬∀yEyx),
∀x′∃y′∃y′′((Exy′ ∧ ¬Ex′y) ∧Ey′′x),

and gives a Skolemization ∀x′((Exfx′ ∧ ¬Ex′y) ∧Egx′x) for unary f, g.

Example 2.5.8. We write the group axioms with a ternary relation P for the graph of
the group operation and ↝ skolemize with binary g, unary i and constant e:

Existence of values (uniqueness omitted): ∀xy∃zPxyz ↝ Pxygxy.

Associativity:
∀xyzuvw((Pxyu ∧ Pyzv ∧ Pxvw) → Puzw)
∀xyzuvw((Pxyu ∧ Pyzv ∧ Puzw) → Pxvw) .

Left neutral and left inverse:
∃x(∀uPxuu ∧ ∀y∃zPzyx)
≡ ∃x∀y∃z∀u(Pxuu ∧ Pzyx) ↝ ∀yu(Peuu ∧ Piyye) .

We see that Skolemization introduces symbols for the group operation, inverse and neutral
element – for suitably chosen prenex forms.
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Lemma 2.5.9. Let ϕ be a prenex L-sentence.

1. (ϕSk → ϕ) is valid.

2. Every model of ϕ has an expansion to a model of ϕSk.

In particular, ϕ is satisfiable if and only if so is ϕSk.

Proof. We claim that for every L-formula ϕ(z̄, x̄, y) such that y is free for fx̄ in ϕ:

(a) (∀x̄(ϕ[y/fx̄]) → ∀x̄∃yϕ) is valid;

(b) if A ⊧ ∀x̄∃yϕ[β] for some L-structure A and assignment β in A, then there is an
L ∪ {f}-expansion A′ of A such that A′ ⊧ ∀x̄(ϕ[y/fx̄])[β].

(a): ((ϕ[y/fx̄]) → ∃yϕ) is valid by Exercise 2.5.4. (b): suppose A ⊧ ∀x̄∃yϕ[β] and let
b̄ ∶= β(z̄). Let A′ be the L ∪ {f}-expansion of A that interprets f by a function that maps
ā to an a with A ⊧ ϕ(z̄, x̄, y)[b̄, ā, a]. Note A ⊧ ϕ[β[x̄/ā, y/a]] for a ∶= (fx̄)A′[β[x̄/ā]]. By
the substitution lemma, A′ ⊧ (ϕ[y/fx̄])[β[x̄/ā]].

We prove 1 for formulas ϕ of the form displayed above by induction on k. If k = 0, then
ϕSk = ϕ. For k > 0 let ϕ− be ϕ with ∀x̄1∃y1 deleted. Note

ϕSk = (∀x̄1(ϕ−[y1/fx̄1]))
Sk
.

Hence, by induction, (ϕSk → ∀x̄1(ϕ−[y1/fx̄1])) is valid. Since also (∀x̄1(ϕ−[y1/fx̄1]) → ϕ)
is valid by (a), the claim follows.

For 2, we show for every A, β there is an expansion A′ of A such that: if A ⊧ ϕ[β], then
A′ ⊧ ϕSk[β]. For k = 0 there is nothing to show. For k > 0 assume A ⊧ ∀x̄1∃y1ϕ−[β]. By (b)
choose an L ∪ {f1}-expansion A′ of A such that A′ ⊧ ∀x̄1(ϕ−[y1/f1x̄1])[β]. By induction
there is an expansion A′′ of A′ such that

A′′ ⊧ (∀x̄1(ϕ−[y1/f1x̄1]))
Sk[β].

This formula equals ϕSk.

2.5.3 Löwenheim-Skolem theorem

A set S is countable if there is a bijection from N onto S, and at most countable if it is finite
or countable. An L-structure A is (at most) countable or (in)finite if so is its universe A.

Theorem 2.5.10 (Löwenheim-Skolem - downwards). Assume L is at most countable and
T is an L-theory. If T is satisfiable, then T has an at most countable model.

Proof. There are countably many L-formulas, so we can write T = {ϕ1, ϕ2 . . .} (possibly
with repetitions). Set T Sk ∶= {ϕSk

1 , ϕ
Sk
2 , . . .} where each Skolemization ϕSk

i uses its own finite
set of new functions symbols. Let A ⊧ T and A′ be the expansion to the new functions
symbols simultaneously for all ϕSk

i – so that A′ ⊧ T Sk (Lemma 2.5.9 (2)). Note the language
L′ of A′ is at most countable, in particular, there are at most countably many L′-terms t(x).
Let a ∈ A be arbitrary and consider ⟨{a}⟩A′ . As the universe consists of the values tA

′[a], it
is at most countable. As T Sk is universal, ⟨{a}⟩A′ ⊧ T Sk (Exercise 2.3.21). Then ⟨{a}⟩A′ ⊧ T
by Lemma 2.5.9 (1), so ⟨{a}⟩A′↿L ⊧ T by the second coincidence lemma.
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Example 2.5.11. Consider the language L = {+, ⋅,−,0,1} of fields and let C be the field of
complex numbers. Apply the above to the theory T of all sentences true in C. Then there
is a countable field C′ that satisfies the same L-sentences as C. In fact, methods of model
theory show that the algebraic closure of the field of rational numbers is such a field.

2.6 Formal reasoning I: Gentzen’s Logischer Kalkül

Let L be a language and C be a countable set of constants with L ∩C = ∅.

Definition 2.6.1. A sequent is a pair (Γ,∆) of finite sets of L-sentences, written Γ⇒∆.
It is valid if Γ ⊧ ⋁∆. It is LK-provable if there is an LK-proof ending with it.

An LK-proof is a finite sequence of sequents such that every sequent in it is a conclusion
of an LK-rule with premisses appearing earlier in the sequence.

There are the following LK-rules, written Premisses
Conclusion :

– Rules of propositional LK (for sequents as above);

– ∃-left
Γ, ϕ(c) ⇒∆

Γ,∃xϕ(x) ⇒∆
where c ∈ C does not appear in the conclusion;

– ∃-right
Γ⇒∆, ϕ(t)

Γ⇒∆,∃xϕ(x)
where t is a closed L ∪C-term;

– Cut:
Γ⇒∆, ϕ Γ, ϕ⇒∆

Γ⇒∆
;

– Equality rules:

Γ⇒∆, t=̇t
,

Γ, t=̇t′⇒∆, t′=̇t
,

Γ, t=̇t′, t=̇t′′⇒∆, t=̇t′′
,

Γ, t1=̇t′1, . . . , tr=̇t′r ⇒∆, ft0⋯tr=̇ft′1⋯t′r
,

Γ, t1=̇t′1, . . . , tr=̇t′r,Rt1⋯tr ⇒∆,Rt′1⋯t′r

where r ∈ N, f,R ∈ L are r-ary function and relation symbols, and t, t′, t′′, ti, t′i are
closed L ∪C-terms.

Intuition: as in the propositional case LK-proofs are best read and constructed bottom-
up, reading a sequent Γ⇒∆ as “all formulas in Γ are true and all formulas in ∆ are false”.
Then the new rules ∃-left/right become clear: ∃-right assumes ∃xϕ(x) is false and infers
ϕ(t) is false for arbitrary t; ∃-left assumes ∃xϕ(x) is true and gives a new name to an
example, that is, infers ϕ(c) is true for a new constant c.

Remark 2.6.2. Define LK+-proofs like LK-proofs but adding the left/right-rules for ∨,→
and ↔ from Remark 1.4.3 and additionally:

∀-left
Γ, ϕ(t) ⇒∆

Γ,∀xϕ(x) ⇒∆
where t is a closed L ∪C-term;
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∀-right
Γ⇒∆, ϕ(c)

Γ⇒∆,∀xϕ(x)
where c ∈ C does not appear in the conclusion.

Then LK+-provable sequents are LK-provable.

Proof. Replace ∀-left/right applications by

Γ, ϕ(t) ⇒∆

Γ⇒∆,¬ϕ(t)
Γ⇒∆,∃x¬ϕ(x)

Γ,¬∃x¬ϕ(x) ⇒∆

Γ⇒∆, ϕ(c)
Γ,¬ϕ(c) ⇒∆

Γ,∃x¬ϕ(x) ⇒∆

Γ⇒∆,¬∃x¬ϕ(x)

For the ∃-left application on the right, note c does not appear in Γ,∃x¬ϕ(x) ⇒∆.

Example 2.6.3. The following is an LK+-proof for distinct c, d ∈ C and a formula ϕ(x, y)

ϕ(d, c) ⇒ ϕ(d, c)
ϕ(d, c) ⇒ ∃yϕ(d, y)

∀xϕ(x, c) ⇒ ∃yϕ(d, y)
∀xϕ(x, c) ⇒ ∀x∃yϕ(x, y)
∃y∀xϕ(x, y) ⇒ ∀x∃yϕ(x, y)

Exercise 2.6.4. Show that the equality axioms from Example 2.4.9 are LK+-provable.

2.6.1 Equality free case

Definition 2.6.5. Let LK−-proofs be defined as LK-proofs but omitting Cut and Equality
rules. A sequent Γ ⇒ ∆ is =̇-free if all formulas in Γ ∪∆ are, and a formula is =̇-free if =̇
does not occur in it.

Theorem 2.6.6 (LK− completeness). A =̇-free sequent is valid if and only if it is LK−-
provable.

Proof. ⇐ (Soundness): it suffices to show for all rules that if the premisses are valid, then
so is the conclusion. We verify this for the new rules ∃-left/right. Write ¬∆ ∶= {¬ψ ∣ ψ ∈ ∆}

Assume Γ ⇒ ∆,∃xϕ(x) is not valid. Then there is a L ∪ C-structure A such that
A ⊧ Γ ∪ ¬∆ and A ⊧ ¬∃xϕ(x), so A ⊧ ¬ϕ[a] for all a ∈ A. In particular, given a closed
term t, we have A ⊧ ¬ϕ[tA]. Since t is closed, x is free for t in ϕ. By the substitution
lemma, A ⊧ ¬ϕ(t). Hence A witnesses that Γ⇒∆, ϕ(t) is not valid.

Assume Γ,∃xϕ(x) ⇒ ∆ is not valid. Choose a finite C0 ⊆ C such that all formulas in
this sequent are L∪C0-sentences. Then there is a L∪C0-structure A such that A ⊧ Γ∪¬∆
and A ⊧ ∃xϕ(x). Choose a ∈ A such that A ⊧ ϕ[a] and c ∈ C ∖ {c}and let A′ be the
L ∪ C ∪ {c} expansion of A that interprets c by a. Then A′ ⊧ ϕ[cA], so A′ ⊧ ϕ(c) by
the substitution lemma. Since c does not occur in Γ ∪ ¬∆, the second coincidence lemma
implies A′ ⊧ Γ ∪ ¬∆. Hence A′ witnesses that Γ, ϕ(c) ⇒∆ is not valid.
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⇒ (Completeness): suppose Γ ⇒ ∆ is =̇-free and not LK−-provable. Choose a finite
L0 ⊆ L such that only L0∪C-sentences appear. By the second coincidence lemma, it suffices
to construct an L0 ∪C-structure A satisfying Γ ∪ ¬∆.

Consider triples (b,ϕ, t) for b ∈ {0,1}, ϕ an L0 ∪C-sentence, and t a closed L0 ∪C-term.
Let (b0, ϕ0), (b1, ϕ1, t1), . . . be an enumeration such that every triple appears infinitely often.

We inductively construct LK−-unprovable sequents Γ0 ⇒∆0,Γ1 ⇒∆1, . . . starting with
Γ0 ∶= Γ,∆0 ∶= ∆. Assume Γi⇒∆i is constructed and LK−-unprovable.

To define Γi+1 ⇒∆i+1 consider (bi, ϕi, ti) and do the following:

1. if ϕi = ¬ψ ∈ Γi and bi = 0, then Γi ⇒ ∆i, ψ is LK−-unprovable; set Γi+1 ∶= Γi and
∆i+1 ∶= ∆i ∪ {ψ};

2. if ϕi = ¬ψ ∈ ∆i and bi = 1, then set Γi+1 ∶= Γi ∪ {ψ} and ∆i+1 ∶= ∆i;

3. if ϕi = (ψ ∧ χ) ∈ Γi and bi = 0, then Γi, ψ,χ ⇒ ∆i is not LK−-provable; set Γi+1 ∶=
Γi ∪ {ψ,χ} and ∆i+1 ∶= ∆i.

4. if ϕi = (ψ ∧ χ) ∈ ∆i and bi = 1, then Γi ⇒ ∆i, ψ or Γi ⇒ ∆i, χ is not LK−-provable;
choose Γi+1 ⇒∆i+1 accordingly.

5. if ϕi = ∃xϕ(x) ∈ Γi and bi = 0, then choose c ∈ C not occurring in Γi ⇒ ∆i; then
Γi, ϕ(c) ⇒∆i is not LK−-provable; set Γi+1 ∶= Γi ∪ {ϕ(c)} and ∆i+1 ∶= ∆i.

6. if ϕi = ∃xϕ(x) ∈ ∆i and bi = 1, then Γi⇒∆i, ϕ(ti) is not LK−-provable; set Γi+1 ∶= Γi
and ∆i+1 ∶= ∆i ∪ {ϕ(ti)}.

7. if none of the above, set Γi+1 ∶= Γi and ∆i+1 ∶= ∆i.

By construction we we have Γ0 ⊆ Γ1 ⊆ ⋯ and ∆0 ⊆ ∆1 ⊆ ⋯. Set

Γ∗ ∶= ⋃i∈N Γi and ∆∗ ∶= ⋃i∈N ∆i.

Claim: (Γ∗,∆∗) has the Henkin properties, namely for all L0∪C-sentences ψ,χ and L0∪C-
formulas ϕ(x):

(H1) Γ∗ ∩∆∗ = ∅;

(H2) if ¬ψ ∈ Γ∗, then ψ ∈ ∆∗;

(H3) if ¬ψ ∈ ∆∗, then ψ ∈ Γ∗;

(H4) if (ψ ∧ χ) ∈ Γ∗, then ψ,χ ∈ Γ∗;

(H5) if (ψ ∧ χ) ∈ ∆∗, then ψ ∈ ∆∗ or χ ∈ ∆∗;

(H6) if ∃xϕ(x) ∈ Γ∗, then ϕ(c) ∈ Γ∗ for some c ∈ C;

(H7) if ∃xϕ(x) ∈ ∆∗, then ϕ(t) ∈ ∆∗ for every closed L0 ∪C-term t.

Proof of the claim: (H1) follows from Γi ∩∆i = ∅ for all i ∈ N (by LK−-unprovability). To
see e.g. (H7), assume ∃xϕ(x) ∈ ∆∗, say ∈ ∆i0 , and let t be given. Choose i ⩾ i0 such that
(bi, ϕi, ti) = (1,∃xϕ(x), t). By construction, ∆i+1 = ∆i ∪ {ϕ(t)}, so ϕ(t) ∈ ∆∗.

The proofs of (H2)-(H6) are analogous. ⊣
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The Henkin properties allow to “read-off” a model A satisfying Γ∗ and falsifying ∆∗.
The universe A is the set of closed L0 ∪ C-terms. For r ∈ N and f ∈ L0 an r-ary function
symbol, the interpretation fA maps (t1, . . . , tr) ∈ Ar to ft1⋯tr ∈ R. For r ∈ N and R ∈ L0

an r-ary relation symbol the interpretation is

RA ∶= {(t1, . . . , tr) ∈ Ar ∣ Rt1⋯tr ∈ Γ∗}.

Observe that A interprets every term “by itself”, namely tA = t for every closed L0 ∪C-
term t. Use induction: by definition cA = c for a constant c ∈ L0 ∪ C, and (ft1⋯tr)A =
fA(tA1 , . . . , tAr ) = fA(t1, . . . , tr) = ft1⋯tr.

We are left to show for every =̇-free L0 ∪C-sentence ϕ:

ϕ ∈ Γ∗ Ô⇒ A ⊧ ϕ,
ϕ ∈ ∆∗ Ô⇒ A /⊧ ϕ.

To prove this we use induction on the number n of occurrences of ¬ ∧ ∃ in ϕ.
If n = 0, ϕ is atomic. Since ϕ is =̇-free it is of the form Rt1⋯tr. Then ϕ ∈ Γ∗ implies

(t1, . . . , tr) ∈ RA; but ti = tAi , so A ⊧ Rt1⋯tr. Further, ϕ ∈ ∆∗ implies ϕ ∉ Γ∗ by (H1), so
(t1, . . . , tr) ∈ RA; by ti = tAi , we get A /⊧ Rt1⋯tr.

For n > 0, we distinguish cases:

– ϕ = ¬ψ.

If ϕ ∈ Γ∗, then ψ ∈ ∆∗ by (H2); by induction, A /⊧ ψ, so A ⊧ ϕ.
If ϕ ∈ ∆∗, then ψ ∈ Γ∗ by (H3); by induction, A ⊧ ψ, so A /⊧ ϕ.

– ϕ = (ψ ∧ χ).
If ϕ ∈ Γ∗, then ψ,χ ∈ Γ∗ by (H4); by induction, A ⊧ ψ and A ⊧ χ, so A ⊧ ϕ.
If ϕ ∈ ∆∗, then ψ ∈ ∆∗ or χ ∈ ∆∗ by (H5); by induction, A /⊧ ψ or A /⊧ χ, so A /⊧ ϕ.

– ϕ = ∃xψ(x).
If ϕ ∈ Γ∗, then ψ(c) ∈ Γ∗ for some c ∈ C by (H6); by induction, A ⊧ ψ(c), so by the
substitution lemma A ⊧ ψ[cA], so A ⊧ ϕ.
If ϕ ∈ ∆∗, then ψ(t) ∈ ∆∗ for all closed L0∪C-terms t by (H7); by induction, A /⊧ ψ(t),
so, by the substitution lemma, A /⊧ ψ[tA] for all closed L0∪C-terms t; recalling tA = t
and the definition of A, this implies A /⊧ ϕ[a] for all a ∈ A, that is, A /⊧ ϕ.

2.6.2 General case

Theorem 2.6.7 (LK completeness). A sequent is valid if and only if it is LK-provable. In
particular, if ϕ(x̄) is an L-formula and c̄ a tuple of constants from C, then ϕ(x̄) is valid
if and only if ⇒ ϕ(c̄) is LK-provable.

The proof is by reduction to the =̇-free case. To this end let E /∈ L be a new binary
relation symbol intended to be used instead of =̇. Recall the set of equality axioms EqL
from Example 2.4.9.
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Definition 2.6.8. For an L-formula ϕ let ϕE be obtained replacing atomic subformulas
t=̇t′ by Ett′. For a set Φ of L-formulas let ΦE ∶= {ϕE ∣ ϕ ∈ Φ}.

Recall, a relation K is an equivalence relation on a set A if K ⊆ A2 is reflexive, symmetric
and transitive, i.e., for all a, b, c ∈ A, (a, a) ∈ K, and, (a, b) ∈ K implies (b, a) ∈ K, and,
(a, b), (b, c) ∈K implies (a, c) ∈K.

Definition 2.6.9. Let A be an L-structure. A congruence on A is an equivalence relation
K on A such that for all r ∈ N, every r-ary function symbol f ∈ L, every r-ary relation
symbol R ∈ L and all a1, . . . ar, b1, . . . , br ∈ A:

(K1) if (a1, b1), . . . , (ar, br) ∈K, then (fA(a1, . . . , ar), fA(b1, . . . , br)) ∈K;

(K2) (a1, . . . , ar) ∈ RA ⇐⇒ (b1, . . . , br) ∈ RA.

Remark 2.6.10. Let A be an L ∪ {E}-structure. EA is a congruence on A↿L if and only
if A ⊧ EqEL .

The construction in the following lemma generalizes familiar quotient structures in
algebra, like quotient vectorspaces, quotient groups, a ring modulo some ideal,. . .

Lemma 2.6.11. Assume A is an L ∪ {E}-structure that satisfies EqEL . Then there is an
L-structure A/E such that for all L-sentences ϕ:

A ⊧ ϕE ⇐⇒ A/E ⊧ ϕ.

Proof. The universe of A/E is {a/E ∣ a ∈ A} where a/E ∶= {a′ ∈ A ∣ (a, a′) ∈ EA} is the
EA-equivalence class of a ∈ A. The interpretations of r-ary function and relation symbols
f,R ∈ L are given stipulating for all a1, . . . , ar ∈ A:

fA/E(a1/E, . . . , ar/E) ∶= fA(a1, . . . , ar)/E,
(a1/E, . . . , ar/E) ∈ RA/E ⇐⇒ (a1, . . . , ar) ∈ RA.

This is well-defined: by (K1) and (K2) the r.h.s. do not depend on the choice of ai ∈ ai/E.
By definition of A/E we have π ∶ A↿L →h A/E for π(a) ∶= a/E. By Exercise 2.3.6,

π(tA↿L[β]) = tA/E[π ○ β] for all L-terms t and assignments β in A.
It now suffices to show for all L-formulas ϕ and assignments β in A:

A ⊧ ϕE[β] ⇐⇒ A/E ⊧ ϕ[π ○ β].

This is proved by induction on ϕ. The induction steps being straightforward we only
verify the atomic case. If ϕ = Rt1⋯tr, note ϕE = ϕ, so A ⊧ ϕE[β] means (tA1 [β], . . . , tAr [β]) ∈
RA. By definition, this is equivalent to (tA1 [β]/E, . . . , tAr [β]/E) ∈ RA/E. Since tAi [β]/E =
t
A/E
i [π ○ β], this means A/E ⊧ ϕ[π ○ β]. If ϕ = t0=̇t1, note ϕE = Et0t1, and argue

A ⊧ ϕE[β] ⇐⇒ tA0 [β]/E = tA1 [β]/E ⇐⇒ t
A/E
0 [π ○ β] = tA/E

1 [π ○ β] ⇐⇒ A/E ⊧ ϕ[π ○ β].
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Corollary 2.6.12. An L-formula ϕ is valid if and only if EqEL implies ϕE.

Proof. ⇒∶ given an L∪{E}-structure A ⊧ EqEL0
and an assignment β in A we have to show

A ⊧ ϕE[β], equivalently, A/E ⊧ ϕ[π ○ β] (see the previous proof). This holds if ϕ is valid.
⇐∶ assume the r.h.s., and let A be an L-structure and β an assignment in A. Let A′

be the L ∪ {E}-expansion interpreting E by the identity EA ∶= {(a, a) ∣ a ∈ A}. Then
A′ ⊧ EqEL , so A′ ⊧ ϕE[β]. By the previous proof, A′/E ⊧ ϕE[π ○ β]. But, clearly, A′/E ≅ A
via a/EA = {a} ↦ a, i.e. π−1. Then A ⊧ ϕ[π−1 ○ π ○ β] (Exercise 2.3.19).

Proof of Theorem 2.6.7. The second statement follows from the first noting ϕ(x̄) is valid
if and only if ϕ(c̄) is valid (Exercise 2.5.5 with T = ∅).
⇐∶ (Soundness) clearly, all rules lead from valid premisses to valid conclusions. By a

simple induction, all sequents in an LK proof are valid.
⇒∶ (Completeness) let Γ⇒ ∆, hence (⋀Γ → ⋁∆) be valid. This is an L0-sentence for

some finite L0 ⊆ L∪C. By the corollary, EqEL0
⊧ ((⋀Γ)E → (⋁∆)E), so EqEL0

∪ΓE ⇒∆E is
valid. By Theorem 2.6.6 it is LK−-provable. Replacing Ett′ by t=̇t′ throughout the proof
gives an LK-proof of EqL0

∪ Γ ⇒ ∆. Exercise 2.6.4 and Weakening, gives LK-proofs of
Γ⇒∆, ψ for all ψ ∈ EqL0

. Then ∣EqL0
∣ many cuts give a proof of Γ⇒∆.

Gentzen’s Hauptsatz states Theorem 2.6.7 for LK without the Cut rule. A proof is
outside the scope of this course.

Exercise 2.6.13 (Semi-decidability of Hilbert’s Entscheidung). There is an algorithm
that, given an L-formula ϕ, halts in a finite number of steps if and only if ϕ is valid.

2.6.3 Compactness theorem and applications

Let T be an L-theory.

Theorem 2.6.14 (Compactness). T is satisfiable if and only if every finite subset of T is
satisfiable.

This could be called the “Fundamental Theorem of Model Theory”. A proof is outside
the scope of this course.

Definition 2.6.15. Let ϕ be an L-sentence. T LK-proves ϕ, symbolically T ⊢ ϕ if there
is a finite T0 ⊆ T such that T0 ⇒ ϕ is LK-provable.

Theorem 2.6.16 (Deductive LK completeness). Let ϕ be an L-sentence. Then T ⊧ ϕ if
and only if T ⊢ ϕ.

Proof. The following are equivalent: T ⊧ ϕ, T ∪{¬ϕ} is unsatisfiable, T0 ∪{¬ϕ} is unsatis-
fiable for some finite T0 ⊆ T (compactness), T0 ⇒ ¬ϕ is valid for some finite T0 ⊆ T , T0 ⇒ ϕ
is LK-provable for some finite T0 ⊆ T (Theorem 2.6.7), T ⊢ ϕ.

Theorem 2.6.17 (Löwenheim-Skolem upwards). Assume T has an infinite model. Let S
be any set. Then T has a model whose universe contains S.
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Proof. It suffices to show tat T has a model such that there is an injection of S into
its universe. We can assume S ∩ L = ∅ and view S as a set of constants. We claim
T ′ ∶= T ∪ {¬s=̇s′ ∣ s, s′ ∈ S, s ≠ s′} is satisfiable. Then, if A ⊧ T ′, we have A↿L ⊧ T and
s↦ sA is injective. To prove the claim, by compactness, it suffices to show that every finite
T ′

0 ⊆ T ′ is satisfiable. Choose s1, . . . , sn ∈ S such that T ′
0 ⊆ T ∪ {¬si=̇sj ∣ i, j ∈ [n], i ≠ j}.

Choose an infinite A ⊧ T and pairwise distinct a1, . . . , an ∈ A. Then the L ∪ {s1, . . . , sn}-
expansion of A that interprets si by ai models T ′

0.

Example 2.6.18 (Undefinability of connectedness). Recall a graph G = (G,EG) is con-
nected if for all g, g′ ∈ G there is a path from g to g′ in G. There does not exist an
{E}-theory T whose models are precisely the connected graphs.

Proof. Assume T ’s models are precisely the connected graphs. Let c, d be constants, n > 0
and ϕn ∶= ¬∃x1⋯xn(c=̇x1 ∧ d=̇xn ∧ ⋀n−1

i=1 Exixi+1). Then T ∪ {ϕn ∣ n > 0} is unsatisfiable: if
A would be a model, then A↿{E} is a graph with no path from cAto dA; but A↿{E} ⊧ T , a
contradiction. By compactness, there is m > 0 such that T ∪ {ϕn ∣ n < m} is unsatisfiable.
Take a graph that is a path of length m. This is connected, so satisfies T . Its {E, c, d}-
expansion interpreting c, d by the endpoints models all ϕn, n <m – contradiction.

Exercise 2.6.19. Assume L is finite and T is a decidable L-theory, i.e., there exists an
algorithm that, given an L-sentence ϕ, decides whether ϕ ∈ T . Describe an algorithm that,
given an L-sentence ϕ, halts in a finite number of steps if and only if T ⊢ ϕ.

Exercise 2.6.20. Let T be an L-theory. Assume for every n ∈ N there is A ⊧ T with
∣A∣ ⩾ n. Show T has an infinite model. E.g., there is no {E}-theory whose models are
precisely the finite graphs.

Exercise 2.6.21. Find examples of satisfiable sentences without finite models (e.g. recall
the ordering and pigeonhole principles from Section 1.8).

2.6.4 Gödel’s first incompleteness theorem

The following result is outside the scope of this course but not hard to prove given a basic
development of computability theory.

Theorem 2.6.22. There is no algorithm deciding

Arithmetical Truth
Input: an LPA-sentence ϕ.

Problem: N ⊧ ϕ ?

This implies a weak version of Gödel’s first incompleteness theorem. The full version
concerns satisfiable instead of true (in N) theories.

Theorem 2.6.23 (Gödel’s first incompleteness theorem). Assume T is a decidable LPA-
theory with N ⊧ T . Then there exists an LPA-sentence ϕ such that T /⊢ ϕ and T /⊢ ¬ϕ.
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Proof. For contradiction, assume T ⊢ ϕ or T ⊢ ¬ϕ for every LPA-sentence ϕ. Then N ⊧ ϕ if
and only if T ⊢ ϕ. Indeed, ⇐ is clear by soundness and N ⊧ T ; ⇒: if N ⊧ ϕ, then N /⊧ ¬ϕ,
then T /⊢ ¬ϕ (by ⇐), so T ⊢ ϕ by assumption.

It suffices to give an algorithm deciding Arithmetical Truth. Run the algorithm
from Exercise 2.6.19 in parallel on ϕ and ¬ϕ, i.e., do computation steps alternatingly on
these two inputs. Exactly one of the two computations halts after a finite number of steps.
If it is the one on ϕ output 1; if it is the one on ¬ϕ output 0.

2.7 Universal theories

Skolemization reduces the satisfiability question to universal formulas. This gives special
interest to universal formulas. We establish  Los and Tarski’s semantic characterization
of universal formulas and give an application in graph theory. We then give Herbrand’s
theorems showing that the satisfiability question for universal formulas is essentially propo-
sitional. This is the basis of logic programming (Section 2.9).

Let L be a language and A be an L-structure with universe A.

2.7.1  Los-Tarski theorem

Definition 2.7.1. Let L(A) ∶= L∪{ca ∣ a ∈ A} where the ca are pairwise distinct constants
outside L. Let AA be the L(A)-expansion of A that interprets ca by a. The algebraic
diagram Da(A) of A is a set of true (in AA) L(A)-sentences, namely ¬ca=̇ca′for a ≠ a′ and
those of the form

Rca1⋯car , ¬Rca1⋯car , fca1⋯car = ca
where r ∈ N, f,R ∈ L are r-ary and a1, . . . , ar, a ∈ A.

Lemma 2.7.2. Let T be an L-theory. The following are equivalent.

1. A satisfies every universal L-sentence ϕ implied by T .

2. T ∪Da(A) is satisfiable.

3. Some extension of A satisfies T .

Proof. 1 ⇒ 2: assume T ∪Da(A) is unsatisfiable. By compactness, there are ϕ1, . . . , ϕn ∈
Da(A) such that T ∪ {ϕ1, . . . , ϕn} is unsatisfiable. Write ϕi = ϕi(c̄) for L-formulas ϕ′i(x̄)
and c̄ constants in L(A) ∖L. Then T implies ⋁ni=1 ¬ϕ′i(c̄), hence also ∀x̄⋁ni=1 ¬ϕ(x̄) (Exer-
cise 2.5.5). This is a universal L-sentence that is false in A.

2 ⇒ 3: let C ⊧ T ∪Da(A). It suffices to show that C↿L is isomorphic to an extension
B ⊇ A. By Exercise 2.1.14 it suffices to show that there is an embedding of A into C↿L.

We claim that the map a ↦ cCa is one. It is injective because ¬ca=̇ca′ ∈ Da(A), so
C ⊧ ¬ca=̇ca′ , so cCa ≠ cCa′ for a ≠ a′.

For an r-ary function symbol f ∈ L, we have to show that a ∶= fA(a1, . . . , ar) is mapped
to fC(cCa1 , . . . , cCar), i.e., cAa = fC(cCa1 , . . . , cCar), i.e., the sentence ca=̇fca1⋯car is true in C; this
holds because it is in Da(A).
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For an r-ary relation symbol R ∈ L, we show (a1, . . . , ar) ∈ RA ⇔ (cCa1 , . . . cCar) ∈ RC↿L,
i.e., AA ⊧ Rca1⋯car ⇔ C ⊧ Rca1⋯car . This follows from Rca1⋯car , ¬Rca1⋯car ∈Da(A).

3 ⇒ 1: if A ⊆ B ⊧ T and T ⊧ ϕ, then B ⊧ ϕ. If ϕ is universal, then A ⊧ ϕ (Exer-
cise 2.3.21).

Exercise 2.7.3. Let L′ ⊇ L be a language such that L′ ∖L contains only relation symbols.
Let T ′ be a universal L′-theory. The following are equivalent.

1. A satisfies every universal L-sentence ϕ implied by T ′.

2. A has an expansion A′ ⊧ T ′.

Theorem 2.7.4 ( Los-Tarski). Let T be an L-theory and ϕ(x̄) be an L-formula. The
following are equivalent.

1. For all A,B ⊧ T and all tuples ā from A of suitable length:

A ⊆B ⊧ ϕ[ā] Ô⇒ A ⊧ ϕ[ā].

2. There exists a universal L-formula ψ(x̄) such that T ⊧ ∀x̄(ϕ(x̄) ↔ ψ(x̄)).

Proof. 2⇒ 1: if B ⊧ ϕ[ā], then B ⊧ ψ[ā] since B ⊧ T , then A ⊧ ψ[ā] by Exercise 2.3.21,
then A ⊧ ϕ[ā] since A ⊧ T .

1⇒ 2: choose new constants c̄. Then for all L′ ∶= L ∪ {c̄}-structures A,B ⊧ T we have

A ⊆B ⊧ ϕ(c̄) Ô⇒ A ⊧ ϕ(c̄).

Let U be the set of L′-sentences implied by T ′ ∶= T ∪ {ϕ(c̄)}. We claim:

T ∪U ⊧ ϕ(c̄).

Let A ⊧ T ∪U . The lemma gives an L′-structure B with A ⊆B ⊧ T ′. This implies A ⊧ ϕ(c̄).
Then T ∪ U ∪ {¬ϕ(c̄)} is unsatisfiable. By compactness there is a finite U0 ⊆ U such

that T ∪ U0 ∪ {¬ϕ(c̄)} is unsatisfiable. Then T ⊧ (⋀U0 → ϕ(c̄)). As T ⊧ (ϕ(c̄) → ψ) for
all ψ ∈ U , we have T ⊧ (⋀U0 ↔ ϕ(c̄)). But ⋀U0 is equivalent to ψ(c̄) for some universal
L-formula ψ(x̄). By Exercise 2.5.5, T ⊧ ∀x̄(ϕ(x̄) ↔ ψ(x̄)).

2.7.2 Forbidden subgraph characterizations

Suppose L is finite and relational (contains only relation symbols). For L-structures A,B
let B↪ A mean that there is an embedding of B into A.

Proposition 2.7.5. Let ϕ a universal L-sentence. There are n ∈ N and finite L-stuctures
B1, . . . ,Bn such that for all L-structures A:

A ⊧ ϕ ⇐⇒ B1 /↪ A, . . . ,Bn /↪ A.
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Proof. Write ϕ = ∀x̄ψ(x̄) for quantifier free ψ(x̄). If A /⊧ ϕ, there is a tuple ā over A of
the length of x̄ such that A ⊧ ¬ψ[ā]. Then ⟨ā⟩A ⊧ ¬ψ[ā]. Let the Bi list ⟨ā⟩A for all such
A, ā – up to isomorphism.

Example 2.7.6. Recall, graphs are {E}-structures G with G ⊧ ϕgraph ∶= ∀xy(¬Exx ∧
(Exy → Eyx)). Equivalently,

●

↺, ●→● /↪ G (where we depict E by →).

We now focus on graphs. A prominent topic of graph theory is to characterize graph
properties by forbidden graphs in one or another sense.

Definition 2.7.7. Let P be a class of graphs.

1. P is subgraph closed if it contains all subgraphs of every graph G ∈ P.

2. P is definable if there is an {E}-sentence ϕ such that for all graphs G:

G ∈ P ⇐⇒ G ⊧ ϕ.

3. Let F be a set of graphs. P is characterized by forbidding F if for all graphs G:

G ∈ P ⇐⇒ no H ∈ F is isomorphic to a subgraph of G.

Theorem 2.7.8. Assume P is a class of graphs that is subgraph closed and definable. Then
there is a finite set F of finite graphs such that P is characterized by forbidding F .

Proof. Let ϕ define P. As P is closed under subgraphs implies it is closed under induced
subgraphs, so closed under substructures – i.a.w., Theorem 2.7.4 (1)holds for ϕ and T ∶=
{ϕGraph}, Thus, there is a universal ϕ such that {ϕGraph} ⊧ (ϕ ↔ ψ), so the sentence
((ϕ ∧ ϕGraph) ↔ (ϕGraph ∧ ψ)) is valid. Let χ be universal and equivalent to (ϕGraph ∧ ψ).
Then P is the class of models of χ.

Choose a list B1, . . . ,Bn according to Proposition 2.7.5 of {E}-structures. Delete Bi

if it is not a graph, or there is j ≠ i such that Bj is isomorphic to a proper subgraph of Bi.
Let Bi1 , . . . ,Bi` be the new (sub)list of finite graphs.

Let G be a graph. Then G /⊧ χ if and only if Bi ↪ G for some i ∈ [n]. We claim this
holds if and only if there is j ∈ [`] such that Bij is isomorphic to some subgraph of G.
⇒: if Bi ↪ G, then Bi is a graph: if Bi ≅ H ⊆ G, then H ⊧ ϕgraph, so Bi ⊧ ϕgraph

(Exercises 2.3.21, 2.3.19). Hence, some Bij is isomorphic to a subgraph of Bi. Then Bij

is isomorphic to some subgraph of H, hence of G.
⇐: if Bij is isomorphic to some subgraph of G, then it is isomorphic to an induced

subgraph of some subgraph G′ of G, i.e., Bij ↪ G′. Then G′ /⊧ χ, so G′ ∉ P. As P is
subgraph closed, G ∉ P, i.e., G /⊧ χ.

Example 2.7.9 (Lovász). Let k > 0 and Pk be the class of graphs that contain a ver-
tex cover of size ⩽ k. Then there exists a finite set Fk of finite graphs such that Pk is
characterized by forbidding Fk.

Proof. Pk is subgraph closed and defined by ∃x1⋯xk∀yz(Eyz → ⋁ki=1(xi=̇y ∨ xi=̇z)).
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2.7.3 Herbrand’s theorems

Let L be a language that contains at least one constant.

Theorem 2.7.10. Let T be a universal L-theory and ϕ(x̄, y) a quantifier free L-formula.
If T implies ∀x̄∃yϕ(x̄, y), then there are n > 0 and L-terms t1(x̄), . . . , tn(x̄) such that T
implies ∀x̄⋁ni=1ϕ(x̄, ti(x̄)).

Proof. Let c̄ be a tuple of constants outside L. It suffices to show

T ∗ ∶= T ∪ {¬ϕ(c̄, t(c̄)) ∣ t(x̄) is an L-term}

is unsatisfiable: then compactness gives n > 0 and L-terms t1(x̄), . . . , tn(x̄) such that
T ∪{¬ϕ(c̄, t1(c̄)), . . . ,¬ϕ(c̄, tn(c̄))} is unsatisfiable, i.e., T implies ⋁ni=1ϕ(c̄, ti(c̄)); as c̄ does
not appear in T , this yields our claim (Exercise 2.5.5).

For contradiction, assume there is an L ∪ {c̄}-structure A ⊧ T ∗. Since L ∪ {c̄} contains
at least one constant, ⟨∅⟩A ⊆ A is defined. Its universe is the set of tA where t is a closed
L∪{c̄}-term. As T is universal, ⟨∅⟩A ⊧ T (Exercise 2.3.21). Then ⟨∅⟩A ⊧ ∃yϕ(c̄, y), so there
is tA satisfying ϕ(c̄, x) in ⟨∅⟩A, so ⟨∅⟩A ⊧ ϕ(c̄, t). Write t = t′(c̄) for some L-term t′(x̄).
Since ϕ is quantifier free, A ⊧ ϕ(c̄, t′(c̄)). This contradicts A ⊧ T ∗.

Remark 2.7.11. The above is true if L does not contain a constant and x̄ is non-empty. We
shall see important situations where we can ensure n = 1 (Corollary 2.7.20, Theorem 2.9.2).

Exercise 2.7.12. Formulate and prove a version of the above for a tuple of variables ȳ
instead of a single variable y.

Observe that T ∶= ∅ ⊧ ∀x̄∃yϕ(x̄, y) means that the existential formula ∃yϕ(x̄, y) is valid,
and the above yields that the quantifier free formula ⋁ni=1ϕ(x̄, ti(x̄)) is valid. We now aim
to show that this validity is essentially propositional validity. We choose to equivalently
talk about unsatisfiable universal formulas instead of valid existential ones.

Definition 2.7.13. Let ψ(x1, . . . , xk) be a quantifier free L-formula. The Herbrand ex-
pansion of ∀x̄ψ is the set

H(∀x̄ψ) ∶= {ψ(t1, . . . , tk) ∣ t1, . . . , tk closed L-terms}.

We also set H(ψ(x̄)) ∶= H(∀x̄ψ) and H(T ) ∶= ⋃ϕ∈T H(ϕ) for a universal L-theory T .

Definition 2.7.14. A quantifier free L-sentence ϕ is propositionally satisfiable if it is
satisfiable as a propositional formula over propositional variables VarL, the set of atomic
L-sentences. A set of quantifier free sentences is propositionally satisfiable if it is satisfiable
viewed as a set of propositional formulas over VarL.

Remark 2.7.15. Clearly, satisfiable implies propositionally satisfiable – but not vice-
versa: e.g., for distinct constants c, d, both ¬c=̇c and (c=̇d ∧ ¬d=̇c) are unsatisfiable but
propositionally satisfiable. In the =̇-free case this cannot happen:
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Lemma 2.7.16. Let T be a set of universal =̇-free L-sentences. Then T is satisfiable if
and only if H(T ) is propositionally satisfiable.

Proof. If A ⊧ T , then A ⊧ ψ for all ψ ∈ H(T ). Define an assignment β to VarL mapping
every χ ∈ VarL to its truth value in A. A straightforward induction shows that a quantifier
free sentence ψ is propositionally satisfied by β if and only if it is true in A.

Conversely, if β ∶ VarL → {0,1} propositionally satisfies H(T ), define A with universe A
the set of closed L-terms as follows: for an r-ary function symbol f ∈ L let fA map
t1, . . . , tr ∈ A to ft1⋯tr ∈ A; for an r-ary relation symbol R ∈ L set

RA ∶= {(t1, . . . , tr) ∈ Ar ∣ β(Rt1⋯tr) = 1}.

Let ϕ = ∀x̄ψ(x̄) ∈ T for quantifier free ψ(x̄). We have to show A ⊧ ψ[t̄], i.e., A ⊧ ψ(t̄) for
all tuples t̄ from A. As ψ(t̄) ∈ H(ϕ) ⊆ H(T ) it suffices to show that a quantifier free =̇-free
sentence ψ is propositionally satisfied by β if and only if A ⊧ ψ – an easy induction.

Recall the set of equality axioms EqL from Example 2.4.9 and note they are universal.

Theorem 2.7.17. A universal L-sentence ϕ is unsatisfiable if and only if some finite
subset of H(EqL ∪ {ϕ}) is propositionally unsatisfiable.

Proof. The following are equivalent: ϕ is unsatisfiable, ¬ϕ is valid, EqEL implies ¬ϕE (Corol-
lary 2.6.12), EqEL ∪ {ϕE} is unsatisfiable, H(EqEL ∪ {ϕE}) is propositionally unsatisfiable
(Lemma 2.7.16). But this is just a copy of H(EqL ∪ {ϕ}). Now apply compactness of
propositional logic (Theorem 1.4.9).

Exercise 2.7.18. Formulate and prove an analogue for a universal L-theory T in place
of ϕ. Infer Theorem 2.7.10 from it.

2.7.4 Search algorithms from proofs

Intuitively, Theorem 2.7.10 has the following computational reading. We have a search
problem: given x̄ compute y such that ϕ(x̄, y). We assume this is well-defined – for all x̄
there exist such y. Suppose you know more than mere truth of this, namely that a true
universal theory T implies ∀x̄∃yϕ(x̄, y). Then you can solve the problem by computing
the values y1 ∶= t1(x̄), . . . , yn ∶= tn(x̄) and check which one works; note n is a constant, i.e.,
independent of the input. To give a precise version of this idea, recall Example 2.1.8.

Definition 2.7.19. ∀PV is the set of universal PV-sentences true in E.

Below note E ⊧ ∀xRxfx means that the efficient algorithm f solves the search problem
associated to R.

Corollary 2.7.20. Let R ∈ PV be a binary relation symbol. If ∀PV implies ∀x∃yRxy,
then there is f ∈ PV such that E ⊧ ∀xRxfx.
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Proof. By Theorem 2.7.10 there are PV-terms t1(x), . . . , tn(x) such that ⋁ni=1Rxti(x) is
true in E. Consider the following algorithm A: on input a ∈ {0,1}∗ compute b1 ∶=
tE1 [a], . . . , bn ∶= tEn[a]; output the first bi such that (a, bi) ∈ RE.

The bi are computed by composing the efficient algorithms denoted by the symbols
in ti. Hence A is efficient and PV contains a symbol f for it. Then E ⊧ ∀xRxfx.

Remark 2.7.21. PV stands for “polynomially verifiable” and goes back to Cook (1975).
He defined an equational theory in the language PV based on Cobham’s historical char-
acterization of efficient algorithms (1965); his theory can be seen as a subset of ∀PV. A
superset has been considered by DeMillo and Lipton (1979). Cook’s work initiates the field
of Bounded Arithmetic whose foundations were developed by Buss (1986).

2.8 Formal reasoning II: Resolution

Let L be a language that contains at least one constant. Let us sum up how to reduce the
satisfiability problem for L-sentences to propositional satisfiability. Observe the equality
axioms can be written as universal quantifications of clauses:

x=̇x, (¬x=̇y ∨ y=̇x), (¬x=̇y ∨ ¬y=̇z ∨ x=̇z),
(⋁ri=1 ¬xi=̇yi ∨ fx1⋯xr = fy1⋯yr), (⋁ri=1 ¬xi=̇yi ∨ ¬Rx1⋯xr ∨Ry1⋯yr).

Corollary 2.8.1. There is an algorithm that computes for every L-sentence ϕ an =̇-free
CNF ϕ′ (in some language L′ ⊇ L) such that ϕ is unsatisfiable if and only if H(ϕ′) is
propositionally unsatisfiable.

Proof. We can assume L is finite. Compute a prenex ψ ≡ ϕ (Exercise 2.4.6). Compute a
Skolemization ψSk, say in a finite language L1 ⊇ L0. By Corollary 2.4.12, ψSk ≡ ∀x̄χ(x̄)
where χ(x̄) is a CNF – and it should be clear that such χ can be computed. As seen
in the proof of Theorem 2.7.17, ∀x̄χ(x̄) is unsatisfiable if and only if H(EqEL1

∪ {χE}) is
propositionally unsatisfiable. Output the conjunction ϕ′ of χE and the above clauses for
the equality axioms (with Exy instead x=̇y).

2.8.1 Gilmore’s algorithm

Gilmore’s algorithm solves Exercise 2.6.13 based on the above corollary using Resolution
for propositional unsatisfiability checks. We restrict attention to the =̇-free case and, as in
the propositional setting, write clauses as sets of literals, i.e., from now on an (L-)clause
C is a finite set of =̇-free L-literals. Whenever using a clause C (a set of clauses C) in a
context where an L-formula is expected, we mean ⋁C (resp. ⋀C∈C ⋁C) – but we also allow
the empty clause (empty set of clauses) understanding it to be unsatisfiable (valid).

To be clear, we spell out the semantics:

– A ⊧ C[β] means A ⊧ λ[β] for some λ ∈ C. Note this never holds for the empty clause
C = ∅. Further, A ⊧ ∀x̄C[β] means A ⊧ C[β[x̄/ā] for all tuples ā from A.



CHAPTER 2. FIRST-ORDER LOGIC 59

– A ⊧ C[β] means A ⊧ C[β] for all C ∈ C. Note this trivially holds for C = ∅. Further,
A ⊧ ∀x̄C[β] means A ⊧ C[β[x̄/ā] for all tuples ā from A and all C ∈ C.

We write C = C(x̄),C = C(x̄) to indicate that variables are among x̄. The substitution
σ of terms t1, . . . , tk for x̄ = x1⋯xk in C(x̄) gives Cσ = C(t1, . . . , tk) = {λ(t1, . . . , tk) ∣ λ(x̄) ∈
C(x̄)}. The Herbrand expansion of C(x̄) is

H(C) ∶= {C(t1, . . . , tk) ∣ C(x1, . . . , xk) ∈ C, t1, . . . , tk closed L-terms},

In other words, H(C) is the set of closed instances of clauses in C:

Definition 2.8.2. A substitution σ is closed if its image contains only closed L-terms. A
closed instance of a clause C is Cσ for a closed σ defined on all variables in C.

We view clauses without variables as propositional clauses where the propositional
variables are atomic L-sentences. We refer to a cut of two such clauses as a propositional cut.

Proposition 2.8.3. There is an algorithm that, given a set of clauses C(x̄), halts in a
finite number of steps if and only if ∀x̄C(x̄) is unsatisfiable.

Proof. By Lemma 2.7.16, ∀x̄C(x̄) is unsatisfiable if and only if H(C) is propositionally
unsatisfiable. Let C1,C2 . . . be an effective enumeration of H(C), i.e., i↦ Ci is computable.

1. i← 1, D ← {C1}
2. while ∅ ∉ D
3. i← i + 1, D ← D ∪ {Ci+1}
4. D ← D ∪ set of propositional cuts of clauses C,C ′ ∈ D

This algorithm halts only if ∀x̄C(x̄) is unsatisfiable. Indeed, if A ⊧ ∀x̄C(x̄), then A ⊧ Ci
for all i, and clearly A satisfies every propositional cut of clauses it satisfies.

Conversely, assume ∀x̄C(x̄) and hence H(C) is unsatisfiable. By propositional compact-
ness, there n ∈ N such that {C1, . . . ,Cn} is propositionally unsatisfiable. By Theorem 1.6.10
there is a Resolution refutation of {C1, . . . ,Cn}, say of length `. Then the algorithm halts
latestly when i reaches n + `.

Example 2.8.4. Let E,P be binary and unary relation symbols, f, g unary function
symbols, and c, d constants. For readability we write E(x, y), P (x) instead of Exy,Px.
Consider the set of clauses C:

{E(x, y),E(fc, z)}, {¬E(fx, gy), P (fy)}, {¬P (x)}.

Applying respectively the closed substitutions [x/fc, y/gd, z/gd], [x/c, y/d], [x/fd] gives
the following closed instances in H(C):

{E(fc, gd)}, {¬E(fc, gd), P (fd)}, {¬P (fd)}.

A propositional cut on the first two gives {P (fd)}, and another cut gives the empty
clause ∅. Hence, ∀xyC(xy) is unsatisfiable.
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Observe in the first cut we use substitutions that unify E(x, y),E(fc, z),E(fx, gy).
Instead of d we could also use c or ffgfd or any other closed term – and why not a
variable u to indicate this freedom? This leads to the notion of a most general unifier.
Intuitively, this is a unifying substitution with maximal freedom. First-order Resolution
is based on the idea to speed-up Gilmore’s algorithm by avoiding the generation of many
useless closed instances but instead performing cuts after applying most general unifiers.

2.8.2 First-order Resolution

Definition 2.8.5. The composition of substitutions

σ = [x1/t1, . . . , x`/t`, y1/s1, . . . , ym/sm] and σ′ = [x1/t′1, . . . , x`/t′`, z1/r1, . . . , zn/rn]

with xi, yj, zk pairwise distinct, is the substitution

σσ′ ∶= [x1/tσ
′

1 , . . . , x`/tσ
′
` , y1/sσ

′
1 , . . . , ym/sσ′m, z1/r1, . . . , zn/rn].

A set of literals L is unifiable if there is a unifier of L, that is, a substitution σ such
that Lσ ∶= {λσ ∣ λ ∈ L} has size 1. A unifier σ of L is most general if for every unifier τ of
L there is a substitution σ′ such that τ = σσ′.

Note Cσσ′ = (Cσ)σ′ for every clause C.

Lemma 2.8.6 (Unification). There is an efficient algorithm that, given a set L of literals,
outputs a most general unifier of L in case L is unifiable, and otherwise outputs “fail”.

Proof. On input L the algorithm works as follows.

1. σ ← the empty substitution

2. while ∣Lσ ∣ > 1

3. choose distinct λσ1 , λ
σ
2 ∈ Lσ; i← first position i where λσ1 , λ

σ
2 differ

4. if none of λσ1 , λ
σ
2 has a variable at position i, then output “fail”

5. else choose such a variable x (in one of the literals);
t← the term starting at position i in the other literal

6. if x occurs in t, then output “fail”.

7. else σ ← σ[x/t]

Observe that, after each while loop, the variables in the domain of σ do not occur in
the terms in its image. Hence each while loop decreases the number of variables in L.
It follows that the algorithm is efficient. To prove correctness it suffices to show that it
outputs a most general unifier given a unifiable L. Say, τ unifies L. It suffices to show that
the while-loop maintains the property of σ that τ = σσ′ for some σ′.



CHAPTER 2. FIRST-ORDER LOGIC 61

Assume this for σ. Then σ′ unifies Lσ, in particular xσ
′ = tσ′ . Hence line 7 is reached

and σ is updated to σ[x/t]. We claim τ = (σ[x/t])σ′′ where σ′′ is the restriction of σ′ to
its domain without x. For a variable y ≠ x we have

yτ = (yσ)σ′ = (yσ[x/t])σ′ = (yσ[x/t])σ′′ ;

indeed, the 2nd holds because x does not occur in the terms in the image of σ;the 3rd
holds because x does not occur in t hence not in yσ[x/t].

For variable x, note x does not occur in t and σ is not defined on x, so

xτ = xσσ′ = xσ′ = tσ′ = tσ′′ = x(σ[x/t])σ′′ .

Definition 2.8.7. A renaming is a substitution whose image contains only variables. For a
literal λ = ¬bα with α atomic and b ∈ {0,1} let λ̄ ∶= ¬1−bα denote the complementary literal.
Let C0,C1 be clauses and ρ0, ρ1 be renamings so that Cρ0

0 ,C
ρ1
1 do not share variables. Let

λ1, . . . , λn ∈ Cρ0
0 , µ1, . . . , µm ∈ Cρ1

1 and σ be a most general unifier of {λ1, . . . , λn, µ̄1, . . . , µ̄m}.
Then a (first-order) cut of C0,C1 is the clause

(Cρ0
0 ∖ {λ1, . . . , λn})

σ ∪ (Cρ1
1 ∖ {µ1, . . . , µm})σ.

A (first-order) Resolution proof from a set of clauses C is a sequence C1, . . . ,C` of clauses,
for some ` ∈ N, such that for every i ∈ [`], Ci is a (first-order) cut of two clauses in
C ∪ {Cj ∣ j < i}. It is a proof of C`; if C` = ∅ it is a (first-order) Resolution refutation of C.

Example 2.8.8. In Example 2.8.4 we have {E(x, y),E(fc, z)}, {¬E(fx′, gy′), P (fy′)}
after renaming. The following table shows a computation of a most general unifier of
L ∶= {E(x, y),E(fc, z),E(fx′, gy′)}; the position i is underlined.

Lσ σ
E(x, y) E(fc, z) E(fx′, gy′) [x/fc]
E(fc, y) E(fc, z) E(fx′, gy′) [x/fc][y/z]

E(fc, z) E(fx′, gy′) [x/fc][y/z][x′/c]
E(fc, z) E(fc, gy′) [x/fc][y/z][x′/c][z/gy′]

E(fc, gy′)

A most general unifier is σ = [x/fc, y/gy′, x′/c, z/gy′]. Thus, {P (fy′)}σ = {P (fy′)} is a
first-order cut of our clauses. In a picture:

E(x, y),E(fc, z) ¬E(fx′, gy′), P (fy′)⇢ σ ⇢ σ

E(fc, gy′) ¬E(fc, gy′), P (fy′)
↘ ↙
P (fy′)

In Example 2.8.4 we had the propositional cut {P (fd)} of closed instances. Note
{P (fd)} is a closed instance of {P (fy′)}. We show next that this always happens.
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Lemma 2.8.9 (Lifting). Let C0,C1 be clauses and C ′ a propositional cut of closed instances
C ′

0,C
′
1. Then there is a first-order cut C of C0,C1 such that C ′ is a closed instance of C.

Proof. Let ρ0, ρ1 be renamings so that Cρ0
0 ,C

ρ1
1 do not share variables. Choose closed

substitutions τ0, τ1 such that C ′
0 = C

ρ0τ0
0 and C ′

1 = C
ρ1τ1
1 . Since the domains are disjoint, we

can replace τ0, τ1 by τ ∶= τ0τ1. Say C ′ = (C ′
0 ∖ {λ}) ∪ (C ′

1 ∪ {λ̄}) is a propositional cut on
λ. Let λ1, . . . , λn list all literals in Cρ0

0 with λτi = λ and let µ1, . . . , µm list all literals in Cρ1
0

with µτi = λ̄. Then τ unifies {λ1, . . . , λn, µ̄1, . . . , µ̄m}. Let σ be a most general unifier. Then
τ = σσ′ for some σ′. Then Cσ′ = C ′ for C ∶= (Cρ0

0 ∖{λ1, . . . , λn})σ∪(Cρ1
1 ∖{µ1, . . . , µm})σ.

Cρ0
0 Cρ1

1⇢ σ ⇢ σ

Cρ0σ
0 Cρ1σ

1⇢ σ′ ↘ ↙

⇢ σ′

C ′
0 C C ′

1

↘
⇢ σ′ ↙

C ′

Theorem 2.8.10 (Refutation completeness). Let C(x̄) be a set of clauses. Then ∀x̄C(x̄)
is unsatisfiable if and only if there exists a Resolution refutation of C(x̄).

Proof. ⇐ (Soundness): it suffices to show that, if C(x̄) is a cut of C0(x̄),C1(x̄), then
∀x̄C(x̄) is implied by {∀x̄C0(x̄),∀x̄C1(x̄)}. Assume A /⊧ ∀x̄C(x̄), say A /⊧ C[β] for some
assignment β. In the notation of Definition 2.8.7, let λ = λσi = µ̄σj . We have A ⊧ λ[β] or not.
Assume the 1st (the 2nd case is similar). Then A /⊧ µσj [β]. As (Cρ1

1 ∖ {µ1, . . . , µm})σ ⊆ C
this clause is not satisfied in A under β. Hence A /⊧ Cρ1σ

1 [β] and thus A /⊧ ∀x̄C1(x̄).
⇒ (Completeness): if ∀x̄C(x̄) is unsatisfiable, then there exists a propositional Resolu-

tion refutation C ′
1, . . . ,C

′
` of H(C) (recall the proof of Proposition 2.8.3). We can assume

it contains no weakening steps (Lemma 1.6.6).
For i = 1, . . . , ` we find Ci such that C ′

i is a closed instance of Ci and C1, . . . ,C` is a first-
order Resolution refutation of C(x̄). If C ′

i is a closed instance of some C ∈ C, set Ci ∶= C.
If C ′

i is a propositional cut of C ′
j,C

′
k with j, k < i, choose Ci by the lifting lemma.

Exercise 2.8.11 (Russell’s paradox). The job of a barber is to shave exactly those persons
who do not shave themselves. Does a barber shave himself?

Let Bx mean “x is a barber” and let Sxy mean “x shaves y”. Formalize “Every barber
shaves everybody who does not shave himself” and “No barber shaves somebody who
shaves himself” by clauses. Use Resolution to show that barbers do not exist.

2.9 Logic programs

2.9.1 Clark’s theorem

Again, we fix a language L containing at least one constant.
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Definition 2.9.1. A literal is negative if it starts with ¬ and otherwise positive. A goal
clause contains only negative literals. A logic program P is a set of clauses each containing
exactly one positive literal.

Let G = G(x̄, y1, . . . , yk) be a goal clause and A ∉ L a k-ary relation symbol. A compu-
tation of P on G is a sequence of clauses C1, . . . ,C` with C1 = G∪{Ay1⋯yk},C` = {At1⋯tk}
where ` > 0 and t1, . . . , tk are terms such that for all i ∈ [`−1], Ci+1 is a first-order cut of Ci
and some clause in P. The output of the computation is t1⋯tk.

For t̄ = t1⋯tk write G(x̄, t̄) for G(x̄, t1, . . . , tk). Writing t̄ = t̄(x̄) means all ti have
variables among x̄. Further, we write t̄σ ∶= tσ1⋯tσk for a substitution σ.

Intuition: say k = 1 and we know (or correctly hope) that, in a situation satisfying P, there
exists an object y satisfying a wishlist of properties. Our search problem is to compute such
a y given input x̄. Let the goal clause G(x̄, y) negate the wishlist, so ∀x̄P implies ∃y¬⋁G.
Theorem 2.7.10 gives many terms t(x̄) such that some y ∶= t(x̄) works – which one depends
on x̄. In the present context, we even get a single term t(x̄) and P can compute it. In
fact, P can compute any such t(x̄):

Theorem 2.9.2 (Clark). Let P(x̄) be a logic program, and G(x̄, ȳ) a goal clause such that
∀x̄P(x̄) implies ∃ȳ¬⋁G(x̄, ȳ). Then there exists a computation of P on G. Moreover,

1. ∀x̄P(x̄) implies ¬⋁G(x̄, t̄) for every output t̄ of a computation of P on G.

2. If ∀x̄P(x̄) implies ¬⋁G(x̄, s̄(x̄)) for certain terms s̄(x̄), then there is a computation
of P on G with some output t̄ and a substitution σ such that s̄ = t̄σ.

Proof. Let c̄ be new constants and work in the language L ∪ {c̄}. Assume ∀x̄P(x̄) ∪
{∀ȳG(c̄, ȳ)} is unsatisfiable. By Corollary 1.6.18 we get a propositional SLD refutation
C ′

1, . . . ,C
′
` of H(P) ∪ H(G). As C ′

1 is negative, it is in H(G), say C1 = G(c̄, s̄) for certain
closed L ∪ {c̄}-terms s̄. As all C ′

i are negative, the side clauses are in H(P). Add As̄ to
all C ′

i and, as in Theorem 2.8.10, lift to a first-order resolution proof C1, . . . ,C`. Then
C` = {At̄} for certain L ∪ {c̄}-terms t̄ and t̄σ = s̄ for some σ. We can assume x̄ appear
nowhere, and replace c̄ back by x̄ to get L-terms.

2: ∀x̄P(x̄) ∪ {G(c̄, s̄(c̄))} is unsatisfiable, and H(G(c̄, s̄(c̄))) = {G(c̄, s̄(c̄))}, so C ′
1 =

G(c̄, s̄(c̄)) above.
1: let t̄ be the output of a computation of P on G(x̄, ȳ). Then ∀x̄P(x̄)∪{∀ȳ(G(x̄, ȳ)∪

{Aȳ})} implies At̄ by soundness (see Theorem 2.8.10). Let B ⊧ ∀x̄P(x̄) and β an assign-
ment. Let ā be the values of t̄ in B under β. Let B′ be the L ∪ {A}-expansion of B with
AB′ ∶= Bk ∖ {ā}. Then B′ /⊧ At̄[β]. Then there is b̄ ∈ Bk such that B′ ⊧ (¬⋁G(x̄, ȳ) ∧
¬Aȳ)[β[ȳ/b̄]]. Then b̄ = ā and B′ ⊧ ¬⋁G(x̄, ȳ)[β[ȳ/ā]], so B ⊧ ¬⋁G(x̄, t̄)[β].

Remark 2.9.3. PROLOG is a declarative programming language. The user writes a logic
program and a goal and the algorithm looks for a computation. Albeit this is known to be
uncomputable, various engineering tricks make it work well on real life instances.
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2.9.2 Examples: computing, planning and proving

Many recursively defined functions are naturally evaluated by logic programs. In fact, it is
known that every computable function can, in a reasonable sense, be computed by a logic
program. We illustrate this for addition.

Example 2.9.4. Addition is recursively defined by x + 0 = x,x + s(x) = s(x + y) where
s is the successor. We write this as a logic program using a unary function symbol s, a
constant 0 and a ternary relation symbol S intended for the graph of addition:

{Sx0x}, {¬Sxyz,Sxsysz}.

We whish to compute “u = 2 + 2”, so write the goal clause G = {¬Sss0ss0u}. Set
C1 ∶= {Au,¬Sss0ss0u} and σ1 ∶= [x/ss0, y/s0, u/sz]. This is a most general unifier of
Sss0ss0u and Sxsysz from the 2nd program clause. A cut gives C2 ∶= {Asz,¬Sss0s0z}.
Next, rename the 2nd program clause to {¬Sxyz′, Sxsysz′}. Then σ2 ∶= [x/ss0, y/0, z/sz′]
is a most general unifier of Sss0s0z and Sxsysz′. A cut gives C3 ∶= {Assz′,¬Sss00z′}.
The 1st program clause with σ3 ∶= [x/ss0, z′/ss0] gives the cut C4 ∶= {Assss0}.

The output of the computation is ssss0 – as expected.

Exercise 2.9.5. Write logic programs for multiplication, exponentiation, the Fibonacci
sequence and the Ackermann function.

A planning problem is given by a set of situations and actions that change situations.
It asks for a sequence of actions that change a given start situation to one out of given
goal situations. Many planning problems can be naturally formulated and solved by logic
programs. We illustrate this with the following frequently used toy problem.

Example 2.9.6 (Monkey-banana-problem). A situation determines positions of the mon-
key, the chair and the banana (hanging from the top). The monkey has actions walk, push
(the chair), jump (on the chair), and grasp (the banana) to change situations.

We use a 4-ary relation symbol P for the 3 positions determined by a situation, unary
relation symbols Q,G indicating being on the chair or being a goal, constants a, b, c, s for
positions of monkey, chair, banana in the start situation, and function symbols w,p, j, g
for the actions; w,p are ternary, j, g unary. We use some extra parentheses for readability.

1. {Pabcs} Monkey, banana, chair are at positions a, b, c in start situation s.

2. {¬Pxyxu,Qju} If the monkey is at the chair, it can jump on it.

3. {¬Pxyzu,Pxyzju} Jumping does not change positions.

4. {¬Pxxxu,¬Qu,Ggu} The goal is reached, if monkey, chair and banana
align and the monkey is on the chair and grasps.

5. {¬Pxyzu,Px′yzw(uxx′)} The monkey can walk anywhere.

6. {¬Pzyzu,Pz′yz′p(uzz′)} If the monkey is at the chair,
then it can push it anywhere.
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This is a logic program P. Here is a computation of P on {¬G(u)}:

computation P σ
Au,¬Gu 4 [u/gu0]
Agu0,¬Px0x0x0u0,¬Qu0 2 [u0/ju1]
Agju1,¬Px0x0x0ju1,¬Px1y1x1u1 3 [x2y2z2u2/x0x0x0u1]
Agju1,¬Px1y1x1u1,¬Px0x0x0u1 6 [x1y1z′3y3/x0x0x0x0][u1/p(u3z3x0)]
Agjp(u3z3x0),¬Pz3x0z3u3 5 [x′4y4z4/z3x0z3][u3/w(u4x4z3)]
Agjp(w(u4x4z3)z3x0),¬Px4x0z3u4 1 [x4x0z3u4/abcs]
Agjp(w(sac)cb)

The 1st column shows the computation, a sequence of goal clauses plus A⋯. The 2nd col-
umn shows the clause from P used in each cut. We use canonical renamings of the program
clauses: {¬Px0x0x0u0,¬Qu0,Ggu0} in the 1st step, {¬Px1y1x1u1,Qju1} in the 2nd, and so
on. The 3rd column gives the most general unifier σ used in the cut to yield the clause in
the next line. E.g. consider line 4: clause 6 is renamed to {¬Pz3y3z3u3, P z′3y3z′3p(u3z3z′3)}.
The displayed σ unifies Pz′3y3z′3p(u3z3z′3) with Px0x0x0u1, Px1y1x1u1 in line 3. Then the
cut yields the clause in line 5.

The output is the term gjp(w(sac)cb). It means: in the start situation s, walk from a
to c, then push the chair from c to b, then jump, then grasp – as expected.

Finally, we illustrate the use of logic programs in automated theorem proving.

Example 2.9.7. We want to derive the existence of right inverses

ϕ ∶= ∃x∀uy∃z(Pxuu ∧ Pyzx)

from the group axioms in Example 2.5.8. Write them as a logic program P:

C1 ∶= {Pxygxy}, C2 ∶= {¬Pxyu,¬Pyzv,¬Pxvw,Puzw}
C ′

2 ∶= {¬Pxyu,¬Pyzv,¬Puzw,Pxvw} , C3 ∶= {Peuu}, C4 ∶= {Piyye}.

Prenex and skolemize ¬ϕ to get the goal clause G = {¬Pxjxjx,¬Pkxzx} with new unary
function symbols k, j. It suffices to refute P ∪ {G}, i.e., to find a computation of P on G.
Here it is – omitting the 0-ary A:

computation P σ
¬Pxjxjx,¬Pkxzx C3 [x/e, u/jx]
¬Pkeze C2[z/z′] [u/ke, z′/z,w/e]
¬Pxyke,¬Pyzv,¬Pxve C4[y/y′] [u/ke, z′/z,w/e]
¬Piy′yke,¬Pyzv C3 [x/iy′, v/e,w/ke]
¬Piy′eke C ′

2 [x/iy′, v/e,w/ke]
¬Piy′yu,¬Pyze,¬Puzke C3[u/u′] = {Peu′u′} [u′/ke, z/ke, u/e]
¬Piy′ye,¬Pykee C4[y/z] = {Pizze} [y/ike, z/ke]
¬Piy′ikee C4 [y/ike, y′/ike]
∅



Chapter 3

Model-Checking

Generically speaking model-checking refers to the study of the computational complexity of
the problem to decide whether W ⊧ ϕ for a given world W and a given sentence ϕ of some
logic. Typically the problem is computationally hard and one asks for efficiently solvable
restrictions to a class of worlds W and a set of sentences Φ, i.e, considering only inputs
with W ∈ W and ϕ ∈ Φ.

In computer science model-checking is studied from two main perspectives: database
theory and formal verification. In database theory,W is a class of databases, i.e., relational
structures (recall Example 2.1.7) and Φ a set of queries, typically formalized in first-order
logic. In formal verificationW is a class of reactive or concurrent systems, and Φ a collection
of correctness specifications one intends the systems to satisfy.

These two perspectives lead into orthogonal directions to look for efficiently solvable
restrictions of interest. As a rule of thump, the perspective from database theory aims at
rich classes W and targets efficiency for highly restrictive classes Φ of first-order formulas;
from the formal verification perspective very special structuresW fall on the table and one
aims at strong logics tailored to reason about the reactive systems at hand.

The bad news is that, unless P = NP, there are no efficient algorithms even when
severely restricting both W and Φ. But there are also good news: for example, we shall
find a model-checker for linear time temporal logic over concurrent systems that runs in
time 2O(∣ϕ∣) ⋅ ∣W ∣ even though the problem is NP-hard (even PSPACE-complete). Such a
runtime can be considered feasible and, in fact, works well in practice. The point is that,
from both perspectives, typical instances of the problem have a large W and a relatively
small ϕ. An adequate complexity analysis has to take this asymmetry into account. We
do so, aiming at runtimes that might depend badly on ∣ϕ∣ but not on ∣W ∣.

Hardness results in terms of classical complexity theory like the PSPACE-completeness
mentioned above are meaningless. It is parameterized complexity that provides an adequate
theoretical frame but a development of this theory is outside the scope of this course.

66
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3.1 Monadic second-order logic

We define monadic second order logic as an extension of first-order logic by quantifiers
∃X that range over subsets of the universe. Full second-order logic would also quantify
over relations X of higher arity. The definition is straightforward adding new rules how to
construct formulas and how to evaluate them. Recall Definitions 2.2.5 and 2.3.8.

Definition 3.1.1 (Monadic second-oder logic). Let L be a language. Add to the alphabet
of first-oder L-formulas a set VAR of set variables X1,X2, . . .. The set of monadic second
order (MSO) L-formulas is the smallest set F satisfying (F1)-(F5) and

(F6) if X ∈ VAR and t is an L-term, then Xt ∈ F ;

(F7) if ϕ ∈ F and X is a set variable, then ∃Xϕ ∈ F .

Let A be an L-structure. An (MSO) assignment in A is a function β with domain
Var ∪VAR that maps every individual variable x ∈ Var to an element β(x) ∈ A and every
set variable X ∈ VAR to a subset β(X) ⊆ A.

For MSO L-formulas, we define A ⊧ ϕ[β] by (T1)-(T4) and

(T5) if ϕ =Xt for X ∈ VAR and t an L-term, then

A ⊧ ϕ[β] ⇐⇒ tA[β] ∈ β(X)

(T6) if ϕ = ∃Xψ for X ∈ VAR and MSO L-formula ψ, then

A ⊧ ϕ[β] ⇐⇒ there is B ⊆ A: A ⊧ ψ[β[X/B]],

where β[X/B] is the MSO assignment that maps X to B and otherwise agrees with β.

Notation: For X ∈ VAR we let ∀Xϕ abbreviate ¬∃X¬ϕ. Then

A ⊧ ∀Xϕ[β] ⇐⇒ for all B ⊆ A: A ⊧ ϕ[β[X/B]]

Remark 3.1.2. The Lemma 2.2.6 on unique readability is adjusted adding case 6: ϕ =
∃Xψ for some set variable and an MSO L-formula ψ. This justifies the definition of ⊧ by
recursion on syntax. Similarly, one defines the set of free variables free(ϕ) ⊆ Var ∪ VAR
of an MSO L-formula ϕ as before plus: if ϕ = ∃Xψ then free(ϕ) ∶= free(ψ) ∖ {X}. The
coincidence Lemmas 2.3.12, 2.3.13 hold for MSO L-formulas with the same proof.

Let x̄ = x1⋯xn and X̄ = X1⋯Xm be tuples from Var (individual variables) and VAR
(set variables). We write an MSO formula ϕ and ϕ(X̄, x̄) to indicate that the free variables
of ϕ are among X̄, x̄. If ā = (a1, . . . , an) ∈ An and B̄ = (B1, . . . ,Bm) ∈ P (A)m we write

A ⊧ ϕ[B̄, ā]

to express A ⊧ ϕ[β] for some (equivalently, all) MSO assignments β in A mapping xi to ai
and Xj to Bj. An MSO L-sentence is a MSO L-formula ϕ with free(ϕ) = ∅. We write
A ⊧ ϕ and say ϕ is true in A if A ⊧ ϕ[β] for some (equivalently, all) β.
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Example 3.1.3. Recall Example 2.6.18. Define

ϕ ∶= ∀xy∀X(Xx ∧ ∀uv((Xu ∧Euv) →Xv)) →Xy).

Intuitively, ∀uv((Xu ∧ Euv) → Xv) states that X is closed under taking E-steps; that
every such X containing x also contains y means that there is a path from x to y.

More precisely, ϕ is true in a graph G if and only if G is connected.

This example shows that MSO is more expressive than first-oder logic. It also shows
that the compactness theorem is false for MSO. Also the upward Löwenheim-Skolem The-
orem 2.6.17 fails for MSO:

Exercise 3.1.4. There is an MSO LPA-sentence ϕN that is true in an LPA-structure A if
and only if A ≅N.

Hint: ϕN states that +, ⋅ satisfy their recursive definitions and

∀X((X0 ∧ ∀x(Xx→Xsx)) → ∀xXx).

Corollary 3.1.5. There is no algorithm that, given an MSO LPA-sentence ϕ, halts in a
finite number of steps if and only if ϕ is valid (i.e., true in all LPA-structures).

Proof. If A is such an algorithm, we can decide Arithmetical Truth contradicting
Theorem 2.6.22: given a first-order LPA-sentence ϕ, run A in parallel on (ϕN → ϕ) and
(ϕN → ¬ϕ), i.e., do steps of both computations alternatingly.

To see correctness, observe that (ϕN → ϕ) is valid if and only N ⊧ ϕ.

Informally speaking, this implies that there does not exist a sound and complete calculus
for MSO. Hence the gain in expressiveness comes at a huge price, in some sense, MSO is
out of control. However, restricting to certain classes of special structures, important for
computer science, some control can be established.

In particular, this is so for word structures S(w) – recall Example 2.1.6. Recall, an
alphabet A is a non-empty set of letters, and a language L is a set of non-empty words,
i.e., L ⊆ A+ ∶= A∗ ∖ {ε}. The restriction to non-empty words is inessential but convenient
because S(ε) is not defined.

Definition 3.1.6. Let A be an alphabet. A language L ⊆ A+ is MSO-definable if L = L(ϕ)
for some MSO LA-sentence ϕ. Here, L(ϕ) is the language defined by ϕ:

L(ϕ) ∶= {w ∈ A+ ∣ S(w) ⊧ ϕ}.

Exercise 3.1.7. Show that the set Par ⊆ {0,1}+ of binary strings with an odd number of
1s is MSO-definable.



CHAPTER 3. MODEL-CHECKING 69

3.2 Finite automata

A language L is regular if L = L(A) for some finite automaton A – we recall the definitions:

Definition 3.2.1. A (nondeterministic) finite automaton is a tuple A = (S, I,F,A,∆)
where S is a set of states, I ⊆ S a set of initial states, F ⊆ S a set of final states, A is an
alphabet, and ∆ ⊆ S ×A × S is the transition relation. A is deterministic if ∣I ∣ ⩽ 1 and for
all (s, a) ∈ S × A there is exactly one s′ ∈ S such that (s, a, s′) ∈ ∆, i.e., s′ = ∆(s, a) and
∆ ∶ S ×A→ S is a function.

A computation of A on w = a1 . . . an ∈ An is a sequence s0, . . . , sn of states such that
s0 ∈ I and (si, ai, si+1) ∈ ∆ for all i < n. The computation is from s0 and to sn; it is
accepting if s0 ∈ I and sn ∈ F . If such a computation exists we say A accepts w.

The language of A is the set L(A) of w ∈ A+ accepted by A. Two finite automata are
equivalent if they have the same language.

Remark 3.2.2. If A is deterministic, then for every w ∈ A+ there is exactly one computa-
tion of A on w.

Example 3.2.3. We depict a finite automaton A as usual, exemplified below. We have
S = {0,1,2,3,4}, S0 = {0} indicated by the tail-less arrow, F = {4} indicated by the double
circle, A = {a, b}, and ∆ is given by the A-labeled arrows; e.g., the loop arrow means
(0, a,0), (0, b,0) ∈ ∆ and the arrow from 0 to 1 means (0, a,1) ∈ ∆. A is not deterministic
because there are two a-labeled arrows leaving state 0.

The language L(A) is the set of words w ∈ A+ whose 4th letter from right is a.

0 1 2 3 4

a, b

a a, b a, b a, b

Exercise 3.2.4. Draw an automaton whose language is Par, the set of binary strings
with an odd number of 1s.

Lemma 3.2.5. Let k1, k2 ∈ N and A1,A2 be finite automata with alphabet A and k1, k2

states. There are finite automata A1⊗A2,A1⊕A2, Ā1 such that

1. A1⊗A2 has k1 ⋅ k2 states and L(A1⊗A2) = L(A1) ∩L(A2).

2. A1⊕A2 has k1 + k2 states and L(A1⊕A2) = L(A1) ∪L(A2).

3. Ā1 has 2k1 states and L(Ā1) = A+ ∖L(A1).

Proof. Write A1 = (S1, I1, F1,A,∆1) and A2 = (S2, I2, F2,A,∆2). For 1, define A1⊗A2 =
(S1 ×S2, I1 × I2, F1 ×F2,A,∆) where ∆ contains ((s1, s2), a, (s′1, s′2)) if both (s1, a, s′1) ∈ ∆1

and (s2, a, s′2) ∈ ∆2. Then (s1
0, s

2
0), . . . , (s1

n, s
2
n) is a computation of A1⊗A2 on w ∈ An if and

only if, for i = 1,2, si0, . . . , s
i
n is a computation of Ai on w.

For 2, assume S1, S2 are disjoint and set A1⊕A2 ∶= (S1 ∪S2, I0 ∪ I1, F1 ∪F2,A,∆1 ∪∆2).
For 3, the next lemma gives a deterministic finite automaton (S, I,F,A,∆) with ∣S∣ =

2k1 equivalent to A1; set Ā ∶= (S, I, S ∖ F,A,∆).
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Lemma 3.2.6. Let k ∈ N. For every finite automaton with k states there is an equivalent
deterministic finite automaton with 2k states.

Proof. Given A = (S, I,F,A,∆) define a deterministic A′ ∶= (S′, I ′, F ′,A,∆′) by S′ ∶=
P (S), I ′ ∶= {I}, F ′ ∶= {X ⊆ S ∣X ∩ F ≠ ∅} and ∆′ ∶ S′ ×A→ S′ by

∆′(X,a) ∶= {s′ ∈ S ∣ (s, a, s′) ∈ ∆, s ∈X}

for X ∈ S′, a ∈ A. It is straightforward to check that for the computation X0, . . . ,Xn of A′

on w ∈ An, the set X0 ×⋯ ×Xn is the set of computations of A on w.

This exponential blow-up can, in general, not be avoided:

Proposition 3.2.7. For every k > 0 there is a finite automaton with k + 1 states such that
every equivalent deterministic automaton has ⩾ 2k states.

Proof. As in Example 3.2.3 one defines a finite automaton with k+1 states that accepts the
words whose kth letter from the right is a. Let A be an equivalent deterministic automaton
and assume it has < 2k states. Then there are distinct w = a1⋯ak,w′ = a′1⋯a′k ∈ {a, b}k such
that, if there exist computations of A on both w,w′, then they end in the same state.
Choose i ∈ [k] minimal such that ai ≠ a′i. Then A accepts a1⋯akbi if and only if A accepts
a′1⋯a′kbi. But exactly one is in L(A) – contradiction.

Lemma 3.2.8 (Pumping). Let A be an alphabet and L ⊆ A+ be regular. There is p ∈ N
such that every sufficiently long w ∈ L equals uvw′ for certain u, v,w′ ∈ A∗ and ∣uv∣ ⩽ p and
v ≠ ε and such that uvnw′ ∈ L for all n ∈ N.

Proof. Choose a finite automaton A with L = L(A). Let p be its number of states. Let
w = a1⋯an ∈ L with n ⩾ p. Choose an accepting computation s0, . . . , sn of A on w. Choose
i < j ⩽ p such that si = sj. Set u ∶= a1⋯ai (empty if i = 0) and v ∶= ai⋯aj (not empty) and
w′ ∶= aj+1⋯an (empty if j = n).

Exercise 3.2.9. Let A,A′ be alphabets.

1. Assume there is a bijection α ∶ A → A′; for every finite automaton A with alphabet
A there is a finite automaton A′ with alphabet A′ such that

L(A′) = ⋃n>0 {α(a1)⋯α(an) ∈ (A′)+ ∣ a1⋯an ∈ L(A)}.

2. For every finite automaton A′ with alphabet A × A′ there is a finite automaton A
with alphabet A such that

L(A) = ⋃n>0 {a1⋯an ∈ A+ ∣ (a1, a′1)⋯(an, a′n) ∈ L(A′) for some a′1⋯a′n ∈ (A′)+}.

3. For every finite automaton A with alphabet A there is a finite automaton A′ with
alphabet A ×A′ such that

L(A′) = ⋃n>0 {(a1, a′1)⋯(an, a′n) ∈ (A ×A′)+ ∣ a1⋯an ∈ L(A)}.
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Exercise 3.2.10. There is an efficient algorithm deciding

NFA Emptiness
Input: a finite automaton A.

Problem: L(A) = ∅ ?

3.3 Büchi’s theorem for words

Fix an alphabet A. This section aims to prove:

Theorem 3.3.1 (Büchi – finite). A language L is regular if and only if it is MSO-definable.

For the proof we need to extend Definition 3.1.6 to MSO LA-formulas, say ϕ(X1,X2)
with free set variables X1,X2. The idea is to use alphabet A×{0,1}2; e.g. a length 6 word
w looks as follows, for a1, . . . , a6 ∈ A and writing letters as columns,

a1 a2 a3 a4 a5 a6

0 1 0 1 0 0
1 0 0 1 1 0

The binary rows code two sets, namely the first B1 ∶= {2,4} and the second B2 ∶= {1,4,5}.
Per definition, w satisfies ϕ(X1,X2) if and only if S(a1⋯a6) ⊧ ϕ[B1,B2].

Definition 3.3.2. Let ϕ(X̄) with X̄ =X1⋯Xk be an MSO LA-formula. Let

w = (a1, b11⋯b1k) ⋯ (an, bn1⋯bnk)

be a word of length n > 0 over the alphabet (A × {0,1}k); here, ai ∈ A and bij ∈ {0,1}. We
say w satisfies ϕ if S(w) ⊧ ϕ[B1, . . . ,Bk] where Bj ∶= {i ∈ [n] ∣ bij = 1} for all j ∈ [k].

Lemma 3.3.3. Let ϕ(X̄) with X̄ =X1⋯Xk be an MSO LA-formula, i ∈ [k], and A a finite
automaton with L(ϕ(X̄)) = L(A). Then there is a finite automaton A′ with

L(∃Xiϕ(X̄)) = L(A′).

Proof. Let α ∶ A×{0,1}k → (A×{0,1}k−1)×{0,1} map (a, b1⋯bk) to ((a, b1⋯bi−1bi+1⋯bk−1), bi).
For A choose A′′ according to Exercise 3.2.9 (1). For A′′ choose A′ according to Exer-
cise 3.2.9 (2) plugging (A × {0,1}k−1) for A and {0,1} for A′. Then

(a1, b11⋯b1(k−1))⋯(an, bn1⋯bn(k−1)) ∈ L(A′)
⇐⇒ ((a1, b11⋯b1(k−1)), c1)⋯((an, bn1⋯bn(k−1)), cn) ∈ L(A′′) for some bits cj

⇐⇒ (a1, b11⋯b1(i−1)c1b1i⋯b1(k−1))⋯(an, bn1⋯bn(i−1)cnbni⋯bn(k−1)) ∈ L(A) for some bits cj

⇐⇒S(a1⋯an) ⊧ ϕ[B1, . . . ,Bi−1,C,Bi, . . . ,Bk−1] for some C ⊆ [n],

where Bi = {j ∈ [n] ∣ bij = 1}; for the last equivalence, C = {j ∈ [n] ∣ cj = 1}.
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Proof of Theorem 3.3.1. ⇒: given a finite automaton A = (S, I,F,A,∆) we want an MSO
LA-sentence ϕA such that for all w ∈ A+ we have S(w) ⊧ ϕA if and only if A accepts w.
Intuitively, the sentence ϕA, evaluated in S(w), expresses that A accepts w. We can
assume S = [k] for some k ∈ N and use set variables Xi; intuitively, Xix means A is in
state i at step x. We define

ϕA ∶= ∃X1⋯Xk(Part ∧ Start ∧ Step ∧Acc)

where Part states the Xi form a partition, Start states the first state is reached from an
initial state, Step states the states accord to ∆, and Acc states the last state is final:

Part ∶= ∀x( ⋁
i∈[k]

Xx ∧ ⋀
1⩽i<j⩽k

(¬Xix ∨ ¬Xjx));

Start ∶= ∀x(∀z ¬ x < z → ⋁
(i,a,j)∈∆,i∈I

(Pax ∧Xjx));

Step ∶= ∀xy((x < y ∧ ∀z¬(x < z ∧ z < y)) → ⋁
(i,a,j)∈∆

(Xix ∧ Pay ∧Xjy);

Acc ∶= ∀x(∀z ¬ x < z → ⋁
i∈F

Xix).

⇐: we first write MSO LA-formulas in translatable form: formulas built by means of
∨,¬ and ∃X from the the following formulas for any X,Y ∈ VAR:

Sing(X) ∶= ∃x(Xx ∧ ∀y(Xy → x=̇y));
Before(X,Y ) ∶= ∀xy((Xx ∧ Y y) → x < y);

Lettera(X) ∶= ∀x(Xx→ Pax).

For individual variables x1, x2, . . . ∈ Var reserve set variables Y1, Y2, . . . ∈ VAR.

Claim: for every MSO LA-formula ϕ(X1⋯X`, x1⋯xk) there is a translatable MSO LA-
formula ϕ∗(X1⋯Xk, Y1⋯Yk) such that for all words w ∈ A+ and all B̄ = B1⋯B` ∈ P ([n])`
and all ı̄ = i1⋯ik ∈ [n]k:

S(w) ⊧ ϕ[B̄, ı̄] ⇐⇒ S(w) ⊧ ϕ∗[B̄,{i1}, . . . ,{ik}].

Proof of the claim. We define ϕ ↦ ϕ∗ by a straightforward recursion: (xi < xj)∗ ∶=
Before(Yi, Yj), (Paxi)∗ ∶= Lettera(Yi), ((ϕ ∨ ψ))∗ ∶= (ϕ∗ ∨ ψ∗), (¬ϕ)∗ ∶= ¬ϕ∗, (∃xiϕ)∗ ∶=
∃Yi(Sing(Yi) ∧ ϕ∗), (∃Xϕ)∗ ∶= ∃Xϕ∗. ⊣

It thus suffices to find, given a translatable MSO LA-formula ϕ(X̄) where all set vari-
ables occurring in ϕ (free or bound) are among X̄ ∶= X1⋯Xk, a finite automaton Aϕ(X̄)

with L(Aϕ(X̄)) = L(ϕ(X̄)). Indeed: if ϕ is a translatable MSO LA-sentence, then Exer-
cise 3.2.9 (2) applied on Aϕ(X̄) (with A′ ∶= {0,1}k) yields Aϕ with L(ϕ) = L(Aϕ).

We construct Aϕ(X̄) by recursion on ϕ. We leave it to the reader to construct Aϕ(X̄)

for ϕ(X̄) one of Sing(Xi),Before(Xi,Xj),Lettera(Xi).
Using Lemma 3.2.5, we set A¬ϕ(X̄) ∶= Āϕ(X̄) and A(ϕ(X̄)∧ψ(X̄)) ∶= Aϕ(X̄)⊗Aψ(X̄).
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To construct A∃Xiϕ(X̄), Lemma 3.3.3 gives B with L(B) = L(∃Xiϕ(X̄)). Its alphabet
is A × {0,1}k−1. Exercise 3.2.9 (3) gives A with alphabet A × {0,1}k, intuitively, padding
with arbitrary k-th bits. Use Exercise 3.2.9 (1) with α that swaps this padding to place i,
namely, α maps (a, b1⋯bk) to (a, b1⋯bi−1bkbi⋯bk−1).

Exercise 3.3.4. Show that the set of binary palindromes is not regular. Infer that there
does not exist an MSO L{0,1}-formula ϕ(x, y, z) such that for all w ∈ {0,1}+ and i, j, k ∈ [∣w∣]:

S(w) ⊧ ϕ[i, j, k] ⇐⇒ i + j = k.

3.3.1 Corollaries

The proof of Büchi’s theorem actually establishes the following effective version.

Corollary 3.3.5.

1. There is an algorithm that given an MSO LA-sentence ϕ outputs a finite automaton
Aϕ such that L(ϕ) = L(Aϕ).

2. There is an algorithm that, given finite automaton A, outputs an MSO LA-sentence
ϕA such that L(A) = L(ϕA).

Mapping ψ to ϕAψ we see:

Corollary 3.3.6. There is an algorithm that, given an MSO LA-sentence ψ, outputs an
MSO LA-sentence of the form ∃X̄χ where no set quantifiers occur in χ and such that

L(ψ) = L(∃X̄χ).

Corollary 3.3.7. There is a computable function f ∶ N→ N and an algorithm that decides

MC(MSO,A+)
Input: an MSO LA-sentence ϕ and a word w ∈ A+.

Problem: S(w) ⊧ ϕ ?

in time polynomial in f(∣ϕ∣) ⋅ ∣w∣.

Proof. Given ϕ,w, compute a deterministic finite automaton A equivalent to Aϕ (see
Lemma 3.2.6) and check whether it accepts w.

Choose a computable function f ′ such that the computation of A takes f ′(∣ϕ∣) many
steps. The check takes ∣w∣ many evaluations of the transition function of A, each done by
scanning A, so is efficient given A.

Exercise 3.3.8. There are algorithms that decide whether a given MSO LA-sentence is
true in some (resp. all) word structures.
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Remark 3.3.9. In the beginning of this chapter, we announced to aim for runtimes as in
Corollary 3.3.7. But how fast does f grow? From our proof, f(∣ϕ∣) is at least the number

of states of Aϕ and this is not elementary, that is, not bounded by 2.
. .
2∣ϕ∣

for any constant
height tower of 2s: our construction has an exponential blow-up for every ¬ in ϕ. Frick
and Grohe proved in 2004 that Corollary 3.3.7 fails for elementary f (assuming P ≠ NP),
even when we restrict to first-order ϕ (assuming a certain hypothesis from parameterized
complexity theory, namely FPT ≠ AW[∗]). This is outside the scope of this course.

3.4 Büchi’s theorem for ω-words

Fix an alphabet A.

Definition 3.4.1. Aω is the set of ω-words (over A), namely functions w ∶ N>0 → A. A
Büchi automaton is a finite automaton A = (S, I,F,A,∆). A computation of A on w ∈ Aω
is a function s ∶ N→ S such that s(0) ∈ I and (s(i),w(i+ 1), s(i+ 1)) ∈ ∆ for all i ∈ N; it is
accepting if {i ∈ N ∣ s(i) ∈ F} is infinite. If such a computation exists, A accepts w.

An ω-language is a subset of Aω. The ω-language of A is the set Lω(A) of ω-words
accepted by A. L ⊆ Aω is ω-regular if L = Lω(A) for some Büchi automaton A. Two Büchi
automata are equivalent if they have the same ω-language.

We often write w, s as sequences a1 a2 ⋯ resp. s0 s1 s2 ⋯ of letters resp. states, under-
standing w(i) = ai, s(i) = si.

Example 3.4.2. Let A ∶= {0,1}. A1,A2 are equivalent as Büchi automata but not as finite
automata.

A1 A2 A3

0

0

0

0 a, b

b

b

L(A1) = {02n+1 ∣ n ∈ N} L(A2) = {02n ∣ n ∈ N>0} L(A3) = {wb ∣ w ∈ A∗}
Lω(A1) = {000⋯} Lω(A2) = {000⋯} Lω(A3) = {wbbb⋯ ∈ Aω ∣ w ∈ A∗}

Exercise 3.4.3. Find equivalent finite automata, not equivalent as Büchi automata.

Determinization (Lemma 3.2.6) fails:

Proposition 3.4.4. A3 is not equivalent to any deterministic Büchi aiutomaton.

Proof. Assume A is deterministic and equivalent to A3. Then its accepting run on bbb⋯ is
in a final state, say at step n1, so after reading bn1 . Being deterministic A visits the same
state in its accepting run on bn1abbb⋯. Choose n2 such that this run is in a final state
after reading bn1abn2 . Continuing like this gives an accepting run on a word with infinitely
many as – contradiction.
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Exercise 3.4.5. For Büchi automata A,B over the same alphabet there is a product au-
tomaton A⊗B such that Lω(A⊗B) = Lω(A) ∩Lω(B).

Closure under complementation requires a new proof outside the scope of this course:

Theorem 3.4.6 (McNaughton, Safra). There is an algorithm that, given a Büchi automa-
ton A, outputs a Büchi automaton Ā such that Lω(Ā) = Aω ∖Lω(A).

Exercise 3.4.7. A generalized Büchi automaton A = (S, I,F ,A,∆) is defined like a Büchi
automaton but F ⊆ P (S) (instead of F ∈ P (S)). A computation (defined a before) s of A
on w ∈ Aω is accepting if {i ∣ s(i) ∈ F} is infinite for all F ∈ F ; A accepts w if such a
computation exists. Show there is an efficient algorithm that, given such A, outputs a
Büchi automaton B that accepts the same ω-words.

Definition 3.4.8. Let w ∈ Aω. The word structure S(w) is the LA-structure with uni-

verse N>0, <S(w) the natural order, and P
S(w)
a = {i ∈ N>0 ∣ w(i) = a} for a ∈ A. An

ω-language L ⊆ Aω is MSO-definable if there is an MSO LA-sentence ϕ such that

L = Lω(ϕ) ∶= {w ∈ Aω ∣ S(w) ⊧ ϕ}.

Theorem 3.4.9 (Büchi – infinite). An ω-language is ω-regular if and only if it is MSO-
definable.

Proof. ⇒: given a Büchi automaton A we define ϕA as before but with

Acc ∶= ∀x∃y(x < y ∧⋁i∈F Xiy).

⇐ has the same proof as before – this also holds for Lemmas 3.2.5 (2) and 3.3.3 and
Exercise 3.2.9 used therein.

Remark 3.4.10. It should be clear that the Lω-analogues of Corollaries 3.3.5, 3.3.6 follow.
We shall need in particular that there exists an algorithm that given an MSO LA-sentence ϕ
outputs a Büchi automaton Aϕ such that Lω(ϕ) = Lω(Aϕ).

Exercise 3.4.11. There is an efficient algorithm deciding

NBA Emptiness
Input: a Büchi automaton A.

Problem: Lω(A) = ∅ ?

Infer that there exists an algorithm that, given MSO LA-sentences ϕ,ψ, decides whether
Lω(ϕ) = Lω(ψ), i.e., ϕ and ψ are equivalent over ω-words.
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3.5 Transition systems and linear time properties

An ATM is a transition system that switches from state to state depending on actions
taken by the user. This can be seen as a deterministic automaton with letters representing
user actions. Once designed the system should satisfy certain correctness specifications,
e.g., “whenever the user inserts a card, there is a later state where the card is output”. The
formal verification perspective on model-checking aims at as efficient as possible algorithms
to check as many as possible correctness specifications. Formally, the specifications are
written in logics tailored for such specifications.

Algorithms are needed because, in practice, huge transition systems arise naturally and
it is a superhuman task to check correctness specifications. E.g., a sensor might be modeled
by a small automaton where the environment takes actions to change states, and a robot
might switch states according to switches of states of many sensors. This can be modeled
by taking ⊗ of many small automata and the result can be huge. Or, imagine concurrent
processes modifying the values of some common variables, the states are given by all or
all reasonable values of the variables; e.g. various secretariats enter student grades into a
university database, or users of a webpage enter text content in chat room. This typically
gives rise to very large, possibly infinite transition systems.

Definition 3.5.1. Let A be an alphabet. A (finite) transition system over A is a tuple
T = (G, `) wher G = (G,EG) is a (finite) directed graph and ` ∶ G → A is a labeling. An
execution of T is an infinite sequence g1, g2 . . . of vertices such that (gi, gi+1) ∈ EG for all
i ∈ N; its trace t is the ω-word `(g1) `(g2) ⋯ ∈ Aω, i.e., t ∶ N>0 → A with t(i) ∶= `(gi). A
partial trace is a finite prefix of a trace, i.e., t↿[n] for some trace t and some n ∈ N, i.e.,
t(1)⋯t(n) ∈ An. A (partial) trace of T is a (partial) trace of an execution of T .

Definition 3.5.2. Let A be an alphabet and P ⊆ Aω. A transition system T satisfies P if
every trace of T is in P . The closure of P is

cl(P ) ∶= {t ∈ Aω ∣ every prefix of t is a prefix of some s ∈ P}.

P is a safety property if cl(P ) = P , and a liveness property if cl(P ) = Aω.

Remark 3.5.3.

1. For P,Q ⊆ Aω one easily checks

P ⊆ cl(P ), cl(cl(P )) = cl(P ), cl(P ∪Q) = cl(P ) ∪ cl(Q).

In fact, cl is topological closure in a natural topology on Aω (which one?).

2. A safety property P states “something bad never happens”: t ∈ P if and only if every
t ∉ P has a prefix w ∈ A∗ that is P -bad, i.e., no s ∈ P has prefix w.

3. A liveness property P states “something good will happen”: every w ∈ A∗ is a prefix
of some t ∈ P .
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4. Every P ⊆ Aω is the intersection of a safety and a liveness property.

Indeed, P = cl(P ) ∩ (P ∪ (Aω ∖ cl(P ))); note

cl(P ∪ (Aω ∖ cl(P ))) = cl(P ) ∪ cl(Aω ∖ cl(P )) = Aω.

Proposition 3.5.4. Let T,T ′ be finite transition systems over an alphabet A. Then T
and T ′ satisfy the same safety properties if and only if T and T ′ have the same traces.

Proof. ⇐ is trivial. ⇒∶ first note that T,T ′ have the same partial traces. Indeed, assume
w ∈ A∗ is a partial trace of T but not of T ′; then consider the safety property P of ω-words
that do not have w as a prefix.

We show every trace t′ of T ′ is a trace of T = (G, `) (the converse is analogous). Consider
all finite sequences g1, . . . , gn in G where n ∈ N and (gi, gi+1) ∈ EG for all i ∈ [n − 1] and
`(g1)⋯`(gn) = t′↿[n]. By the above such sequences exist for all n. Hence the set of these
sequences is an infinite tree over G. By Exercise 1.4.10, it contains an infinite branch
g1, g2, . . .. This is an execution of T with trace t′.

3.5.1 Model-checking MSO

Below, let ∣T ∣ be the length of the binary string encoding a (finite) transition system T –
in some reasonable sense, the details are irrelevant for us.

Theorem 3.5.5. There are a computable function f ∶ N→ N and an algorithm that decides

MC(MSO,TS)
Input: A transition system T over an alphabet A and an LA-sentence ϕ.

Problem: does T satisfy Lω(ϕ) ?

in time polynomial in f(∣ϕ∣) ⋅ ∣T ∣.

Proof. Given T = (G, `), a (finite) transition system over A, we first compute the trace
automaton AT ∶= (G,G,G,A,∆) where ∆ contains (g, a, g′) if `(g) = a and (g, g′) ∈ EG.
Then Lω(AT ) is the the set of traces of T . Then compute A¬ϕ from Remark 3.4.10, and
then the product automaton AT ⊗A¬ϕ from Exercise 3.4.5. Note, T satisfies Lω(ϕ) if and
only if Lω(AT ⊗A¬ϕ) = ∅. Now use Exercise 3.4.11.

Recalling Remark 3.3.9, f grows very fast and it is dubious whether the above algorithm
should be considered feasible. This motivates the search for other, possibly less expressive
logics with a faster model-checker.

3.6 Linear time temporal logic

Definition 3.6.1. Let k ∈ N and X̄ = X1⋯Xk a tuple of propositional variables. A
transition system over X̄ is a transition system over A(X̄) where A(X̄) is the set of
assignments to X̄.
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In the literature such transition systems are often called Kripke structures. Linear time
temporal logic (LTL) is a logic intended to express linear time properties of them. It
extends the Definitions 1.1.2 and 1.2.2 of syntax and semantics of propositional logic.

Definition 3.6.2 (Syntax and semantics of LTL). Add to the alphabet of propositional
logic the letters X and U. The set of linear time temporal logic (LTL) formulas is the
smallest set F of words that contains all propositional variables X0,X1, . . . and such that
for all ϕ,ψ ∈ F :

¬ϕ ∈ F, (ϕ ∧ ψ) ∈ F, Xϕ ∈ F, (ϕUψ) ∈ F.

Writing ϕ = ϕ(X̄) means all variables occurring in ϕ are among X̄. Let t ∈ A(X̄)ω, i.e.,
t(i) is an assignment to X̄ for all i > 0. We define ϕ(X̄) is true in t at time i, symbolically
t, i ⊧ ϕ, by recursion on ϕ, stipulating for all LTL formulas ψ,χ and variables X from X̄:

(T1) t, i ⊧X ⇐⇒ t(i)(X) = 1;

(T2) t, i ⊧ ¬ψ ⇐⇒ t, i /⊧ ψ;

(T3) t, i ⊧ (ψ ∧ χ) ⇐⇒ t, i ⊧ ψ and t, i ⊧ χ;

(T4) t, i ⊧ Xψ ⇐⇒ t, i + 1 ⊧ ψ;

(T5) t, i ⊧ (ψUχ) ⇐⇒ there is j ⩾ i such that for all i ⩽ k < j: t, j ⊧ χ and t, k ⊧ ψ;

Remark 3.6.3. Xϕ is read “next ϕ”, and (ϕUψ) is read “ϕ until ψ”. As usual, the
definition by recursion on syntax is justified by a straightforward lemma on unique read-
ability. Also the set sub(ϕ) of subformulas of a formula ϕ is defined by recursion by
adding, in Example 1.1.8, the conditions: sub(Xϕ) ∶= {Xϕ} ∪ sub(ϕ) and sub((ϕUψ)) ∶=
{(ϕUψ)} ∪ sub(ϕ) ∪ sub(ψ).

Exercise 3.6.4 (Coincidence lemma). Let ϕ(X̄) be an LTL formula and assume t, t′ ∈
A(X̄)ω are such that, for all i ∈ N>0, the assignments t(i), t′(i) agree on all variables
occurring in ϕ (a subset of X̄). Then for all i ∈ N>0: t, i ⊧ ϕ⇐⇒ t′, i ⊧ ϕ.

Remark 3.6.5. let X be a variable and write ⊺ ∶= (X ∨ ¬X). Fϕ ∶= (⊺Uϕ) reads “finally
ϕ” and Gϕ ∶= ¬F¬ϕ reads “globally ϕ”. Then

– t, i ⊧ Fϕ ⇐⇒ there is j ⩾ i: t, j ⊧ ϕ.
– t, i ⊧ Gϕ ⇐⇒ for all j ⩾ i: t, j ⊧ ϕ.

Example 3.6.6. Consider a transition system T containing a traffic light, which lights
red, yellow or green in states. Formally, T is over variables X̄ including R,Y,G. Then
“once red the light turns eventually green” is formalized by G(R → FG). Or, “once red,
the light turns eventually green after being yellow for some time” is formalized by

G(R → (RU(Y ∧X(Y UG)))).
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Definition 3.6.7. The ω-language defined by an LTL formula ϕ = ϕ(X̄) is

Lω(ϕ) ∶= {t ∈ A(X̄)ω ∣ t,1 ⊧ ϕ}.

LTL-formulas ϕ(X̄), ψ(X̄) are equivalent, symbolically ϕ ≡ ψ, if Lω(ϕ) = Lω(ψ).

Exercise 3.6.8. For all LTL-formulas ϕ,ψ,χ:

Dualities: ¬Gϕ ≡ F¬ϕ, ¬Xϕ ≡ X¬ϕ
Idempotencies: GGϕ ≡ Gϕ, (ϕU(ϕUψ)) ≡ (ϕUψ)
Absorption laws: FGFϕ ≡ GFϕ, GFGϕ ≡ FGϕ

Distribution laws: G(ϕ∧ψ) ≡ (Gϕ∧Gψ), F(ϕ∨ψ) ≡ (Fϕ∨Fψ), X(ϕUψ) ≡ (Xϕ U Xψ).
Expansion law: (ϕUψ) ≡ (ψ ∨ (ϕ ∧X(ϕUψ))

We now observe that LTL is subsumed in first-order logic. Kamp’s theorem states a
certain converse. This is outside the scope of this course.

Proposition 3.6.9. For every LTL formula ϕ(X̄) there is a first-order LA(X̄)-formula
ϕ∗(x) such that for all t ∈ A(X̄)ω and all i ∈ N>0:

t, i ⊧ ϕ ⇐⇒ S(t) ⊧ ϕ∗[i].

Proof. We define ϕ∗(x) by recursion on ϕ: for X a variable from X̄,

X∗ ∶= ⋁
β∈A(X̄),β(X)=1

Pβx, (¬ϕ)∗ ∶= ¬ϕ∗(x), (ϕ ∧ ψ)∗ ∶= (ϕ∗(x) ∧ ψ∗(x))

and, writing x ⩽ y for (x < y ∨ x=̇y),

(Xϕ)∗ ∶= ∃y(x < y ∧ ∀z¬(x < z ∧ z < y) ∧ ϕ∗(y)),
(ϕUψ)∗ ∶= ∃y(x ⩽ y ∧ ψ∗(y) ∧ ∀z(x ⩽ z ∧ z < y) → ϕ∗(z)).

3.6.1 Model-checking LTL

Theorem 3.6.10 (Vardi, Wolper). There is an algorithm that maps an LTL formula ϕ to
a Büchi automaton Aϕ with ⩽ 2∣ϕ∣ states such that Lω(ϕ) = Lω(Aϕ).

Proof. Let X̄ list the variables in ϕ and Φ ∶= sub(ϕ). A type is a set s ⊆ Φ such that

(t1) (ψ0 ∧ ψ1) ∈ s ⇐⇒ ψ0 ∈ s and ψ1 ∈ s;
(t2) ¬ψ ⇐⇒ ψ ∉ s;
(t3) ψ1 ∈ s Ô⇒ (ψ0Uψ1) ∈ s;
(t4) (ψ0Uψ1) ∈ s Ô⇒ ψ0 ∈ s or ψ1 ∈ s.
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hold for formulas in Φ; e.g. for (t1) this means that the equivalence holds if (ψ0 ∧ψ1) ∈ Φ.
Let S denote the set of types. E.g., given t ∈ A(X̄)ω and i > 0, we have the type

Φt,i ∶= {ψ ∈ Φ ∣ t, i ⊧ ψ}.

Claim: There is a generalized Büchi automaton A = (S,S,F ,A(X̄),∆) with ∣F∣ ⩽ ∣S∣ that
on t ∈ A(X̄)ω has exactly one accepting computation, namely Φt,1,Φt,2,⋯.

This suffices: by Exercise 3.4.7, for Aϕ we can take a Büchi automaton equivalent to
the generalized Büchi automaton (S, I,F ,A(X̄),∆) where I ∶= {s ∈ S ∣ ϕ ∈ s}. Its number
of states is polynomial in ∣S∣ ⩽ 2∣ϕ∣. We are left to prove the claim.

We define ∆ to contain (s, β, s′) if and only if the following hold for formulas in Φ:

(∆1) a variable X from X̄ is in s if and only if β(X) = 1;

(∆2) Xψ ∈ s ⇐⇒ ψ ∈ s′;
(∆3) (ψ0Uψ1) ∈ s ⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and (ψ0Uψ1) ∈ s′.

The idea is as follows: computing a state s containing (ψ0Uψ1) is a commitment to make
ψ1 true eventually. This means to either make ψ1 true in the next step s′ or to delay this;
when delaying, ψ0 has to be true in s′ and the commitment maintained. Delaying forever
is not allowed – we demand the automaton to eventually reaching a state where ψ1is true.

More precisely, we define F to contain

Fψ ∶= {s ∈ S ∣ (ψ0Uψ1) ∉ s or ψ1 ∈ s}.

for every ψ ∶= (ψ0Uψ1) ∈ Φ. It is clear that Φt,1,Φt,2, . . . is an accepting computation.
Conversely, let s1, s2, . . . be an accepting computation. We show for all ψ ∈ Φ and i ∈ N>0:

ψ ∈ si ⇐⇒ t, i ⊧ ψ.

We proceed by induction on ψ and treat the case ψ = (ψ0Uψ1). Assume i = 1, for simplicity.
Assume t,1 ⊧ ψ. Choose i ⩾ 1 such that t, i ⊧ ψ1 and t, j ⊧ ψ0 for all 1 ⩽ j < i. By

induction, ψ1 ∈ si and ψ0 ∈ sj. By (t3), ψ ∈ si. By ψ0 ∈ si−1 and (∆3), ψ ∈ si−1. By ψ0 ∈ si−2

and (∆3), ψ ∈ si−2. Continue and get ψ ∈ s1.
Assume ψ ∈ s1 and, for contradiction, t,1 /⊧ ψ. By (t1), ψ0 ∈ s1 or ψ1 ∈ s1. If ψ1 ∈ s1, then

t,1 ⊧ ψ1 by induction, so t,1 ⊧ ψ contradicting our assumption. Hence, ψ0 ∈ s1 and ψ1 ∉ s1.
By (∆3), ψ ∈ s2. Also t,2 /⊧ ψ since t,1 /⊧ ψ by assumption and t,1 ⊧ ψ0 by induction.
Continuing like this gives ψ ∈ s1, s2, s3, . . . and ψ0 ∈ s1, s2, s3, . . . and ψ1 ∉ s1, s2, s3 . . .. But
then no si is in Fψ ∈ F , a contradiction.

Corollary 3.6.11. There is an algorithm that decides

MC(LTL,TS)
Input: a transition system T and an LTL formula ϕ.

Problem: does T satisfy Lω(ϕ) ?
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in time polynomial in 2∣ϕ∣ ⋅ ∣T ∣.

Proof. Argue as for Theorem 3.5.5. From the proof of Theorem 3.6.10 it is clear that A¬ϕ

can be computed from ϕ in time polynomial in 2∣ϕ∣.

We see, the factor 2∣ϕ∣ accounts for the size of A¬ϕ. There is, however, not much room
for improvement of Theorem 3.6.10:

Proposition 3.6.12. For every k > 0 there is an LTL formula ϕk of length O(k2) such
that every Büchi automaton A with Lω(A) = Lω(ϕ) has at least 2k states.

Proof. Set ϕk(Y ) ∶= ⋀k−1
i=0 (XiY ↔ Xk+iY ). Then Lω(ϕk) contains the ω-words with a prefix

of the form β1⋯βkβ1⋯βk (with βi ∶ {Y } → {0,1}). If A accepts these words, choose one and
an accepting computation and let s(β1⋯βk) be the state after k steps, i.e., after reading
β1⋯βk. These states are pairwise distinct: if s(β1⋯βk) = s(β′1⋯β′k), then A accepts a word
with prefix β1⋯βkβ′1⋯β′k, so β1⋯βk = β′1⋯β′k.

3.7 Computation tree logic

Imagine a transition system T in which some states report a problem and some states give
a response. Formally, T has variables including P and R. The liveness property “Whenever
P is true, R is eventually true”, is formalized by the LTL formula G(P → FR). But the
property “whenever P is true, then R can be eventually true”, i.e., “whenever P is true,
then the execution can be continued in a way such that finally R is true” existentially
quantifies over executions. This cannot be done in LTL. In computation tree logic (CTL)
it is formalized by ∀G(P → ∃FR).

Definition 3.7.1 (Syntax and semantics of CTL). Add ∃ to the alphabet of LTL and
define the set of CTL formulas as the smallest set F of words that contains all variables
X0,X1, . . . and such that for all ϕ,ψ ∈ F

¬ϕ ∈ F, (ϕ ∧ ψ) ∈ F, ∃Xϕ ∈ F, ∃Gϕ ∈ F, ∃(ϕUψ) ∈ F.

Writing ϕ = ϕ(X̄) means all variables occurring in ϕ are among X̄. Let T = (G, `) be a
transition system over X̄. Let ϕ(X̄) be a CTL formula. We define ϕ is true in T at state
g ∈ G, symbolically T, g ⊧ ϕ, by recursion on ϕ, stipulating for all LTL formulas ψ,χ and
variables X from X̄:

(T1) T, g ⊧X ⇐⇒ `(g)(X) = 1;

(T2) T, g ⊧ ¬ψ ⇐⇒ T, g /⊧ ψ;

(T3) T, g ⊧ (ψ ∧ χ) ⇐⇒ T, g ⊧ ψ and T, g ⊧ χ;

(T4) T, g ⊧ ∃Xψ ⇐⇒ there is an execution g = g1, g2, . . . (of T ) with T, g2 ⊧ ψ;

(T5) T, g ⊧ ∃Gψ ⇐⇒ there is an execution g = g1, g2, . . . such that for all i > 0: T, gi ⊧ ψ;
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(T6) T, g ⊧ ∃(ψUχ) ⇐⇒ there are an execution g = g1, g2, . . . and i > 0
such that for all 1 ⩽ j < i: T, gi ⊧ χ and T, gj ⊧ ψ.

Remark 3.7.2. As usual, the definition by recursion on syntax is justified by a straight-
forward lemma on unique readability. Also the set sub(ϕ) of subformulas of a formula ϕ is
defined by recursion adding, in Example 1.1.8, the conditions: sub(∃Xϕ) ∶= {∃Xϕ}∪sub(ϕ)
and sub(∃Gϕ) ∶= {∃Gϕ} ∪ sub(ϕ) and sub(∃(ϕUψ)) ∶= {∃(ϕUψ)} ∪ sub(ϕ) ∪ sub(ψ).

Lemma 3.7.3. Let ϕ(X̄), ψ(X̄) be CTL formulas and set:

∀Xϕ ∶= ¬∃X¬ϕ,
∀(ϕUψ) ∶= (¬∃(¬ψU(¬ϕ ∧ ¬ψ)) ∧ ¬∃G¬ψ).

Then for every transition system T = (G, `) over X̄:

1. T, g ⊧ ∀Xϕ ⇐⇒ for every execution g1, g2, . . . with g = g1: T, g2 ⊧ ϕ.

2. T, g ⊧ ∀(ϕUψ) ⇐⇒ for every execution g1, g2, . . . with g = g1 there is i > 0
such that for all 1 ⩽ j < i: T, gi ⊧ ψ and T, gj ⊧ ϕ.

Proof. 1 is trivial. 2 ⇒: assume T, g ⊧ ∀(ψUχ) and let g = g1, g2, . . . be an execution. By
T, g /⊧ ∃G¬ψ, there is i > 0 such that T, gi ⊧ ψ. Choose a minimal such i, so T, gj ⊧ ¬ψ
for all 1 ⩽ j < i. Assume for contradiction that T, gj ⊧ ¬ϕ for some 1 ⩽ j < i. Then
T, gj ⊧ (¬ϕ ∧ ¬ψ) and g = g1, g2, . . . witnesses T, g ⊧ ∃(¬ψU(¬ϕ ∧ ¬ψ)), a contradiction.

2 ⇐: assume the r.h.s.. Clearly, T, g ⊧ ¬∃G¬ψ. Assume for contradiction that T, g ⊧
∃(¬ψU(¬ϕ ∧ ¬ψ)), that is, there is an execution g = g1, g2, . . . and i > 0 such that T, gi ⊧
(¬ϕ ∧ ¬ψ) and T, gj ⊧ ¬ψ for all 1 ⩽ j < i. Then T, gj /⊧ ψ for all j ⩽ i. Choose k with
T, gk ⊧ ψ and T, gj ⊧ ϕ for all 1 ⩽ j < k. Then k > i and T, gi ⊧ ϕ, contradiction.

Remark 3.7.4. Often one restricts attention to transition systems T = (G, `) without
sinks: every g ∈ G has out-degree at least 1. Then T, g ⊧ ∃Xϕ (resp. ∀Xϕ) if and only if
T, g′ ⊧ ϕ for some (resp., all) g′ ∈ G with (g, g′) ∈ EG.

Notation: Define ⊺ ∶= (X ∨ ¬X) for a variable X and, for CTL formulas ϕ,ψ,

“Potentially ϕ”: ∃Fϕ ∶= ∃(⊺Uϕ) “Inevitably ϕ”: ∀Fϕ ∶= ∀(⊺Uϕ)
“Potentially always ϕ”: ∃Gϕ “Invariantly ϕ”: ∀Gϕ ∶= ¬∃F¬ϕ

In transition systems T = (G, `) without sinks, T, g ⊧ ∃Fϕ if and only if there is a path
in G from g to some g′ with T, g′ ⊧ ϕ.

Exercise 3.7.5. Let ϕ(X̄), ψ(X̄) be CTL formulas and set (ϕ ↝ ψ) ∶= ∀G(ϕ → ∀Fψ),
pronounced “ϕ leads to ψ”. Let T be a transition system over X̄. Show:

T, g ⊧ (ϕ↝ ψ) ⇐⇒ for every execution g1, g2, . . . with g = g1 and all i > 0
there is j ⩾ i: if T, gi ⊧ ϕ, then T, gj ⊧ ψ.

T, g ⊧ ∀G∀Fϕ ⇐⇒ for every execution g1, g2, . . . with g = g1

there are infinitely many i > 0 with T, gi ⊧ ϕ.
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3.7.1 Model-checking CTL

Theorem 3.7.6. There is an efficient algorithm that decides

MC(CTL,TS)
Input: a CTL formula ϕ(X̄), a transition system T = (G, `) over X̄ and g ∈ G.

Problem: T, g ⊧ ϕ ?

Proof. For a CTL formula ψ(X̄) let [ψ] ∶= {g ∈ G ∣ T, g ⊧ ψ}. It suffices to compute [ψ]
for every subformula ψ of ϕ. Since there are ⩽ ∣ϕ∣ subformulas, it suffices to show how to
efficiently compute these sets. This is done recursively using: [X] = {g ∈ G ∣ `(g)(X) = 1}
for a variable X from X̄, [¬ψ] = G ∖ [ψ], [ψ ∧ χ] = [ψ] ∩ [χ]. Further:

1. [∃Xψ] contains g if and only if there is a relevant g0 ∈ [ψ] with (g, g0) ∈ EG. Relevant
means there exists an execution starting at g0; equivalently, there are g1 ∈ G, a path
from g0 to g1 and a cycle on g1; a cycle on g1 is a path from g1 to g1 with at least
one edge (i.e., (g1, g1) ∈ EG or there are paths from g1 to some g2 ≠ g1 and back).

2. [∃Gψ] contains g if and only if there are a path from g to some g′ and a cycle on g′

– in ⟨[ψ]⟩G, the subgraph induced on [ψ].
3. [∃(ψUχ)] contains g if and only if there are g0, g1 ∈ G and a path from g to g0 in

⟨[ψ]⟩G such that g1 is relevant, (g0, g1) ∈ EG and g1 ∈ [ϕ].

In each case the r.h.s. of the equivalence is efficiently checked using an efficient algorithm
for Reachability.

Remark 3.7.7. The above is often formulated only for transitions systems without sinks
and the model-checker computes fixed-points according to the following exercise. As seen,
this restriction is superfluous.

Note that eliminating subformulas ∀(ϕUψ) by their definition can lead to an expo-
nential blow-up (since ψ is repeated three times) in length. However, the number of
subformulas is not increased, so the theorem holds true for formulas with ∀(ϕUψ).

Exercise 3.7.8. Let ϕ(X̄), ψ(X̄) be CTL formuals and T = (G, `) a transition system
over X̄ without sinks.

1. [∃Gϕ] is the largest set S ⊆ G such that S ⊆ [ϕ] and for every g ∈ T there is g′ ∈ T
with (g, g′) ∈ EG.

2. [∃(ϕUψ)] is the smallest set S ⊆ G such that [ψ] ⊆ S and S contains every g ∈ [ϕ]
such that (g, g′) ∈ EG for some g′ ∈ S.
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