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Preface

Logic

Modern mathematical logic emerged during the so-called foundational crisis of mathematics
and Hilbert’s program. From the very beginning work on this program tackled algorithmic
questions, the most important of which was the question what an algorithm actually is.
For example, Hilbert asked in 1928 whether there exists an algorithm deciding the problem

ENTSCHEIDUNG
Input: a sentence .
Problem: is ¢ valid?

We explain these notions below. Maybe the most important aspect of this question is
that the notion of algorithm had been informal at the time. Church and Turing formalized
this notion in 1936 and gave a negative answer to Hilbert’s question. Thereby logicians
studied the reaches and limits of computers well before they had actually been built,
including the today highly topical question concerning the possibility of AI. Thus, the
historical roots of computer science lie in mathematical logic.

More importantly, logic continues to play an essential role in computer science. This
has been repeatedly and prominently been pointed out.! In fact, “Logic is for computer
science what calculus is for physics” is an often repeated slogan.? It has been said that
computer science “is a continuation of logic by other means’3 and even that it “should be

IM. Davis. Influences of mathematical logic on computer science. In: The universal Turing machine:
a half-century survey (2nd ed.). Springer, pp. 289-299, 1995.

J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Vardi, V. Vianu. On the unusual effectiveness
of logic in computer science. Bulletin of Symbolic Logic 7 (2): 213-236, 2001.

A. Blass. Symbioses between mathematical logic and computer science. Annals of Pure and Applied
Logic167 (10): 868-878,2016.

2P. Kolaitis, M. Vardi. Logic as The Calculus of Computer Science. Talk at the NSF/CISE Workshop
on The Unusual Effectiveness of Logic in Computer Science, National Science Foundation, Arlington, 2001.
Available here: https://www.cs.rice.edu/~vardi/logic/

M. Genesereth, V. Chaudhri. Logic in Secondary School Education. Essay available at: http://logic.
stanford.edu/publications/genesereth/logic.pdf

3G. Gottlob. Computer Science as the continuation of logic by other means. Talk at Simpo-
sio Internacional: El legado de Alan Turing, Madrid, 23-24-10-2012. Available here: http://www.
informatics-europe.org/images/ECSS/ECSS2009/slides/Gottlob. pdf
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PREFACE \4

viewed as a branch of applied logic.”*

What is logic? Better: what is a logic? It is an artificial language, formally defined in
order to avoid the usual ambiguities and vagueness of natural language. Viewed like this
the essential role of logic for computer science should come as no surprise. The definition
of a logic has three parts answering the questions:

1. How to talk?
2. What is truth?

3. How to reason?

Question 1 is answered by the definition of syntaz: it is the definition of a set of formal
objects called sentences (or formulas), often certain words over a certain alphabet. Usually
sentences can be encoded by finite binary strings and can thus be processed by computers.

Question 2 is answered in two steps. First one decides what the sentences are supposed
to talk about: one defines a collection of formal objects, let us call them worlds. Second
one defines truth as a relation = between worlds W and sentences ¢, usually denoted

W E .
Such a definition automatically produces formal definitions of central semantic concepts:
— A sentence ¢ is valid if it is true in all worlds, i.e., W E ¢ for all worlds W.

— Two sentences @, are logically equivalent if they are true in the same worlds, i.e.,
for all worlds W: Wk ¢ <= W E.

— A theory T (i.e., a set of sentences) logically implies a sentence ¢ if ¢ is true whenever
T is true, i.e., W & ¢ for all worlds W with W = T.

Question 3 is answered by defining a calculus. Usually a calculus is given by syntactically
defined rules allowing to produce new sentences, namely conclusions, from given ones,
namely premisses. Sequences of sentences produced by repeated rule applications are
formal proofs. Being syntactically defined means that the applicability of a rule refers
only to the syntactical form of the premisses and the conclusions, without reference to the
semantics =. Of course, this is key for the automatation of reasoning.

The holy grail of such a definitorial adventure is a

Completeness Theorem T logically implies ¢ if and only if T' proves ¢.

Two philosophical comments. First, Kreisel’s sandwich argument. whatever your infor-
mal notion of “implies” is it typically seems safe to assume that 7" “implies” ¢ implies that

4stated by Leivant in: K. Bruce, P. Kolaitis, D. Leivant and M. Vardi. Panel: logic in the computer
science curriculum. ACM SIGCSE Bulletin 30: 376-377, 1998.
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T logically implies . It is also typically seems more than safe to assume that 7" “implies”
@ is implied by T proves ¢. By the completeness theorem it is thus safe to assume that
T proves ¢ if and only if 7" “implies” ¢. This is a significant philosophical insight: the
informal notion of “implication” is captured by the formal notion of proof.

Second: it is an often repeated line of argument that AI is not “real intelligence”
because computers have no access to the “meaning” of sentences but “merely manipulate
symbols” (e.g. Searle’s room in the analytical philosophy of mind). Such arguments are
dubious in the presence of a completeness theorem.

Algorithms

Formal definitions of computations can be given e.g. via the notion of a Turing machine.
This is outside the scope of this course but assumed as background knowledge of the reader.
However, the course is accessible already from an intuitive understanding of computations
as follows.

An input is any finitary object, say encoded by a finite binary string. A computation is
a sequence of simple modifications of the input string ending with an output string. The
algorithm is a sequence of instructions, say program lines, that given any input produces
a computation on it. A (decision) problem is formalized a set @) of binary strings. It
represents the intuitive problem

Q

Input: a binary string x.
Problem: is x in Q7

For example, the ENTSCHEIDUNGSPROBLEM is formally viewed as the set of binary
strings encoding valid sentences . An algorithm decides @) if, given as input a binary
string x, produces a computation with output 1 if x € @), and 0 if x ¢ Q.

A function t : N - N bounds the runtime of an algorithm if, on an input of length n,
the computation has length < ¢(n).

What is an efficient algorithm? In this course we follow the historical suggestion of
Cobham and Edmonds (1965) and view an efficient algorithm as one with polynomially
bounded runtime, that is, the function ¢ above can be taken to be a polynomial.

We are interested only in asymptotic runtime bounds and use the O-notation. Saying
that a function f:N — Nis O(g) for another function g : N - N means that there is ce N
such that f(n) <cg(n)+c for all n € N. Dually, we say f is (g) if g is O(f), equivalently,
there is ¢ € N such that f(n) > |g(n)/c| for all n € N. Often we write e.g. 2" or n? to
denote ¢g. E.g. f is bounded by a polynomial if and only if f is O(n¢) for some c € N,



Chapter 1

Propositional logic

This chapter introduces propositional logic and closely follows the outline in the Preface. It
defines syntax and semantics and then semantic concepts in the canonical way. It proceeds
giving two calculi for formal reasoning, first Gentzen’s sequent calculus, then Resolution.

There are extra sections. Section 1.5 showcases how propositional logic is used in
computer science to model basic computational problems. Such modeling is preliminary to
employ powerful SAT solvers in software engineering. Section 1.7 showcases how Resolution
is used for algorithm analysis. Section 1.8 is advanced material on Resolution lower bounds,
implying lower bounds on the runtime of certain SAT solvers.

1.1 Syntax

For n € N write [n]:={1,...,n}, understanding [0] = @.

An alphabet A is a non-empty set of letters. We write A* := U,y A" and refer to its
elements as words (over A). For n e N and w = (a4, ...,a,) € A® we call |w| :=n the length
of w; we omit parentheses and write w = ag---a,,. We say a letter a € A occurs in w if a = a;
for some i € [n], and call such i an occurrence of a. There is exactly on word of length 0,
the empty word e. Given two words w = a;---a, and w’ = a}---al, of lengths n and m we
write ww’ for the word a;---a,aj---al, of length n+m. A (proper) prefiz of a word w is a

word w’ such that w = w'w"” for some (non-empty) word w”.
Example 1.1.1. For A:={0,1}, the set A* ={0,1}* is the set of binary strings.

Definition 1.1.2 (Syntax). Let Var:={Xo, X1,...} be a set of (pairwise distinct) propo-
sitional variables. The set of (propositional) formulas ( is the smallest set F' of words over
the alphabet

A=y (), Xo, X,

satisfying for all words ¢, :
(F1) Varc F;
(F2) if p € I, then —p € [
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(F3) if p,9b € F, then (p A1) e F.

Remark 1.1.3. Occasionally we shall use another set Var’ of variables. The set of (propo-
sitional) formulas with variables Var' is defined in the same way replacing (F1) by Var' ¢ F.

Remark 1.1.4. This is well-defined: let F be the collection of sets of words satisfying
(F1)-(F3). Then F # @ because it contains the set of all words. Then NF = Nper F
satisfies (F1)-(F3). Clearly, it is contained in all F' € F.

Lemma 1.1.5 (Unique readability). For every formula ¢ ezxactly one of the following
holds:

1. pe Var.
2. @ == for some formula 1; then ¢ is a negation (of ).
3. o= (¥ Ax) for some formulas ¢, x; then ¢ is a conjunction (of 1, x).

Moreover in case 2, 1 is uniquely determained, and in case 3, ¢, x are uniquely determined.

Proof. At most one of these cases holds: clear, since first symbols are different. At least
one of the cases holds: if F' is the set of formulas and none of the cases holds for ¢, then
F ~{y} satisfies (F1)-(F3), contradiction.

Claim: No formula is a proper prefix of another.

This implies uniqueness in case 3 as follows: if (¥ A x) = (¢ A X') then ¢ = 1) since
otherwise one would be a prefix of the other; then also x = x’ follows.

To prove the claim, assume for contradiction that there exists a formula that has a
proper prefix that is a formula too. Choose such a formula ¢ of minimal length. Let ¢’ be
a formula that is a proper prefix of . We derive a contradiction showing that none of the
3 cases can happen for .

If p € Var, then ¢’ = € but € is not a formula since F' \ {¢} satisfies (F1)-(F3).

Assume ¢ = =1 for some formula 1. Then ¢’ starts with -, so there is a formula v’
such that ¢’ = —¢)’. Then v’ is a proper prefix of 1. This contradicts the minimality of ¢.

Assume ¢ = (¢ A x). Then ¢’ starts with (, so ¢’ = (¢’ A x’) for some formulas ¥, x'.
By minimality of ¢, neither v is a proper prefix of ¥/, nor vice-versa. Then 1 =’. Then
X' is a proper prefix of y, in contradiction to the minimality of ¢. ]

Lemma 1.1.6 (Induction on syntax). Let P be a set of formulas such that for all formu-
las @, 1):

1. Varc P;
2. if pe P, then ~p € P;
3. if o, € P, then (p A1) € P.

Then P 1is the set of all formulas.
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Proof. Assume there exist formulas not in P. Let ¢ be a formula outside P of minimal
length. Then ¢ is not a variable by 1, not a negation by 2 and not a conjunction by 3.
This contradicts the previous lemma.

One can argue without Lemma 1.1.5: let F' be the set of formulas, then the assumptions
state P ¢ I and P satisfies (F1)-(F3). As F' is smallest, ' € P. O

Exercise 1.1.7. Show that every formula has the same number of occurrences of ( as of ).
Lemma 1.1.5 also enables definitions by recursion.

Example 1.1.8. There is exactly one function sub defined on the set of formulas that
satisfies for all formulas ¢,y and X € Var:

1. sub(X) :={X};
2. sub(=¢) = {-~¢} U sub();
3. sub((¢ A1) = {(p A )} usub(p) U sub()).

Elements of sub(y) (distinct from ) are (proper) subformulas of .

Proof. We show by induction on n € N that there exists exactly one function s, whose
domain is the set of formulas of length < n and that satisfies (1)-(3). For n := 0, let s¢ be the

empty function. For n > 0, let s,, agree with s,,_; on formulas of length < n, and for formulas
of length n, define s,, as follows. If ¢ is a variable X (and n = 1), then s,(X) :={X}. If

@ = =1, then s,(p) := {p} Usy (V). If ¢ = (¥ Ax), then s,(p) = {p} U s () U s (X).
Observe that s, is well-defined by Lemma 1.1.5. It is clear that this is the only possibility

in order to satisfy (1)-(3).
Define sub(y) := s,(¢). Then (1)-(3) are obvious. O

Exercise 1.1.9. Show that every formula ¢ has at most |p| many subformulas.

1.2 Semantics

Roughly, the “worlds” propositional logic is supposed to talk about are sequences of Os
and 1s, with variables denoting bits — formally:

Definition 1.2.1. A (total) assignment is a function f : Var — {0,1}. For V ¢ Var we
let B1V denote the restriction of 8 to V: it has domain V and maps every X € V to
B(X); conversely, 5 is an extension of 51V . We refer to 51V as a partial assigment or an
assignment to V.

Truth is determined by Tarski’s T-conditions:

Definition 1.2.2 (Semantics). For a (total) assignment § and a formula ¢ we define 5 = ¢
by recursion on :

(T1) if ¢ € Var, then: fE ¢ if and only if 5(p) = 1;
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(T2) if ¢ = 1) for some formula v, then: § E ¢ if and only if 5 # v;
(T3) if ¢ = (¢ A x) for some formulas 1, y, then: § E ¢ if and only if both 5 ¢ and S E .

We read B & ¢ as ¢ is true under [ or 5 satisfies ¢. We read S # ¢ as ¢ is false under 3
or (B falsifies p. The truth value of p under (8 is 1 or 0 depending on whether 3 & ¢ or not.

Exercise 1.2.3. Show that there exists exactly one relation £ between assignments and
formulas satisfying (T1)-(T3).

Definition 1.2.2 should be read as a description of a recursive algorithm:

Proposition 1.2.4. There is an efficient algorithm that given a formula ¢ and a partial
assignment 3 defined on all variables occuring in ¢, outputs the truth value of ¢ under (.

Proof. The algorithm checks whether ¢ is a variable X or a negation - or a conjunction
(¥ A x). In the first case it outputs S(X). In the second it recurses on ¢ and outputs
1 -0 where b is the bit returned by the recursive call. In the third case, it recurses on .
If this recursive call returns 0, it outputs 0. Else it recurses on y and outputs the bit this
recursive call returns.

To see that this algorithm is efficient observe every recursive call is on a subformula
of ¢, so there are at most |sub(y)| < |¢| many recursive calls. Each recursive call involves
a check and the computation of certain subformulas, plus possibly the retrieval of a value
of B from the input; this is clearly efficient. O

Remark 1.2.5. For formulas ¢, we use the following abbreviations:

(pvep) = =(~pnr-1)
(=) = =(pr=p)
(pev) = (p=)A ()

We call (¢ v ) is a disjunction (of ¢ and ). Then for all assignments [3:
BE (pv)if and only if: SE ¢ or B E.
BE (p—1)if and only if: if 5 ¢, then § = .
B E (p <) if and only if: ¢, 1) have the same truth value under S.

Example 1.2.6. Let § be an assignment. The following are equivalent:

BE((-XAY)VZ)
BE(=XAY)or fE=Z

fE-Xand fEY, or 5(Z) =1
B¥EX and f(Y)=1, or 5(Z) =1
B(X)=0and (V) =1, or 5(Z) = 1.
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Exercise 1.2.7. Let (¢ | ¢) abbreviate (-¢ A —10), Show every formula is equivalent to

one built from variables and | alone.

For ¢ a formula with variables in V' and an assignment (3, we say 8 & ¢ if 7 E ¢ for
some total assignment v extending 3 (i.e., 1V = ). We now check the obvious fact that

this notation is well-defined in that it does not depend on the choice of v:

Lemma 1.2.8 (Coincidence). Let ¢ be a formula with variables in V' ¢ Var, i.e., only

variables from V' occur in . Let 3,7 be assignments with 1V =~1V. Then

BEY <= YEo@.

Proof. Induction on syntax. The claim holds for all variables X:

fEX — pB(X)=1 << 9(X)=1 <= v X.

If the claim holds for ¢, then also for —:

BE-p = B <= THo <= TE-p.

If the claim holds for ¢, ), then also for (¢ A ):

BE(pAt)) <= frpand fEY <= yEpandyEY <= vE (pA1).

1.2.1 Truth tables

The following table shows how basic formulas evaluate:

X|YV[=X[(XAY) | (XvY) [ (X=>Y) [ (X oY)
1|1]0 1 1 1 1
1/0]0 0 1 0 0
01| 1 0 1 1 0
00} 1 0 0 1 1

Here e.g. the second row considers an assignment § with 5(X) =1 and 5(Y) = 0. The
other entries state that the truth value under 8 of =X is 0, of (X AY") is 0, and so on.

For the formula ((-=X AY) v Z) of Example 1.2.6 we produce the table

X|Y|Z]|-X|(XAY) [ (X AY)VZ)
1[1]1] 0 0 1
110/ 0 0 0
110[1] 0 0 1
1100/ 0 0 0
01]1] 1 1 1
o[1]0] 1 1 1
0jol1]1 0 1
0jofo] 1 0 0
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E.g. the last column is produced applying the above table for v to the 5th and 3rd column.
The satisfying partial assignments are exactly those with a 1 in the last column, the first is
B(X)=p(Y)=p(Z) =1, the second B(X) =p(Z)=1,8(Y) =0, and so on. The falsifying
partial assignments are exactly those with a 0 in the last column.

1.3 Semantic concepts

Definition 1.3.1. Let ¢, be formulas and T a set of formulas.

1. ¢ is satisfiable if there exists an assignment satisfying .

2.  is valid or tautological if every assignment satisfies (.

3. @, are (logically) equivalent, symbolically ¢ =1, if (¢ <> 1) is valid.

4. T is satisfiable if there exists an assignment § with ST i.e., f &= x for all y e T.
5. T (logically) implies p, symbolically T' & ¢, if 5 ¢ for all assignments 5 with § & T

Example 1.3.2. These properties can be read-off truth tables. E.g. (=X AY) Vv Z) is
satisfiable (not valif) because the last column contains a 1 (a 0).

Remark 1.3.3.

1. ¢ is valid if and only if = is unsatisfiable.
2. Tu{p} e ifand only if T = (p - ¥).
3. T E ¢ if and only if T'U {-p} is unsatisfiable.

Examples 1.3.4. For all formulas ¢, 4, x:

(er(ax))=((er)ax), (ev(¥vx))=((pvy)vx)
(en@vx))=((pr)vieax)), (pv(@ax))=((pvi)Aalevx))
“(pAY) = (mpv =), ~(pVvy) = (A1)

(p=>)=(mpvy), (=)= (- > -p)

(o= (W =>x))=((pry) > x)

(p=P)a(e=>x))=(p—=(PAX), (p=>x)AW—>x))=(pVveY)—>X).

The first line states associativity of A, v, the second the distributive laws, the third the de
Morgan laws.

Definition 1.3.5. Let n > 0 and ® := {¢1,...,p,} a set of formulas. Their disjunction and
conjunction are

Vo=\gi=pvve, and A®=/A\pi=piAApn,
; i=1
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where we omit parentheses (recall associativity); the ¢; are disjuncts and conjuncts of the
respective formulas. Write !¢ for -, and, -%p or for ¢. A literal has the form -*X for a
variable X and b€ {0,1}. A clause is a disjunction of literals, and a term is a conjunction of
literals. A disjunctive normal form (DNF) is a disjunction of terms. A conjunctive normal
form (CNF) is a conjunction of clauses. That is, DNFs and CNFs have the forms

n n; n n;
/\ )\ij and /\ \/ )\ij
i=1j=1 i=14=1

respectively, where n,n; € Nyo, and the \;; are literals. If k € N,y and all n; < k, we speak
of a k-DNF and k-CNF, respectively.

Proposition 1.3.6 (Expressive completeness). Let n > 0. For every set P c {0,1}" there
exists a formula ¢ in the variables Xy, ..., X, that defines P:

P = {B(X1)-B(Xy) € {0,1}"] B o). (1.1)
Moreover, ¢ can be chosen both as a DNF and a CNF.

Proof. Let x = -z, € {0,1}". For all assignments f:

BET, ==X A n=l"n X, — [B(X))0(X,) =1,
BEC,=-"1X] Vv X, — [(Xy)-B(X,) £ .

Thus, for all assignments f:

e\ T, <= thereisxeP: BET, — [B(Xy)p(X,) € P,
zeP

e N C, < forallze{0,1}"\P: C, < [(X1)-B(X,)eP. -
ze{0,1}"\ P

Corollary 1.3.7. For every n, there are up to logical equivalence exactly 22" many formulas
i the variables X4, ..., X,.

Proof. For every P < {0,1}" choose ¢p defining it. These are 22" many pairwise non-
equivalent formulas. Given any formula ¢ in the variables Xi,..., X, let P ¢ {0,1}" be
the set it defines. Then ¢ is logically equivalent to ¢p. [

Corollary 1.3.8. Every formula is equivalent both to a CNF and to a DNF.

Example 1.3.9. DNFs and CNFs can be read-off truth tables. E.g. for ((-=X AY) Vv Z)
(is already a DNF but) the equivalent DNFs and CNFs read-off the truth table are

- “row 1”7 v “row 3” v “row 5” v “row 6" v “row 7”
=(XAYAZ)V(XA-YAZ)V(-XAY AZ)V (=X AY A=Z)Vv (=X A=Y AZ),
- “not row 2” A “not row 4” A “not row 8”
= (=X VvYVOA(-XVYVI)A(XVY VD).
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1.3.1 Huge DNFs

We show that the move from a formula to a equivalent DNF sometimes necessarily increases
the length of the formula enormously.

Proposition 1.3.10. For every ¢ € N there is a formula @, such that
1. |pf €10-22¢;
2. every DNF equivalent to o, has length at least 221,

Proof. 1: For n >0 let PAR,, € {0,1}" consist of the binary strings with an odd number of
occurrences of 1. Observe PARqo is defined by (g := X; and, for £ >0, PARy is defined by
e = (o1 A=) v (m@e1 Agiy),

where ¢}_, is g1 with variables X, ..., Xor1 replaced by Xge-1,1,..., X5 Hence
el < 4-lpea] + 9 <A(4pra] +9) +9 =4 o] +4-9+9 <
< 4Ypo| + 459+ +4-9+9<45+ 945

2: Let ¢, be a DNF defining PAR,, with a minimal number of terms. Then all terms
are satisfiable. Assume there is a term T in ), such that not all of X;,...,X,, occur
in T, say, X; does not occur. Choose an assignment [ satisfying 7. Then S & 1,, so
B(X1)---B(X,) € PAR,,. Let v be as 3 but with the value on X; flipped, i.e., v(X;) = (X;)
for all j € [n]~ {i} and y(X;) := 1 - B(X;). Then v = T by the coincidence lemma, so
v E . But y(X1)--v(X,,) ¢ PAR,, a contradiction.

Hence each term is satisfied by at most one assignment to Xi,...,X,,. But there are
27-1 such assignments  with 5(X;)---8(X,,) € PAR,,. ]

Remark 1.3.11. A DNF determining the parity of 267 bits (i.e., defining PARyg7) has
more disjuncts than there are atoms in the observable universe.

Exercise 1.3.12. There does not exist an efficient algorithm that, given a formula ¢,
outputs a equivalent DNF. Same for CNF's.

Proposition 1.3.13. There is an efficient algorithm that, given a formula ¢, outputs an
equisatisfiable CNF ¢, i.e., ' is satisfiable if and only if ¢ is satisfiable.

Proof. For every 1 € sub(y) let X, be a variable. For every ¢ € sub(y) the algorithm
computes clauses as follows:

— if ¢ = X € Var compute: (=X, v X),(-X Vv Xy,);

— if ¢ = =y compute: (=X Vv -X,), (X, vXy);

— if ¢ = (o AtPr) compute: (=Xy v Xy ); (- Xy v Xy, ), (= Xy V =Xy, vV Xp).

Let x be the conjunction of these clauses. Set ¢’ := (x A X,,). It is clear that ¢’ can

be efficiently computed (recall [sub(¢)| < |¢|). To see ¢’ is equisatisfiable to ¢ it suffices to
show for all assignments /:

BEx < forall ¢esub(p): B(Xy) is the truth value of ¢ under .

This is proved by a straightforward induction on syntax. O
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1.3.2 Decision trees

Assume you have a (question, formally a) formula and want to know its truth value under
an assignment hidden in the world. How many values of variables do you need to find out?
A strategy intended to minimize this number is a decision tree.

Definition 1.3.14. A binary tree is a non-empty finite set 7" ¢ {0,1}* of nodes, closed
under prefixes and such that ¢t0 € T" whenever ¢t1 € T for all £ € {0,1}. A node is inner if it
is a proper prefix of another; otherwise it is a leaf; the root is the empty string e. T" is full
if whenever t € T then either both ¢0,¢1 or none is in 7. The height of T is maxr |t|.

A decision tree repeats querying variables, each query depending on the answers re-
ceived so far, and finally outputs a bit.

Definition 1.3.15. Let X = X;---X,, be a tuple of variables. A decision tree (with vari-
ables X ) is a pair (T, ¢) such that T is a full binary tree and the labeling £ maps every leaf
into {0,1} and every inner node t to some variable in X we say t queries £(t). We require
that no proper prefix of a non-leaf ¢t queries the same variable as t.

A partial assignment 3 defined on the variables X determines a leaf ¢(3) € T, namely
the unique leaf ¢ = ¢;--t)y € T such that for all i € [|t[], t; = B(X;) where j € [n] is such that
((t1--tic1) = X;. The output of (T.,0) on [ is L(t(5)).

(T, /) is equivalent to a formula ¢ in the variables X if for all assignments 3 to X the
output of (7,¢) on f is the truth value of ¢ under g.

Remark 1.3.16. Every formula ¢ in the variables X := X;---X,, is equivalent to a decision
tree with variables X of height n.

Proof. The tree queries all variables and outputs the truth value of . Formally, T :=
{0,1}< with £(¢) := X4 for [t| <n, and for leaves t € {0,1}" set £(t) to be the truth value
of ¢ under the assignment X; — t,. ]

Example 1.3.17. Every decision tree equivalent to a formula defining PAR,, € {0,1}" has
height n.

Proof. Assume (T, /) has height < n. For an assignment (3 choose i € [n] such that £(t) +
X; for all prefixes t of t(/3); this exists because [t(S)| < n. Let v agree with  except
Y(X;) =1-5(X;). Then t(5) =t(y), so the tree has the same output, but exactly one of
B(X1)-B(Xn), 7(X1) 7 (Xn) is in PAR,,. u

Theorem 1.3.18. Let n >0 and k € [n] and ¢ be a formula in the variables X = X -+-X,,.

1. If ¢ is equivalent to a decision tree of height k, then o is equivalent both to a k-DNF
and to a k-CNF.

2. If ¢ 1s equivalent to both a k-DNF and a k-CNF, then ¢ is equivalent to a decision
tree of height < k2.
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Proof. 1: Let (T,¢) be a decision tree of height %k that is equivalent to . Let t = #;--t
range over the leafs that output 1 and let s = s;---s, range over the leafs that output 0.
Then ¢ is equivalent to both

Vi Nicp =111l (t 1) and Ay Vs =*#10(51°+54).

2: Let Y =Ty vTsv---and x = C; ACy A+ be equivalent to ¢, where the T; conjunctions
of <k literals and the C; are disjunctions of < & literals. We can assume that all T; are
satisfiable and that all C; are falsifiable (otherwise omit them).

We specify a decision tree by informally describing what variables to query or stop with
an output, given answers by,...,b,_; to previous queries X;,,...,X;, ,, in other words,
given the partial assignment that maps X to b;. Formally, this is a node t = #y-+t,y
with b; = t,1,0(t1-t;) = X, for all j <r. Naturally, we say a partial assignment satisfies
(falsifies) T; if it satisfies (falsifies) all (some) of its conjuncts.

The tree proceeds in rounds. In each round a partial assignment (3 is given; in the first
round S is the empty assignment. The tree outputs 1 if 3 satisfies some 7; or all C;. It
outputs 0 if 3 falsifies all T; or some Cj. Otherwise it queries the variables of T, outside
the domain of 3; here, iy is minimal such that 3 does not falsify 7;,.

Key observation: if C; is not satisfied by 3, then some of its variables is queried.

Otherwise the variables in C; outside the domain of 8 are disjoint from the variables
in T;, outside the domain of §; but then there exists an assignment extending [ that
satisfies T; and falsifies C; — contradicting 9 = x.

Thus, after < k rounds, 8 is defined on all variables of all C; or satisfies C;. Then the
tree halts with an output. Since every round queries < k variables, the height is < k2. [

1.4 Formal reasoning I: Gentzen’s Logischer Kalkiil

Definition 1.4.1. A sequent is a pair (I', A) of finite sets of formulas I', A, written I' = A.
I'= A is valid if ((AT") = (VA)) is valid, equivalently, I' = \/ A.

Definition 1.4.2. An LK-proof is a finite sequence of sequents such that every sequent in
it is a conclusion of an LK-rule with premisses appearing earlier in the sequence. There
are the following LK-rules, written Sr28es o write e.g. I', ¢ instead of ' u {¢}.

Conclusion *

'=A
Axiom ———— Weakening — 72 rc I"AcA'
Fio=Ap "= A’
I'=A¢ ) Feo=A
-1 ft —— ’ - ht :
TP S
A-left Lpv=4 A-right F=240 F=479
Ty (pay) = A = A, (pA)

An LK-proof is a proof of its last sequent. A sequent is LK-provable if there is an LK-proof
of it. A formula ¢ is LK-provable if so is = ¢ (i.e. @ = {¢}).
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Remark 1.4.3. Define LK*-proof like LK-proofs but additionally allowing the rules:

v-left Le=4 Ly=A v-right L=>Ap0
I (pvey)=A I'= A, (pve)
L loft I'=A¢ Ly=A right Coo= A
L (p=>v)=A ['=A, (1)
oy DU =A Tolpy L TeoAd Leodgp

I(pev)=A ['=A(pev)
Then LK*-provable sequents are LK-provable.

Proof. In an LK*-proof replace applications of —-left and —-right by the “proof trees”:

L= A Lo= A0

'=A¢ I'=A, - Lo, -1 =A
I'= A, (pr-1) L (pr-) = A
I=(pn—t) = A L= A, =-(pA—)

More precisely, an application is replaced by a sequence of sequents suitably listing the
sequents in these trees. Proceed similarly for the other rules. ]

Example 1.4.4. Below is an LK*-proof of =(XAY") = (=X v-Y") numbered and annotated
with the rules applied, and the same proof displayed as a “proof tree”.

1 X=X,-Y Axiom

2 =X, -X,-Y ~-right on 1 X=X,-Y Y=YV-X

3 V=-XY Axiom = X,-X,-Y =Y, -X,-Y
4 =Y -X,-Y —-right on 3 = (XAY),-X,-Y

5 = (XAY),-X,-Y A-right on 2.4 = (XAY), (=X Vv-Y)

6 = (XAY),(-XVv-Y) v-right on5 (X AY)= (=X vaY)

7 «(XAY)=(-XvVvaY) =-left on 6

Intuition: proof trees are constructed bottom-up. Start with the sequent I' = A to be
proved. Read it as an assumption “all formulas in I' are true and all formulas in A are
false” that you wish to refute. All rules are self-explanatory when read bottom-up in this
way. E.g. at the branching point above (A-right) we have “all (X AY),-X,-Y are false”
and make a case distinction: “all X,-X,-Y are false” or “all Y,-X,-Y are false”. Each
leaf of the tree is the desired contradiction: a formula is assumed both true and false.

Exercise 1.4.5. Define a new connective (¢ @) with intended meaning “either ¢ or ¢”.
Which @-left and @-right rules would you add?

Remark 1.4.6.

1. (Soundness) For every LK-rule: if all premisses are valid, then so is the conclusion.
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2. (Inversion) For every LK-rule except Weakening: if the conclusion is valid, then all
premisses are valid.

Theorem 1.4.7 (LK completeness). A sequent or formula is valid if and only if it is
LK-provable. In fact, every valid formula @ has an LK-proof of length < 219!,

Proof. 1t suffices to consider sequents. < we show, given an LK-proof Si,..., Sk, that all
sequents S; are valid. This follows from Remark 1.4.6 (1) by a simple induction.

=: let I' = A be valid. We proceed by induction on the number of A, - occurrences
in it. If this number is 0, all formulas in I' U A are variables. Then there exists a variable
appearing in both I'u A — otherwise an assignment mapping all variables in I" to 1 and all
in A to 0, shows I' = A is not valid. Hence, I' = A is the conclusion of Axiom.

If T' (resp. A) contains a negation -y or a conjunction (¢ A %), then I' = A is the
conclusion of —-left or A-left (resp. —-right or A-right). The premisses are valid by Re-
mark 1.4.6 (2), so LK-provable by induction. Hence I' = A is LK-provable.

For the second statement, choose s, minimal such that every valid sequent with n
occurrences of A, - has an LK-proof of length s,. By the above we have the recurrence
Sni1 €28, + 1 with sg = 1. As n <|p|, our claim follows:

Sp €28, 1 +1<2(28, 0+ 1) +1=2%5, 5 +2+1< <2+ 2" 1+ +1=2"" [0

Remark 1.4.8. Inspecting the proof we see that the above holds for LK without Weak-
ening and requiring in Axiom that there appears a variable on both sides.

The theorem implies that the set of provable sequents is not increased when adding any
sound rule (i.e., preserving validity). An important example is Cut:

F'=Ap Ip=A
'=A '

1.4.1 Compactness theorem and applications

Theorem 1.4.9 (Compactness). A set of formulas T is satisfiable if and only if every
finite subset of T' is satisfiable.

Proof. = is trivial. <: let T,, be the set of formulas in 7" in the variables Xi,...,X,,. By
Corollary 1.3.7, T,, contains only finitely many formulas up to logical equivalence. Let B,
be the set of partial assignments to the variables Xy, ..., X,, that satisfy T},. Then B, # @
by assumption. Hence B :=UJ,, B, is infinite.

Choose by € {0,1} such that {8 € B | B(X1) = by} is infinite. Choose by € {0,1} such
that {# € B| B(X1) =b1,5(X2) = by} is infinite. And so on.

Let v be the total assignment X; — b;. We claim v = T. It suffices to show ~, :=
Y{X1,...,X,} € B, for all n > 0. But there exists € B extending ~, (even infinitely
many). Say [ € B, for m>n. As S =T, 2T, we have S1{X1,..., X,} =y E Tp. ]
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Exercise 1.4.10. Let A be a (possibly infinite) alphabet. A tree T' over A is a prefix
closed subset of A*. It is finitely branching if for every t € T' the set {a € A | ta € T} is
finite. Show: if T is infinite, then there is an infinite branch: a sequence aq,as, ... such
that ay---a,, € T for all n € Ny,.

Definition 1.4.11. Let T be a set of formulas and ¢ a formula. T proves ¢, symbolically
T + ¢, if there is a finite Ty € T such that Ty = ¢ is LK-provable.

Theorem 1.4.12 (Deductive LK completeness). Let T' be a set of formulas and ¢ a
formula. Then T &= ¢ if and only if T + .

Proof. The following are equivalent: Tk ¢, T U {-p} is unsatisfiable, T'U {-p} is unsatis-
fiable for some finite Ty € T' (compactness), Ty = ¢ is valid for some finite Ty € T, Ty = ¢
is LK-provable for some finite Ty € T (Theorem 1.4.7), T + ¢. ]

We recall some graph terminology. A directed graph G is a pair (V, E) where V is a
non-empty set of vertices, and E € V2 a set of edges that is irreflexive (i.e, (v,v) ¢ E for all
v e V). If additionally E is symmetric (i.e., if (v,v") € E, then (v,v") € E for all v,v" € V),
then G is a graph. A graph H = (W, F) is a subgraph of G if W ¢ V and F ¢ FE; it is
induced if F'= EnW?2. Roughly, induced subgraphs are obtained by deleting vertices, and
subgraphs by additionally deleting edges.

Example 1.4.13. A graph G is 3-colorable if there exists a function ¢: V — [3] such that
c(v) # c¢(v") for all (v,v") € E. An infinite graph G = (V, E) is 3-colorable if and only if
every finite subgraph is 3-colorable.

Proof. We prove this only for the case that V is countable. Then we can choose for every
v eV variables X!, X2 X3. Write G = (V, E). Let T be the set of the following formulas
for all veV and all (u,w) € F

(X, vXTv XD,
(_‘X’l} VﬂXg)’ (_‘ng_‘XS)w (—|X1} VﬂXg)’
(=X, v=Xy), (RXZv-X3), (X5 v-X3).

Intuitively, X! is true if and only if v has color 7. The first line states that v gets at
least one color, the second that v gets at most one colour, the third that (u,w) is not
monochromatic. We now verify these intuitions by showing that T is satisfiable if and
only if GG is 3-colorable.

Assume G is 3-colourable, say via ¢ : V' - [3]. Define 5(X}) = 1 if ¢(v) = i, and
B(X?1) =0 otherwise. Then f E Tg.

Assume 7 E pg. Let v e V. By the first two lines, there is exactly one 7 € [3] such that
v(Xi) = 1. Define ¢(v) to be this . Let (u,w) € E. By the 3rd line, c¢(u) # c¢(w).

By compactness, T is satisfiable if every finite subset is 3-colorable. Such a finite
subset is included in Ty for a finite subgraph H of G, so is satisfiable if H is 3-colorable.
Hence G is 3-colorable if every finite subgraph is. The converse is trivial. ]
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1.5 SAT modelling

This subsection shows by means of examples how basic computational problems can be
modeled by the problem SAT. This is practically relevant for software engineering be-
cause there are powerful SAT solvers that show a remarkable and theoretically not well-
understood efficiency on real world inputs.

Proposition 1.5.1. There exists an algorithm that decides the problem

SAT
Input: a propositional formula .
Problem: is ¢ satisfiable?

Proof. Compute the set V' of variables occurring in ¢. Compute a list of all partial as-
signments # to V' and check for each such (3, using the algorithm from Proposition 1.2.4,
whether 3 = ¢. If at least one check clears, output 1; else output 0. O]

Remark 1.5.2 (P versus NP). The above algorithm is not efficient: if ¢ has n variables,
then there are 2" many assignments to consider. The hypothesis P # NP is equivalent to
the statement that efficient algorithms do not exist, i.e., runtime < n°®) is impossible. The
Exponential Time Hypothesis states that even runtime < 2°(™ is impossible.

P versus NP is the core problem of theoretical computer science and, more generally,
one of “the three greatest problems of mathematics”.! The pivotal role of SAT stems from
the Cook-Levin theorem (1973) stating, roughly speaking, that every NP problem can in a
certain sense be modeled by SAT. We showcase this by examples. It is known that if any
of the problems mentioned in this subsection admits an effective algorithm, then P = NP.

Proposition 1.5.3. There is an efficient algorithm deciding SAT if and only if there is an
efficient algorithm deciding

3SAT
Input: a 3-CNF .
Problem: is ¢ satisfiable?

Proof. “Only if” is trivial. “If”: the algorithm of Proposition 1.3.13 outputs 3-CNFs. [

Example 1.5.4. Consider the computational problem

3CoL
Input: a (finite) graph G.
Problem: is G 3-colourable?

There is an efficient algorithm that, given a (finite) graph G, computes a CNF ¢ that
is satisfiable if and only if G is 3-colourable.

1S. Smale. Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives,
American Mathematical Society, Providence, RI, 271-294, 2000.
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Proof. Set g = \NTg from Example 1.4.13. ]

Example 1.5.5. A vertex cover of a graph G = (V| E) is a set C' € V such that for all
(u,v) € E we have u e C or v € C. Consider the problem

VERTEX COVER
Input: a graph G and k € N.
Problem: does G have a vertex cover of size at most k7

There is an efficient algorithm that, given a graph G and k € N, outputs a CNF ¢q
that is satisfiable if and only if G has a vertex cover of size at most k.

Proof. Write G = (V, E') and let k € N,¢. Use variables X, for v e V and i € [k]. For every
v,v" € Vv #v', and i € [k] consider the clauses:

Voev Xiws (=X Vv =Xi0).
Let x be the conjunction of all these clauses. Then for all assignments f:
BEXx <= {(i,v)|B(Xi,) =1} is the graph of a function from [k] into V.
Let ¢g k. be the conjunction of x and for every (u,v) € E the clause
Vietk] Xiu V Vie[k] Xiw

For k =0set gy =X if =g, and pg i = (X A-X) otherwise. Clearly, pg x is as desired
and efficiently computed — provided k < |G|. For k> |V, re-define g i, := ¢a v|. O

Example 1.5.6. A partition of as set S is a a family P of pairwise disjoint sets with
S =UP =Upep P. Consider the problem

SET COVER
Input: a family F of sets.
Problem: does F contain a partition of JF?

There is an efficient algorithm that, given a family of sets F, outputs a CNF @z that
is satisfiable if and only if F contains a partition of U F.

Proof. It F = @, let o be some satisfiable formula. Otherwise choose variables Xg for
S e F and let px be the conjunction of (-XgVv -Xg) for all S,5" € F with Sn S’ + @, and
Vaeser Xg for all a e JF. ]

Exercise 1.5.7. A clique in a graph G = (V, E) is a set C' ¢V such that (u,v) € E for all
distinct u,v € C. Consider the problem

CLIQUE
Input: a graph G and k € N.
Problem: does G contain a clique of size k?
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Show that there exists an efficient algorithm that, given a graph G and k € N, outputs
a formula ¢¢, that is satisfiable if and only if G contains a clique of size k.

Exercise 1.5.8. A dominating set in a graph G = (V, F) is a set D € V such that for all
veV N D there is u e D with (u,v) € E. Consider the problem

DOMINATING SET
Input: a graph G and k € N.
Problem: does G contain a dominating set of size k7

Show that there exists an efficient algorithm that, given a graph G and k € N, outputs
a formula ¢¢ , that is satisfiable if and only if G contains a dominating set of size k.

1.5.1 Horn formulas

Example 1.5.9. A path in a directed graph G = (V, E) is a finite sequence vy, ...,v; of
pairwise distinct vertices such that (v;,v;41) € E for all i < k; it is from vy and to vy.

REACHABILITY
Input: a directed graph G and vertices s, t.
Problem: is there a path from s to ¢ in G?

There is an efficient algorithm that, given a directed graph G and vertices s,t, outputs
a CNF ¢ q; that is satisfiable if and only if there does not exist a path from s to ¢ in G.

Proof. Let G = (V, E) be a directed graph and s,t € V. For every v € V let X, be a variable.
Define ¢¢ s+ as the conjunction of X, -X; and (-X, v X,) for every (u,v) € E.

Assume & @ s Then 5(X;) =1, 8(X;) = 0. Assume there is a path s = vy, ..., v, =1
in G. It suffices to show 5(X,,) =1 for all i < k. This is clear, for i = 0. For i + 1, we have
B(X,,) =1 by induction, so B(X,,,,) =1 because = (=X, v X,,,,)-

Assume there is no path from s to ¢t in G. Set 5(X,) := 1 if there is a path from s to v
in G; otherwise 5(X,) := 0. Then 5(X;) =1 and S(X;) = 0. Assume [ falsifies a clause
(=X, Vv X,) where (u,v) € E. Then 5(X,) =1 and 5(X,) = 0. Hence there is a path from
s to u in G but not to v — nonsense. [

Note ¢ s is a Horn formula in the following sense.

Definition 1.5.10. A clause (-1 X;v---v=2 X)) for variables X7, ..., X, and bits by, ..., b,
is Horn if at most one b; is 0. A Horn formula is a conjunction of Horn clauses.

Theorem 1.5.11. There is an efficient algorithm deciding

HORN SAT
Input: a Horn formula .
Problem: is ¢ satisfiable?
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Proof. For a clause C' = (=01 X; v---v =X, ) consider the set {01 X, ... =b» X} of literals.
We denote this set again by C'. The algorithm takes as input a conjunction ¢ of clauses C’;
let C be the set of these clauses C', each viewed as a set of literals as above. Say an
assignment [ satisfies C, symbolically 8 k& C, if it satisfies some literal in each C € C.
Observe that this happens if and only if 5 & ¢. The algorithm is as follows:

1. while there exists X € Var with {X} €C.
2 choose such an X

3 C<~C~{Ce(C|XeC}

4. C<{C~{-X}|CeC}

5. if @ e(C, then output 0

6

else output 1

This algorithm is efficient because each while loop decreases |C|, and can be efficiently
executed. To prove the output in line 5 is correct, it suffices to show that the while loop
preserves truth, i.e., for all §: if 8 £ C and the while loop updates C to C’, then 5 E C'.
But since {X} €C and f £ C, we have 5(X) =1. Let C" (', say C' = C~ {-X} for C eC.
Then f satisfies some A € C'. Then A\ #+ =X, so A € C". Hence 3 satisfies C".

To prove the output in line 6 is correct, note it is only reached if every C € C contains
a negation. This is satisfiable: take the all 0 assignment. It thus suffices to prove that the
while loop preserves unsatisfiability: if C’ is satisfiable, then so is C. But if § & C’, then
v E C where v maps X to 1 and otherwise agrees with . ]

Corollary 1.5.12. There is an efficient algorithm deciding REACHABILITY.

1.6 Formal reasoning II: Resolution

In the previous section we replaced a clause by the set of its disjuncts (literals), and a CNF
by a set of clauses. It is common to call also sets of literals clauses and we do so for the rest
of this chapter. Crucially, we allow the empty clause @. Look at the algorithm for HORN
SAT. Its while loop replaces clauses {X} and C' with =X € C' by a new clause C' \ {X}
which is implied in the obvious sense. Resolution is a formal proof system that operates
with clauses and is based on this simple derivation rule. We adapt our terminology:

Definition 1.6.1. A partial assignment g satisfies a clause C, symbolically g = C, if = A
for some \ € C' (a literal); it falsifies C' if is falsifies every A € C. A clause C' is tautological
if X,-X € C for some variable X. [ satisfies a set of clauses C, symbolically B EC, if 5 =C
for all C € C. If such B exists, C is satisfiable. C implies a clause C', symbolically C & C', if
B E C for every total assignment g with g & C.

Remark 1.6.2. Every partial assignment falsifies the empty clause C' = @, and every
partial assignment satisfies the empty set of clauses C = @.
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It is important that the definition of C E C' refers to total assignments. E.g. for C := &
and C := {X,-X} we have C £ C but there is a partial assignment 5 with 5= C and g # C,
namely the empty assignment.

Definition 1.6.3. Let C be a set of clauses. A Resolution proof of C' from C is a finite
sequence (1, ..., Cy of clauses such that Cy = C' and for all ¢ € [¢] one of the following holds:

— (C;€eC,ie., Cis an input clause;
— C;={X,-X} for some variable X i.e., C'is an axiom;
— there is j <4 such that C; ¢ C;, i.e., C; is a weakening of Cj;

— there are j,k < i and a variable X € C; such that -X e C} and C; = (C; ~ {X})u
(Cp~{-X}), Le, C;is a cut of C;,Cy (on X).

A Resolution refutation of C is a Resolution proof of @ from C.

Exercise 1.6.4. Make precise and prove: Resolution is “the same” as the sequent calculus
operating with sequents made up of variables only and rules Axiom, Weakening and Cut.

Lemma 1.6.5 (Strong soundness). Let £ € N, C,...,Cy a Resolution proof and 3 be a
partial assignment. If (8 satisfies every axiom and input clause in the proof, then & C,.

Proof. We show (3 = C; for all i € [¢] by induction on 4. If C; is an input clause or an axiom
this follows by assumption. If C; is a weakening of C; for j < i, then 3 = C; by induction,
so B C;. If C;is a cut of Cj,Cy, for j,k <1, say on X € C; we distinguish cases. If 8 does
not satisfy X, then it satisfies some literal A € C'~ {X} and A € C;; otherwise, S(X) =1
and S ¥ -X, so ( satisfies some literal A € C \ {=X}; then A e C;. [

The qualifier “strong” comes from the use of partial assignments (recall Remark 1.6.2).
We now show that refutations can dispense with weakenings and tautological clauses.

Lemma 1.6.6. Let C be a set of clauses and ¢ € N. If there is a Resolution refutation of
C of length ¢, then there is one of length < { in which every clause is non-tautological, and
every clause is in C or a cut of earlier clauses.

Proof. Let C4,...,Cy, = & be a refutation of C. First delete all tautological clauses. The
result is still a Resolution refutation: if C; is non-tautological but a cut of C;, C}, with, say,
C; tautological, then C'is a weakening of C}. We denote the result again by C,...,C).

For 7 = 1,...,n replace C; by C! ¢ C; as follows. If C; € C, set C! := C;. If C; is a
weakening of Cj, then also of C7. Set C} := Cj. If Cj is a cut of €}, C distinguish cases.
Say, the cut is on X € ;. If both X € C7 and -X € C}, then let C] be the cut of C%, Cy
on X. Otherwise C; is a weakening of C} or C}. Set C}:=C} or Cj = C}.

Then C1,...,C;is a Resolution refutation where weakenings just repeat clauses. Delete
these repetitions. O
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Definition 1.6.7. Let 8 be a partial assignment and C' a clause that is not satisfied by £.
Let C'1 be the clause obtained by removing from C' all literals that are falsified by S.
For a set of clauses C let

C18:={C18|CeC and B # C}.
Notation: if Xi,..., X, lists the domain of § and b; := B(X;) € {0, 1}, we write
C[X1/by,..., Xn/bn] :=C18 and C[Xi/by,...,X,[bn]:=C15.
Exercise 1.6.8. Let C be a set of clauses, C' a clause and ( a partial assignment.

1. C1p =@ if and only if 3 falsifies C.
2. C18 =@ if and only if S EC.

3. C175 is satisfiable if and only if some extension v of [ satisfies C.

Lemma 1.6.9. Let { € N, C be a set of clauses and B a partial assignment. If C has a
Resolution refutation of length ¢, then C18 has a Resolution refutation of length < (.

Proof. Let C1,...,Cy =@ be a Resolution refutation of C. By Lemma 1.6.6 we can assume
every C; is in C or a cut. Let C,,,...,C,, be the subsequence of clauses not satisfied by £.
Note vy = £. We claim C,,13,...,C,,18 = @ is a Resolution refutation of C15.

Assume C,, is a cut of C;,C}, for j,k < v;, say on X. First case: 3 is defined on X.
Then f satisfies one of U, Cy, say C;. Then  does not satisfy Cj: otherwise it satisfies a
literal not involving X in Cj and this literal is in C), - but 3 does not satisfy C,,. Hence
Cy = C,,, for some vy < v;. Then C,,1f is a weakening of C,,,10.

Second case: [ is not defined on X. As 3 does not satisfy C,, is does not satisfy C}, Cy,
so they equal C,,,C,, for some v;,vp <v;. Then C, 18 is a cut of C, 18,C, 18 on X. [

Theorem 1.6.10 (Refutation completeness). A set of clauses C is unsatisfiable if and only
if C has a Resolution refutation.

Proof. < follows from Lemma 1.6.5. =: assume C is unsatisfiable; by compactness we
can assume C is finite. We proceed by induction on the number n of variables occurring
in (some clause in) C. If n =0, then @ € C. Assume n > 0 and let X be a variable in C.
By Exercise 1.6.8 (3), both C[X /0] and C[X /1] are unsatisfiable. By induction they have
refutations. Say, Ci,...,C, = @ is a refutation of C[X/0]. Then C, u{X},...,C,u{X} =
{X} becomes a Resolution proof if we add some weakenings. Namely, if C; is an input
clause or axiom that does not contain X, then insert C; before C; u{X}. Similarly we get
a proof of {~X} from a refutation of C[X/1]. Compose the proofs and add a final cut on
X to get a Resolution refutation of C. [

Exercise 1.6.11. This proof, like many proofs by induction, can be read computationally:
it implicitly specifies a recursive algorithm that computes a refutation given as input an
unsatisfiable C. Describe this algorithm. How long, at most, is the constructed refutation?
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Exercise 1.6.12. Show that there is an efficient algorithm deciding

2-SAT
Input: a 2-CNF .
Problem: is ¢ satisfiable?

Infer Corollary 1.5.12. Further infer that there is an efficient algorithm deciding

BIPARTITE
Input: a graph G = (V, E).
Problem: is G bipartite, i.e., are there disjoint Vp, V1 €V such that E ¢ (Vo xVi)u
(Vi xVp)?

Hint: a cut of clauses each of size < 2 has again size < 2.

Theorem 1.6.13 (Deductive Resolution completeness). Let C be a set of clauses and C' a
clause. There is a Resolution proof of C' from C if and only if C = C.

Proof. = is Lemma 1.6.5. <: let =C' be the set of clauses {=172X} for every literal -=*X € C.

Then Cu-C'is unsatisfiable. By refutation completeness, it has a refutation C',...,Cy = @.
Then ChuC, ..., CyuC = C'is a Resolution proof of C' from tautological clauses and clauses
D uC with D eC. Adding some weakenings gives a proof from C. O

Remark 1.6.14. The use of weakenings above cannot be avoided. E.g., every Resolution
proof of C':= {X} from C := {@} requires it. The use of axioms {X,-X} can also not be
avoided since every proof of C':= {X,-X} from C := @ requires it.

1.6.1 Linear and SLD Resolution

Definition 1.6.15. Let C be a set of clauses. A [linear Resolution proof from C is a
sequence of clauses C',...,Cy such that C; € C and for every 1 <7 < ¢, C; is a cut of C;_4
and a side clause D; which is an input clause (i.e., in C) or equals C; for some j < i.

A linear Resolution proof is SLD is all C; are negative, i.e., contain only negative literals
— a literal is negative if it starts with = and otherwise positive.

Remark 1.6.16. In an SLD Resolution proof all side clauses contain exactly one positive
literal. Hence only Horn clauses are involved, i.e., clauses with a most one positive literal.

We now strengthen Theorem 1.6.10.

Theorem 1.6.17 (Linear refutation completeness). If C is an unsatisfiable set of clauses,
then there is a linear Resolution refutation of C.

Proof. We can assume that C is minimally unsatisfiable, i.e., every proper subset of C is
satisfiable. We show that then C has a linear refutation starting with any C' € C. We
proceed by induction on the number n of variables in C. If n = 0, C = {@} and there is
nothing to show. Assume n > 0. Given C' € C we distinguish two cases.
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First case: |C| =1, say, C = {=1"°X} for a variable X and b € {0,1}. Let C’ be a
minimally unsatisfiable subset of C[X /b]. Then there exists C" € C' with C'u {-*X} € C:
otherwise C' € C ~ {C'} is satisfiable.

By induction, there is a linear refutation C’ = Cy,...,C) = @ of C’, hence of C[X/b].
The input side clauses D] are in C[X/b]. If they are in C, then C,CY,...,C} is a linear
refutation of C: the initial cut has side clause C' U {-*X}. Otherwise, there are ¢ with
D!u{-*X} eC, say o is minimal such. Using these side clauses instead and adding -*X to
all C!,i > g, gives a linear proof of =*X from C. A final cut with C' gives a linear refutation.

Second case: |C| > 1. Choose a literal in C, say -*X for a variable X and b € {0, 1}.
Let C’ € C[X/b] be minimally unsatisfiable. We claim C[X/b] = C'~ {=bX} € C'. Indeed,
C[X/b] ~ {C[X/b]} is satisfiable: since C is minimally unsatisfiable, there is 5 £ C \ {C'};
then S # C, so B(X)=0b,s0 BE(C~{C})[X/b].

By induction, there is a linear refutation C7,...,C) = @ of C' with C} = C[X/b] = C'
{-*X}. For an input side clause D! there is D; € C such that D; = D} or D; = D/u{-tX} €C.
Adding -*X to all C/, gives a linear proof of {-°X} from C with side clauses D;. It starts
with O/ U {X} = C.

Observe D := (C~ {C}) u{-tX} is unsatisfiable, C \ {C'} is satisfiable, so a minimally
unsatisfiable subset of D contains {-*X}. The first case gives a linear refutation of D
starting with {=*X}. Putting the above proof of {-*X} in front, gives a linear refutation
of C that starts with C. ]

Corollary 1.6.18 (SLD refutation completeness). Every unsatisfiable set of Horn clauses
has a SLD Resolution refutation.

Proof. A minimally unsatisfiable C’ € C contains a negative clause C' (otherwise the all 1
assignment satisfies it). By the previous proof there is a linear refutation Cy,...,Cy = @
of C’, hence of C, that starts with C; = C'. As side clauses are Horn, all C; are negative. [

Exercise 1.6.19. Show that there exists an efficient algorithm that, given an unsatisfiable
set of Horn clauses, outputs a SLD Resolution refutation of it.

Hint: this is implicitly done by the algorithm in Theorem 1.5.11.

Remark 1.6.20. It is not known whether linear Resolution efficiently simulates general
Resolution. Is there ¢ € N such that for all £ € N: if C has a refutation of length ¢, then it
has a linear one of length < ¢¢7

The name SLD stands for “Linear Resolution with Selection function for Definite
clauses” and comes from logic programming. We explain what this is in Section 2.9.

1.7 Treelike Resolution

In general a Resolution proof can derive a clause and use it in many later derivation steps
as a premiss of cut or weakening. A proof is treelike if it is used at most once. The formal
definition needs care because, given a clause in a proof, it is not uniquely determined how
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it is derived: it can be from different earlier clauses and different occurrences of these. Not
even the rule used is visible, e.g., an input clause might as well as be a cut, or a cut can
be a weakening (cut a tautological clause with itself).

We recall some standard terminology: given a directed graph (V, E), the in-degree (out-
degree) of a vertex v € V is the number of u € V such that (u,v) € E ((v,u) € E). (V,E)
is acyclic if it contains no directed cycle (i.e., a path from a vertex to itself of length > 1).
Dag stands for directed acyclic graph.

We naturally view binary trees T" as dags. More precisely, we say (V, E) is isomorphic
to T'if there is a bijection B :V — T such that for all u,v € V we have:

(u,v) e E <= B(u) = B(v)b for some b€ {0,1}.

Definition 1.7.1. Let C be a set of clauses and C' a clause. Let Ci,...,C, = C be a
Resolution proof of C' from C. A proof-dag of the proof is a directed graph ([¢], E') such
that every i € [¢] has in-degree 0,1 or 2. In the first case, C; is an axiom or input clause,
in the second a weakening from C; where j < i is such that (j,7) € £, and in the third C;
is a cut of C}, C), where j, k < i are such that (j,i), (k,i) € E.

The proof is treelike if it has a proof-dag such that every i € [¢] has out-degree < 1

Note a proof-dag is a dag because (i, ) € E implies j < i. For emphasis, usual Resolution
proofs are sometimes called daglike.

Proposition 1.7.2. Let C be a set of clauses, C' a clause and { € N. The following are
equivalent.

1. There is a treelike Resolution proof of C' from C of length < £.

2. There is a Resolution proof of C' from C with a proof-dag isomorphic to a binary tree
of size < /L.

3. There is a binary tree T' of size < { and a map c from T to clauses such that

(a) if t is a leaf, then c(t) is an axiom or in C;

(b) if tOe T, t1 ¢ T, then c(t) is a weakening of ¢(t0);
(c) if t0,t1 € T, then c(t) is a cut of ¢(t0),c(t1);

(d) c(e) =C.

Proof. 2 = 1 is trivial. For 3 = 2, let ¢1,... ¢y list T such that ¢ < j if [¢;| > |t;|. Then
c(t1),...,c(tm) is a refutation of C with a proof-dag isomorphic to 7.

For 1 = 3 the idea is to start walking from C taking steps to one of the premisses. Since
in each step we have at most 2 possibilities, the walks are determined by binary strings
and these form 7. We now formalize this.

Let C1,...,Cy = C be a proof with proof-dag ([¢], E') such that every v € [¢] has out-
degree < 1. For a binary string ¢t = t;---t; with s < £ define v; < £ as follows — intuitively
v; = 0 means “fail”. If s =0, i.e., t =€, let vy := /0. If s >0 write t' :=t1--t,_1. If vy =0
or vy has in-degree 0 in ([{], E'), set v := 0. If vy has in-degree 1 in ([{], E), set v := 0 if
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ts = 1 and otherwise let v, satisfy (v, ) € E. If vy has in-degree 2 in ([{], E), let vy, 14 € [{]
satisfy (vg,v), (v1,v) € E and set v, == vy,

Let T be the set of binary strings ¢t with v, # 0. This is a binary tree and setting
c(t) == C,, satisfies (a)-(d).

To see |T| < ¢, it suffices to show that ¢ — v; is an injection on T'. Assume there is t € T
such that v; = vy for some ¢/ € T'~ {t}. Choose such ¢ of minimal length, and a witnessing
t’ for t. It is easy to see that vy < £ for all t"" # e. Hence both t,t’ are non-empty. Write
t=tbandt' =t'b. Ift_=t", then b+ b and clearly v; # vy. Sot_ #t’. By minimality of ¢,
v, # vy . But vy = vy has an edge to both v;_, vy, so out-degree > 2. Contradiction. O

Remark 1.7.3. In the proof of 1 = 3, the assumption of treelikeness is used only to show
that |T'| < . Without this assumption we get |T'] < 21 in (3). Interestingly, we shall prove
later that the exponential blow-up moving from a daglike to a treelike refutation can, in
general, not be avoided (Section 1.8.1).

We give a simple direct proof of completeness of treelike Resolution:

Proposition 1.7.4 (Treelike refutation completeness). Let n e N. If C is an unsatisfiable
set of clauses in n variables, then it has a treelike Resolution refutation of length 3-2™.

Proof. We verify Proposition 1.7.2 (c) for the binary tree
T:={te{0,1}*||f| <nfu{to|te{0,1}"}.
Then |T'| = 271 + 27 as claimed. For t = ¢;...t,, with m <n define
c(t) ={-"X1,...,~'" X, }.

Note c(e) = @ and c(t) is a cut on Xyy,q of ¢(t0),c(t1). For ¢ of length n let 3 be an
assignment with ¢ = (X1)---8(X,,). Then [ falsifies ¢(¢). Since C is unsatisfiable, there is
C' € C such that g falsifies C'. Then C < ¢(t). Define ¢(t0) := C. O

Exercise 1.7.5 (Treelike deductive completeness). Let C be a set of clauses and C' a clause
such that C £ C. Then there is a treelike resolution proof of C' from C of length O(2").

Exercise 1.7.6 (Search decision trees). Suppose you have an unsatisfiable set of clauses C,
the world hides an assignment, and you look for a falsified clause in C. How many values
do you need to uncover? A C-labeled decision tree (T,{) is defined like a decision tree
(Definition 1.3.15) but ¢ maps every leaf of T' to a clause from C (instead of 0 or 1). It
solves the search problem of C if B # £(t(5)) for every assignment /3.

1. For every treelike Resolution refutation of C there is one at most as long and with
proof-dag isomorphic to some binary tree 7" such that for some ¢, (T, /) is a C-labeled
decision tree that solves the search problem of C.

2. For every C-labeled decision tree that solves the search problem of C, there is a treelike
Resolution refutation of C with proof-dag isomorphic to 7T'.
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1.7.1 DPLL algorithms

DPLL stands for Davis, Putnam, Logemann, and Loveland.

Definition 1.7.7. A DPLL algorithm, given as input a set of clauses C, proceeds as follows.
1. if C = @ then output 1

else if @€ C, output 0

else choose a variable X occurring in C

recurse setting C < C[X/0]

if this recursive call returns 1, output 1

else recurse setting C < C[ X /1]

NS & e e

if this recursive call returns 1, output 1
8. else output 0

Here choose in line 3 refers to some to-be-specified algorithm that, given a non-empty set
of clauses C, outputs a variable occurring in C.

Exercise 1.7.8. Every DPLL algorithm decides

CNF-SAT
Input: a set of clauses C.
Problem: 1is C satisfiable?

Remark 1.7.9. In engineering practice, the choice of the subroutine choose can drasti-
cally affect the observed runtimes on real-life inputs. DPLL algorithms are a basic version
of so-called SAT-solvers, some of which are surprisingly fast on real-life instances. How-
ever, if P # NP, then there are no efficient DPLL algorithms. We shall prove later, without
relying on any unproven hypotheses like P # NP, that all DPLL algorithms must have even
exponential runtime (in the worst case).

We show that rejecting runs of DPLL algorithms “are” treelike Resolution refutations.

Theorem 1.7.10. If C is a finite unsatisfiable set of clauses, then the number of steps
of every DPLL algorithm on C, is at least as large as the minimal length of a treelike
Resolution refutation of C.

Proof. Every recursive call is determined by a binary string b;---b,, (for some w € N) and
has an associated sequence of variables Xi---X,,. It then either rejects in line 2 or chooses
a variable X, in line 3 and has two recursive calls in lines 4 and 6 determined by b;---,,0
and by--+b, 1. The call determined by b;---b,, recurses on C[ X1 /by, ..., X, /by]. Set

Cbl...bw = {—\lel, ceey ﬂwaw}.

If the algorithm does not reject in line 2, then it recurses. The crucial observation is
that then Cy,..;, is a cut of Cy,..p,0 and Cy,..p,,1 00 Xypi1.

If the algorithm rejects in line 2, then @ € C[X1/by,...,Xy/by]. This means that
[X1/b1,. .., Xw/by] falsifies some clause C' € C. This means C' € Cy,..p,. In this case
additionally define Cy, .., = C. Setting c(b) := C}, satisfies Proposition 1.7.2 (c). O
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1.8 Resolution lower bounds

In this section we give a natural example of a small set of clauses OP,, encoding the “Or-
dering principle” that has short daglike Resolution refutations but every treelike refutation
must be exponentially long. Second we give a natural example of a small set of clauses
PHP, encoding the “Pigeonhole principle” such that every daglike Resolution refutation
must be exponentially long. By Theorem 1.7.10 these results imply:

Corollary 1.8.1. For every sufficiently large n € N, every DPLL algorithm makes at least
29(n) many steps on input OP, or PHP,.

Our use of “exponential” is not precise: as PHP, and OP, have size m > n3, the lower
bound is actually only 22(m"*)

1.8.1 Separation of treelike and daglike Resolution

Recall, an order on a set S is a relation R ¢ S? that is irreflexive (i.e., (a,a) ¢ R for all
a € S) and transitive (i.e.,(a,b), (b,c) € R implies (a,c) € R for all a,b,c€ S). If S is finite,
it has a minimal element, so there is no function mapping any element to an R-smaller
one. This is expressed by the following set of clauses being unsatisfiable:

Definition 1.8.2 (Ordering principle). Let n € Nyy and R
Let OP, contain for every i,7,j', k € [n],j # j’, the clauses

5> Fij be variables for i, j € [n].

{=Ri}, {-Rij,~Rji, Ri},
{Fi17 s 7En}a {ﬂF’ij 4 ﬁﬂj’}, {—'Ej, Rﬂ}

Note OP, has O(n?) variables and O(n?) clauses.

Proposition 1.8.3. OP, is unsatisfiable for every n € Nyg.

Proof. Assume £ OP,. By the first group of clauses, R := {(4,7) € [n]? | B(R;;) =1} is
an order on [n]. By the second group, we get a function F' mapping i to j if 5(F;;) =1. F
maps every i € [n] to an R-smaller element. This is impossible. ]

Proposition 1.8.4 (Stalmark). For every n € N there are Resolution refutations of OP,,
of length O(n3).

Proof. For i,k € [n] let C% = {Ry;,..., Ri;}. We consecutively for k = n,...,1 derive all
Cl,...,C¥. Then C} = {Ry1} and a cut with {~Ry;} gives the empty clause.

To start derive C? for every i € [n—1]: cut {Fj,..., F;,} consecutively with with
{=Fij,R;;} for j=1,...,n to get {Ry;,..., Rn;} = CL.
Assume C}_|,...,CF | have been derived. For every i € [k] derive C} as follows. For

every j € [k] cut C},, on Ry with {=Rju1), ~Res)is Rﬂ} to get D;:= Ch U{-Rj(s1)}
Cut Cffl consecutively for j = 1,...,k with D; to get CF U {Rk+1),(k+1)}; @ cut with the
axiom {-R(+1)(k+1) ) gives C}.
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The refutation consists of the O(n?) input clauses, the O(n?) clauses C}, and, for every
i, k, additionally n clauses D;, and n intermediate clauses from the consecutive cuts. In
total, the proof has length O(n?). ]

Note this length is almost optimal because |OP,| > n3. We aim to show:

Theorem 1.8.5. For every sufficiently large n € N, every treelike Resolution refutation of
OP, has length > 2"/6,

For the proof we need the following combinatorial lemma.

Lemma 1.8.6 (Spira). For a finite binary tree T' there exists t € T such that T} := {t' € T |
t is a prefix of t'} has size
[IT1/3] < |To| < 2/T1/3.

Proof. The desired t is computed by the following algorithm.

1. t<e€

2. while |T;| > 2[T|/3

8. if t1¢ T or |Tyo| > |Th|, then ¢t « t0
4 else t < t1

5

output ¢

Obviously, the output ¢ satisfies |T;| < 2|T|/3. Assume |T3| < ||T]/3]. Notet # ¢, say ¢ = t'0
for some t' € T. Then t; ¢ T or |Ty| < |Tw| < ||T|/3]. Hence |Ty| < 2||T|/3] -2+ 1< 2|T|/3
(with the +1 counting ¢ € Ty). O

Proof of Theorem 1.8.5. Informally, the proof can be outlined as follows: given a refutation
of length ¢, represent it by a binary tree 7" and clause labeling c¢. Choose ¢t according to
Spira’s lemma. If ¢(¢) can be satisfied by a “good” (partial) assignment, do so and delete
T;. This gives a refutation with a new input clause c¢(t). Otherwise delete everything
outside T;. This gives a proof of ¢(t), a clause that is unsatisfiable by “good” assignments.
Repeat, always considering “good” assignments extending the current one. After O(log|T'|)
steps arrive at T” of constant size and a “good” assignment . Being “good” allows to
extend (' to a “good” assignment that satisfies all old input clauses. This is a contradiction
— provided the various extensions of “good” assignments exist. They do if £ is small.

The “good” assignments are [5; where 7 = iy---i5 € [n]® with s <n and pairwise distinct
iy. It is defined on R;; if i = 4,,j =i, for certain v, i € [s]; then it maps R;; to 1 if p < v,
and to 0 otherwise. It is defined on Fj; if i = ¢, for some v € [s —1]; then it maps Fj; to 1
if j =14,,1, and to 0 otherwise.

It should be clear that (5; does not falsify any clause in OP,,. A good extension of [3;
is a partial assignment [y where 7 is a prefix of 7. If ; is undefined on R;; or Fj;, then
there is a good extension 3 of 3; with [¢/| < s+ 2 that evaluates the variable: prolongue 7
by those of 7,5 that do not appear in 7.
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Assume OP, has a treelike refutation of length ¢. Choose T ¢ according to Proposi-
tion 1.7.2 (c). In particular, |T'| < /.

By a subtree of T we mean a set of the form {tot |t € T’} ¢ T for ty € T and a binary
tree T”; ty is the root of the subtree. The subtree is full if for all ¢ it contains either both
or none of £0,¢1, if both t0,¢1 € T'. Obviously, Spira’s lemma applies to subtrees.

We construct full subtrees 79,71, ... of T and tuples 7y,71, ... such that for all r:

(a) T and 1T “is” (satisfies (a)-(d) of Proposition 1.7.2 (3)) a treelike Resolution proof
of ¢(t7) from a set of clauses OP, UC".

(b) CT contains only clauses satisfied by f3;, .

(c) no good extension of [; satisfies ¢(¢") where ¢" is the root of 7.

We start with 70 := T and let 75 be the empty tuple; tY = ¢, C° = @. Assume 17,7, is
constructed. Choose t € T" according to Spira’s lemma and do the following:

— if there exists a good extension of 3; that satisfies ¢(t), then choose such g; ., with
[ir1] < [2] + 25 set T+ = (T N Ty ) u{t}; then C™+1 =Cru {t}, 171 = ¢.

— else set 7,41 :=7, and T :=T]; then C™* = C" "+ = ¢.

By construction [T+ < [T7|-||T7|/3]|+1 or |T+!| < 2|T"|/3. In both cases |T™+!| < 3|T"|/4
as long as [T7| > 100, so [T+ < (3/4)™+!¢. Fix the first r such that |T7| < 100. Then

r<[2.5logl].

We strive for a contradiction as follows. Consider those < 100 leaves of T labeled by a
clause C'in OP,, or an axiom {X,-X}. Consecutively choose good expansions to satisfy all
of them: if the clause has < 3 variables, choose a good extension that evaluates all of them
by prolonging the current tuple by < 6 points; since good assignments cannot falsify clauses
from OP, or axioms, it is satisfying. For a yet unsatisfied clause C; := {F}1,... F;,} € OP,,
the current tuple ends in ¢ or does not contain ¢; choose a new 5 and prolongue the tuple
by j or i j, to satisfiy F;; and hence the clause.

By (a) and (b), the result 8 satisfies all clauses labeling leaves of T™ and [¢/| < [z.| +600.
By strong soundness (Lemma 1.6.5), 5 satisfies ¢(¢7). This contradicts (c).

This contradiction needs (B to be well-defined. It is if |z,| + 600 < n. As [z, < 2r we
conclude 27 + 600 > n, so 5log ¢ + 2 + 600 > n. This implies the theorem. O

1.8.2 Haken’s theorem

Definition 1.8.7 (Pigeonhole principle). Let n € Nyy. Let X;; be a variable for i € [n + 1]
and j € [n]. PHP, contains for every i,i’ € [n+1],7 # ¢, and j € [n] the clauses

{Xila-"aXin}> {_‘Xija_‘ i’j}
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Note PHP,, has (n+1)n many variables and O(n3) many clauses. Intuitively, X;; being
true means “pigeon ¢ flies to hole j7. The clauses state that every pigeon flies to some
hole, and no two pigeons occupy the same hole.

Proposition 1.8.8. PHP, is unsatisfiable for every n € Ng.

Proof. Assume £ PHP,. For every i € [n+ 1] choose j € [n] such that that 5(X;;) =1~
it exists because 5= {X;1,..., Xin}. Let f:[n+1] = [n] be the function mapping i to the
chosen j. Then f is injective: otherwise there are i,i’ € [n+1],i # ¢’, and j € [n] such that

J=f(i)=f(7); then B(X,;) = B(Xi;) = 1, contradicting 8 £ {-X;;, - Xy} O]

Theorem 1.8.9 (Haken). For all sufficiently large n € N, every Resolution refutation of
PHP,, has length at least 27140,

Proof. Informally, the proof can be outlined as follows: show that every refutation of
length ¢ of PHP, contains “n-wide” clauses. Find a “good” partial assignment [ that
satisfies all “n-wide” clauses and apply it to the given refutation. Being “good” ensures
that the result is a refutation of PHP,, for some m < n. This refutations contains no
clauses that are “n-wide”. If m is sufficiently large, it contains no “m-wide” clauses, a
contradiction. A “good” [ yielding sufficiently large m exists if £ is small.

Let n € Nyg. A matching M is a bijection from a subset dom(M) <€ [n+1] onto a subset
im(M) < [n]. The partial assignment 3y is defined on X;; if i € dom(M) or j € im(M);
then it maps X;; to 1 if M (i) = j, and to 0 otherwise.

Claim 1: Let M be a matching and r :=|dom(M)|. Then PHP, 15y equals PHP,_, up to

renaming variables.

Proof. We show that the clauses in PHP,15); are as in PHP, but with ¢ ranging over
[n+ 1]~ dom(M) and j ranging over [n] ~ im(M).

Suppose { X1, ..., X 1168y is in PHP,15y. Then By does not satisfy {X;1,..., X},
so i ¢ dom(M). Then By falsifies X;; if and only if j € im(M). Hence { X1, ..., Xin}18m =
{Xij | j € n]~im(M)}.

Suppose {-X;;,~Xy; }1Bm is in PHP,18y. Then [y does not satisfy {-X;,-Xi,}.
Then j ¢ im(M) and i,i" ¢ dom(M). =

We are interested in assignments /3y, for maximal matchings M. Note im(M) = [n] and
dom(M) = [n+1] ~ip for some iy € [n+1]. In particular, 5y is total. Observe Sy = -X;
if and only if By E Xj; for some j' # j. For a clause C let the clause C' contain X;j if
X;j € C or =X, € C for some j # j'. Then By E C if and only if By & C. In particular,
C,C have the same supports: a set S € [n+ 1] is a support of a clause C if By = C for
every maximal matching M with iy, ¢ S. Let s(C') be the minimal size of a support of C.

Note [n + 1] is a support of any clause — trivially, because there are no matchings
defined on [n + 1]. It is the only support of the empty clause, so s(@) = n+ 1. An
axiom C := {-X;;,~X;;} is satisfied by all 8y, for maximal M, so s(C) = 0. An axiom
C:={Xij,..., X} has support {:} and s(C) = 1.

Claim 2: For every clause C' we have |C| > s(C)(n +1 - s(C)).
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Proof. 1f s(C) =n+1 or s(C) = 0 there is nothing to show, so assume 0 < s(C') < n and
let S be a support of C' of size s(C'). Let i € S and i’ € [n+ 1]~ S. Then there exists a
maximal matching M with iy, = 7 such that 8y # C, so Ba # C. Let M’ be the maximal
matching with 5 = i and M’(i) == M(i") and M’(i") = M (") for all i” ¢ {i,i"}. Then
S c dom(M'), so By & C, so By E C. Hence there is a variable in C' mapped to 1 by M’
but not by M. The only such variable is X;pziry, 50 Xiarry € C.

Thus, C' contains the pairwise distinct variables X;¢ny for (i,i") € S x ([n+ 1]~ S).

Key Claim: Every refutation of PHP, contains a clause C' with |C| > n2/9.

Proof. 1f C' is a weakening of C’, then s(C) < s(C”). If C is a cut of C’,C", or, more
generally, {C",C"} & C, then s(C) < s(C') +s(C"): if S’,S" are supports of C',C", then
S’u S is a support of C. We already noted that clauses C' € PHP,, have s(C') < 1 and
s(@) = [n+1]. Let C be the first clause in the refutation with s(C') > n/3. Then C is a
cut of clauses with smaller support, so n/3 < s(C') < 2n/3. By Claim 2, s(C') > n?/9. ~

Let C1,...,C, = & be a refutation of PHP,,.

Let V4 be the set of ((n+1)n many) variables and W = {v € [(]||C,| > (n +1)n/100}.
We claim that there exists X;,;, € Vi such that X, ;, € C, for > [W;|/100 many v € W,.
Otherwise there are < [Vi|-|W;]/100 pairs (X,v) such that X € V; nC, and v € W;. On the
other hand, there are > |Wi|- (n + 1)n/100 such pairs — a contradiction.

Let V5 be the set of X;; € V; with ¢, # 4,7 # j, and let W5 be the set of v € W, such that
C,, does not contain X;,;, and contains > (n+1)n/100 variables in V5. Note [Ws| < 0.99|W].
We claim that there exists X;,;, € Va that X,;, € C,, for > [W,|/100 many v € Wy. Otherwise
there are < [Va|-|W5|/100 < (n+ 1)n|Ws|/100 pairs (X, v) such that X € VonC, and v € W.
On the other hand, there are > |Ws|- (n + 1)n/100 such pairs — a contradiction.

We continue like this producing Wi, Wa, ... until W, = @. Then r <log(¢)/|1og(0.99)| <
70log(¢) because |W,| < 0.99" - || £ 0.997¢ < 1. Let M be the matching that maps i,
to j1,...and i, to j,., and is undefined elsewhere. Then for all v € W either 8y, E C,
or |C,16u| < (n +1)n/100. By the proof of Lemma 1.6.9, applying B to Ci,...,Cy,
we get a refutation of PHP,1[5y consisting of clauses C,15, for certain v € [¢] with
IC,1 8| < (n+1)n/100.

By Claim 1, this is a refutation of PHP,,_, up to a copy of variables. Up to copying,
we can assume dom(M)={n+1-r,....n+1} and im(M) ={n-r,...,n} and we indeed
have a refutation of PHP,_,. Let C be defined as C but in the variables of PHP,_,. By
the Key Claim (for n —r instead of n and " instead of 7), our refutation contains a clause
D with [D| > (n-r)2/9. Say, D = C,18y where v € [(]. It is easy to check that D c C,18y
(even = holds). Thus (n+1)n/100 > (n—r)?/9. If £ < 27140 we get a contradiction:

(n+1)n/100 > (n - 70log £)?/9 > (1 - 70/140)*n?/9 > n?/36. O

Remark 1.8.10. Originally, Haken had 577 instead 140 but this constant is of no interest
whatsoever and we make no effort to optimize it.



Chapter 2

First-order logic

This chapter introduces first-order logic and is structured similarly as the chapter on propo-
sitional logic. Following the outline in the Preface it defines syntax and semantics and then
semantic concepts in the canonical way. It proceeds with Gentzen’s sequent calculus and
then Resolution. As a slight deviation, in order to establish some initial intuition, it starts
defining structures, the “worlds” first-order logic talks about. Most, if not all, objects
of study in mathematics are naturally viewed as structures. An important example from
computer science is a database. In fact, it is Codd’s seminal suggestion dating 1970 to
identify databases with (typically finite) relational structures.

2.1 Structures

What is meant by the real numbers R? Is it the set of reals, the ordered set of reals,
the field of reals, the ordered field of reals or what? When defining an artificial language
talking about R it is necessary to make a choice. This is the choice of a language:

Definition 2.1.1. A language L is a set of relation symbols and function symbols; each
symbol has an associated arity r € N. Function symbols of arity 0 are constants.

An L-structure A is a pair (A, (s%)se) where A # @ is the universe and s¥ is the
interpretation of s € L in 2A:

— if s= Re L is an r-ary relation symbol, then R% ¢ A™;

— if s = f € L is an r-ary function symbol, then f%: A" - A.
If ce L is a constant, then ¢® maps the empty tuple to some a € A: we identify ¢® with a.
Notation: If L = {s,...,s,} we write an L-structure 2 = (A, (s%).z) as (A, s¥, ..., sd).
Examples 2.1.2.

1. Let L =@. Then R = (R) is the set of reals.

30
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2. Let L = {<} for a binary relation symbol <. Then R = (R, <*) is the ordered set of
reals on R where <% is the usual order on R.

3. Let L = {+,-,—,0,1} with +,- binary function symbols, — a unary function symbol,
and 0,1 constants. Then R = (R, +%, % R 0% 1M) is the field of reals where +% %
are addition and multiplication on R, = maps r € R to —r (additive inverse), and
0%:=0,1":= 1.

4. Let L ={+,-,—-,0,1. <}. Then R = (R, +%, % % 0% 1% <) with the interpretations
defined as before, is the ordered field of reals.

Definition 2.1.3. Let L be a language, L’ € L and 2 be an L-structure. The L’-reduct of
A= (A, (s*)ser) is the L'-structure

QH L' = (A, (Sm)seLl).
Conversely, 2 is an L-ezpansion of 2A1L’.

Example 2.1.4. The language of Peano arithmetic is Lps := {0, S, +,-,<} where 0,+,-,<
are as above and S is a unary function symbols. The standard model of arithmetic I has
universe N and interprets 0, +-, < by 0, addition, multiplication and order on N, and S by
the successor, i.e., S™: N — N is given by S™(n) =n + 1.

From now on we adapt our notation for (directed) graphs to the new formalism:

Example 2.1.5. Let E be a binary relation symbol. A directed graph is an { E'}-structure
® = (G,E®) where E® is irreflexive (i.e., (g,9) ¢ E® for all g € G). & is a graph if
additionally E® is symmetric (i.e., (g,¢’) € E® implies (g’,g) € E® for all g,¢' € G).

Here is a way how to see words as structures:

Example 2.1.6. Let A be an alphabet. Let Ly := {<}U{P, |a € A} where < is a binary
relation symbol and the P, are unary relation symbols. Let w = a;---a,, € A" be a word
(over A) of length n > 0. The word structure &(w) has universe [n] and interprets < by
the usual order on [n] and P, by the occurrences of a in w, that is,

P = fie[n]|a; =al.
Codd’s relational model of databases works as follows.

Example 2.1.7 (Relational database). L is relational if it contains only relation symbols.
A database is given by tables like

ID | Author Title Publisher Year

1 | Codd A Relational Model... ACM Press 1970 Item | €

2 | Gutenberg | Printing for dummies Mainzer 1452 1 1.90
3 | Caesar My life with Asterix SPQR -44 4 99.00
4 | Darwin Adam and Eve Vatican Press | 1862 3 8.99
5 | Codd Relational completeness... | Prentice-Hall | 1972
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This is viewed as a { Works, Price}-structure © where Works is a 5-ary relation symbol and
Price a binary one. The universe D of ® consists of all cell entries, say as words over the
usual alphabet and rational numbers. Rows display tuples in Works® and Price®, e.g. (4,
Darwin, Adam and Eve, Vatican Press, 1862) € Works® and (1, 1.90) € Price®.

The column names ID, Author,...are called “attributes” and are not (but could) be
incorporated in ®; ID exemplifies a so-called “key” used to link entries across tables.

Example 2.1.8 (The world of efficient algorithms). We define a structure & with universe
{0,1}* that interprets the language PV. PV contains an r-ary relation symbol @ for every
efficient algorithm A that decides an r-ary relation @ ¢ ({0,1}*)". We let Qf = Q.

Further, PV contains a r-ary function symbol f, for every efficient algorithm A that
computes a function from ({0,1}*)" to {0,1}*. We let f{ be this function.

For example, there is a binary relation symbol <e PV such that <¢ contains pre-
cisely those pairs (a,b) € ({0,1}*)? such that a preceeds b in the lexicographic order:
€,0,1,00,01,11,000,.. ..

By Corollary 1.5.12 there is a unary relation symbol () € PV such that Q¢ is REACH-
ABILITY, that is, Q¢ contains precisely those a € {0,1}* that encode (in some reasonable
sense) triples (G, s,t) such that G is a finite directed graph with a path from s to t.

Conceptually, two structures are “the same” if they are isomorphic:

Definition 2.1.9. Let L be a language and 2,8 be L-structures with universes A, B. A
function 7 : A — B is an homomorphism from 2 to B, symbolically 7 : 2 - 9B, if for all
r € N, all r-ary relations symbols R € L, all r-ary function symbols f € L and all a € A™:

—aeR* = r(a)e RY;
- w(f*(a)) = f*(x(a)).

Here, we write 7(a) = (w(a1),...,m(a,)) for a = (ay,...,a,) € A7. If above we require
< instead of =, and 7 is injective, then it is an (algebraic) embedding of A into B,
symbolically 7 : 2 —, ‘B.

If 7 is a bijective embedding, then 7 is an isomorphism from 2L onto B, symbolically
m: A 2B, If such 7 exists, A and B are isomorphic, symbolically A = 9B.

The reader has seen ad hoc definitions of homomorphisms of groups, rings, fields, graphs
and what not. We trust she notices that the above unifies all these notions.

Exercise 2.1.10. Let K be a field and L := {+,-,0} u K with binary +, unary —, con-
stant 0 and every A € K a unary function symbol. K-vectorspaces are L-structures in the
straightforward way. Show that homomorphism means linear map.

Exercise 2.1.11. Show that a graph &' is isomorphic to an (induced) subgraph of a graph
® if and only if there is an injective homomorphism (an embedding) of &’ into &.
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Exercise 2.1.12. Let bin: N — {0,1}* map n € N to its binary expansion b;---b, where ¢ :=
[log(n+1)] and n = 3.5, b;- 261, Conversely, let num: {0,1}* - N map a = ay--ap € {0, 1}
to n € N such that bin(n) = lay---ayq.

Show that bin: I -, 1L and num: &1L -, N for a suitable L ¢ PV.

We now unify the notions of induced subgraph, subgroup, subring, subfield.,. . .

Definition 2.1.13. Let L be a language and 2, B be L-structures with universes A, B. 2
is a substructure of 6 and B is an extension of A, symbolically 2 ¢ B, if A< B and for
all € N, all r-ary relations symbols R € L, all r-ary function symbols f € L:

~ R¥=R®n A
_ Ql:f%»]Ar'

Exercise 2.1.14. The following are equivalent.

1. There is an embedding of 2 into B.
2. 2 is isomorphic to a substructure of 3.

3. B is isomorphic to an extension of 2.

2.2 Syntax

Let L be a language. We define first-order formulas as words over the alphabet
), (, N, =, 375,]}0,1’1, Ce
plus the symbols in L; Var:= {xg,x; ...} is the set of (individual) variables.

Definition 2.2.1 (Syntax: terms). The set of L-terms is the smallest set 7" of words such
that VarcT and

if reN and f € L is an r-ary function symbol and ¢, ...t € T, then ft;---t. €T.

In particular, if c € L is a constant, then c is an L-term.

Notation: for better readability we sometimes use infix notation for binary function
symbols f € L, that is, we write (¢ f t’) instead of ftt'.

Example 2.2.2. In the language Lpy of Peano arithmetic, e.g.
“+ xor1Te, -+ 0x1 + 2551
are Lps-terms. Using infix notation they read

((xo+ 1) 22), ((0+x1)-(x5+Sx71)).
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Exercise 2.2.3. Find 4 different ways to assign arities to functions symbols +, - such that
-+ xor122 is an {+,-}-term. For a certain choice of arities, can ++ or - + + be {+,-}-terms?

Lemma 2.2.4 (Unique readability of terms). For every L-term t, either t = x for some
x e Var ort = fti--t, for some r € N, some r-ary functions symbol f € L and L-terms
t1,...,t.. In the second case, r, f and t,...,t, are uniquely determined.

Proof. 1t is easy to see that exactly one case holds. For uniqueness assume
ftl...tr = gul...us
for f,g € L function symbols and L-terms ¢;,u;. Then f =g, so r = s, and it suffices to
show t; = uq,...,t. = u,. This follows from the
Claim: no proper prefix of an L-term is an L-term.

Assume there is an L-term t with a proper prefix ¢’ that is an L-term. Choose such ¢
of minimal length, and a witnessing ¢’ for it. Then ¢ is not a variable nor a constant since
t" would then be the empty word and this is not an L-term. Hence t = ft;---t, with r > 0.
Then ¢’ = ft}---t.. Since t # ¢’ there is a minimal ¢ € [r] such that ¢; # t. Then ¢, is a proper
prefix of t; or vice-versa. But both ¢;,¢; are shorter than ¢, a contradiction. O

Definition 2.2.5 (Syntax: formulas). The set of L-formulas is the smallest set F' of words
such that

(F1) if to,t, are L-terms, then ty=t; € F};

(F2) if r ¢ N and R € L is an r-ary relation symbol and ti,...,t, are L-terms, then
Rtyt, € F;

(F3) if p € F', then —p € I
(F4) if p,9 € F, then (p A1) € F;
(F5) if o € F and z € Var, then Jzp e F.

Lemma 2.2.6 (Unique readability of formulas). For every L-formula ¢ exactly one of the
following holds.

1. ¢ = to=t1 for some L-terms to,t;; then @ is atomic.

2. ¢ = Rty--t, for somer e N, some r-ary relation symbol R € L and L-terms ty, ... t,;
then ¢ s atomic.
3. ¢ = = for some L-formula 1; then ¢ is a negation (of ©);
4. ¢ = (Y Ax) for some L-formulas 1, x; then ¢ is a conjunction (of ¢ and x);
5. ¢ = 3z for some x € Var and some L-formula 1.
Moreover, in case 1, ty,t1 are uniquely determined; in case 2, r, R, ty,...,t. are uniquely

determined; in case 3, Y 1s uniquely determined; in case 4, 1, x are uniquely determined,
in case 5, Y is uniquely determined.

Exercise 2.2.7. Prove this.
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2.3 Semantics

Let L be a language and 2 an L-structure with universe A.

2.3.1 Semantics of terms

Definition 2.3.1. An assignment (in ) is a function g : Var - A. For an L-term ¢ we
define t*[ 3], the value of t in A under (3, by recursion on t:

— if t = x for somex € Var, then t* := B(¢);
— if t = fty--+t, with r € N, f € L an r-ary function symbol, and L-terms tq,...,t,, then
(6] = (AL, - 17 [6])-

As usual this definition should be read as a specification of a recursive algorithm.
Example 2.3.2. Let 91 be the standard model of arithmetic and § given by 5(x;) =i+ 1.
(+zo-2122)"[B] = +"(2Q'[B], (w122)M[B]) = +"(B(wo), " (2T[B], 23[8]))

+1(L,(B(21), Bw2))) = +7(1,-7(2,3)) = 7

Lemma 2.3.3 (Coincidence lemma for terms). Let t be an L-term and let V € Var contain
all variables occurring in t. Let 5,7 be assignments in A such that B1V =~+1V. Then

Proof. We proceed by induction on ¢, that is, we show:

1. the claim holds for variables;

2. if reN and f € L is an r-ary function symbol and the claim holds for ¢4,...,t,., then
the claim holds for fty---t,.

1 is obvious. For 2 argue
(ftr-t)*[B] = fFAE1B), -, 81 08]) = FA(H Y], - 81 10]) = (fta ) ¥ D],
where the middle equality follows because v, 5 agree on the variables in the ¢;. ]
Definition 2.3.4. An L-term is closed if no variable occurs in it.

Notation: if ¢ is closed, the value t¥*[3] does not depend on 8 and we write t* for it.

Writing ¢ = ¢(x; ..., z;) means the variables in ¢ are among x,...,x;. We set
tm[ala s ,Clk] = tm[ﬁ]
where [ is an assignment in 2 with G(x1) = aq,...,5(zx) = ax. Note this is well-defined,

i.e., independent from the choice of 3, by the coincidence lemma.
For a = a;---ay, € A* write B[Z/a] for the assignment that maps x; to a; and every other
variable y to 8(y). Note t*[a] = t*[S[z/a]] for every assignment [3.
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Lemma 2.3.5. Assume B c2A. Then t®[S] = t*[5] for every L-term t and every assign-
ment B in B.

Proof. If t = x is a variable, then t®[3] = B(x) = t¥*[8]. If t = ft;--t,. and the clai holds

for the £, then 12[3] = fR(2[B),... 12(B]) = (LB, .., i2(B]) = (8] where the
replacement of f% by f% uses B c . O

Exercise 2.3.6. Assume B is an L-structure and 7 : 8 —;, 2l a homomorphism. Then for
every L-term ¢ and every assignment 3 in B: 7w(t®[S]) = t*[w o S].

Lemma 2.3.7. Let Ay € A and assume Ay + @ or L contains a constant. Then there is a
unique substructure B ¢ A with universe

B= {tm[ﬂ] |t L-term ,(: Var— Ao}.

Further B ¢ € for every € € A with universe C 2 Ay. We write (Ag)* for B and say B is
generated by Ag in 2.

Proof. Uniqueness is clear: every B € A is the universe of at most one substructure of 2,
namely the one with interpretations given by the restrictions of the interpretations in 2.
For existence we only need that these restrictions “live” on B: f*: B" — B for every r € N
and every r-ary function symbol f € L. Let by,...,b, € B, say b; = t*[3;]. We can assume
the t; have disjoint variables (otherwise make copies). Then there is § that agrees with
all B; on the variables in ¢;. By the coincidence lemma for terms, t*[3;] = t*[3]. Then
f2(by,...,0.) =t¥[B] for t:= fti--t.. Hence, f2(by,...,b) € B.

Given € ¢ 2 with C' 2 Ay, first note B € C: given b € B choose suitable ¢, 5 such that
b =t*[B]; then b =t¢[S] by the coincidence lemma for terms; hence, b€ C.

Then B ¢ € follows easily. E.g., for an r-ary relation symbol R € L we have R® =
R*nB'=(R*nC")nB"=R*nDB". O

2.3.2 Semantics of formulas

We define truth by Tarski’s T-conditions for first-order logic.

Definition 2.3.8. For an L-formula ¢ and an assignment [ in 2l we define 8 satisfies ¢
in A, or ¢ is true in A under B, symbolically 2 = [ 5] by recursion on :

(T1) if ¢ = to=t; for L-terms to,?;, then:
Ak o] = t5[8]=1[8];

(T2) if ¢ = Rt,-t, for r e N, R e L an r-ary relation symbol and L-terms tq,--, ¢, then:

Arp[B] <= ((1[B],....17[B]) e BY;
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(T3) if ¢ = -1 for some L-formula 1, then:
AE @[] — A#Y[B];

(T3) if ¢ = (¥ Ax) for L-formulas 1, x, then:

Ak p[8] < both A= y[F] and A= y[B];

(T4) if ¢ = Jzep for some x € Var and L-formula 1), then:

AE p[f] < thereisac A: AE ¢[B[x/a]]

Notation: for L-formulas ¢, the abbreviations (¢ v ), (¢ = ©), (¢ <> 1) are defined as
in propositional logic. Further,
Vep = -3dz-p.

Then 2A £ Vo[ 8] if and only if for all a € A: A= [B[z/a]].

Example 2.3.9. Let & = (G, E®) be a graph, § an assignment in & and
Q= EIxOEle(E:EOxl AN ng(E.fE().TQ N E.Tlxg)).
The following are equivalent to & = ¢[3].

there are g, g1 € G: & £ (Exoxy A Jxo(FErozy A Exi29))[Bl2071/9091]]
there are go,g1 € G: 6 = Exozi[f[xor1/9091]]
and & £ 3xo(Frora A Exi129)[8[2021/9091]]

there are go, g1 € G: (B[xor1/g9091](x0), Bl20x1/9091](21)) € E®
and there is go € G : & = (FExore A Exi29)[7] for v := flxex122/909192]
there are go, 91,92 € G: (g0, 91) € E®

and (y(z0),7(22)), (7(21),7(22)) € E°
there are go, g1, 92 € Gt (90, 91) (90, 92), (91, g2) € E®
& contains a triangle.

Note & E @[] is independent of 5. The reason is that all variables are quantified.

Definition 2.3.10. For every L-formula define the set free(y) of free variables of ¢ by
recursion on :

— if ¢ is atomic, then free(y) is the set of variables occurring in ;
— if ¢ = <) for some 1), then free(y) := free(y);

— if o = (¢ A x) for some v, x, then free(y) := free(v)) U free(x);

if p = Jz1) for some ¢ and z € Var, then free(y) = free(v)) \ {x}.
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Example 2.3.11. Let E be a binary relations symbol and ¢ = (3zqEzory A I Fx130).

free(p) = free(JzgExgry) U free(IxgExixg) = ({xo, 21} N {mo}) U ({z1, 0} N {22 }) = {x0, 21}

Lemma 2.3.12 (First coincidence lemma). Let ¢ be an L-formula and 3,7 assignments

in A such that 51 free(yp) = y1free(p). Then

AEp[B] = AEp[y]

Proof. We proceed by induction on ¢, that is, we show:
1. the claim holds for atomic L-formulas;
2. if the claim holds for 1, then also for —);
3. if the claim holds for v, y, then also for (i A x);
4. if the claim holds for v, then also for Jz.

For 1, consider an atomic L-formula of the form Rt;--t,. Then ¢*[S] = t*[vy] by the
coincidence lemma for terms, so A = Rt;--t,.[f] and A & Rty--t,.[f] are equivalent to
(B8], .., t2[B8]) = (7], ..., t2[v]) € R*. The case ty=t; is similar.

2 and 3 are trivial. For 4, let ¢ = 3¢ and argue

AE p[y] < thereisacA: AE=Y[Blz/a]]
< thereisaec A: A Y[y[z/a]] <= AE=o[7];

for the middle equivalence note that v[x/a], 5[x/a] agree on free()) c free(p) u{x} if B,
agree on free(yp) and we assume the claim holds for . O

Lemma 2.3.13 (Second coincidence lemma). Let L' € L and ¢ be an L'-formula and (3
and assignment in 2A. Then

AEp[f] <= AL = ¢[F]

Proof. A straightforward induction on terms shows t2[3] = t*1'[ 3]. The claim then follows
for atomic . The cases ¢ = =), (1 A x) are easy. The case ¢ = Jx1) is also easy:

AE @[] < thereisaecA: AE=YP[[[z/a]]
< thereisac A: AL Ey[f[z/a]] <= WL = p[F]

where the middle equivalence follows from the inductive assumption that our claim holds
for ¢ (and all assignments). O

Notation: Writing ¢ = p(z1,...,x) means free(p) € {x1,...,zr}. Wesay a = (ay,, ax) €
AF satisfies o(T) in A and write

Qlt:go[al,...,ak]

to mean 2A = p[S[x/a]] for some assignment [ in 2.
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Remark 2.3.14. In database theory, first-order logic is referred to as the relational cal-
culus. A notational variant is the relational algebra. Many declarative languages to spec-
ify database queries have been suggested, and those translatable to first-order logic are
called Codd complete. The most important one is SQL and has higher expressive power.
SQL can express connectness of graphs and we shall see later that first-order logic can’t
(Example 2.6.18). Another important query language is DATALOG. It can express con-
nectedness but not all first-order queries.

Exercise 2.3.15. Recall ® from Example 2.1.7. Write formulas ¢(z), ¢ (z) such that p(x)
is satisfied in ® by precisely the authors of books without a price, and 1 (x) by those who
wrote more than one book. Expand ® by interpreting a binary relation symbol < by the
usual order <® on the rational numbers in D. Write a formula ¢ (x) satisfied by exactly
the title of the most expensive book.

Exercise 2.3.16. Write an Lps-formula p(z,y) such that (p,q) € N? satisfies ¢(x,y) in
N if and only if (p,q) is a prime twin. Write an L pa-sentence that is true in 9 if and only
if Goldbach’s conjecture is true.

Definition 2.3.17. An L-sentence is an L-formula ¢ with free(p) = @. Then we say 2
satisfies p or o is true i A or A s a model of ¢, symbolically

AE o,

if A = [5] for some (equivalently, every) assignment 5 in 2. A theory T is a set of
L-sentences. 2 is a model of T if A =T, i.e., A= ¢ for all peT.

Exercise 2.3.18. Recall L = {+,-,0} u K from Example 2.1.10. Write an L-theory T
whose models are precisely the K-vectorspaces.

Exercise 2.3.19 (Isomorphism lemma). Let 2,8 be L-structures and 7 : 2 = 8. For all
L-formulas and assignments 8 in A: A& ¢[f] < Bk p[rof].

Definition 2.3.20. An L-formula is quantifier free if 3 does not occur in it.

A universal L-formula has the form YZyp where T = z1---xy is a k-tuple of variables for
some k € N and ¢ is quantifier free; here we write VZ instead Vzq---Vxy.

Similarly, an existential L-formula is one of the form 3Z¢ for quantifier free ¢.

Exercise 2.3.21. Let A< ‘B and 8 be an assignment in 2. Show:

1. If ¢ is quantifier free, then: A= p[B] <= B E p[H].
2. If ¢ is universal, then: B E p[f] = A& p[S].
3. If ¢ is existential, then: A E ¢[f] = B = p[F].

Exercise 2.3.22. Let ¢ be a universal L-sentence. Then 2 £ ¢ if and only if (A4g)* E ¢
for all finite @ + Ay € A.
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2.4 Semantic concepts

Let L be a language.
Definition 2.4.1. Let ¢, be formulas and ® a set of formulas.

1. ¢ is satisfiable if A = p[F] for some L-structure A and some assignment § in 2.
2. @ is valid if A = p[F] for every L-structure 2 and every assignment § in 2

3. @, are (logically) equivalent, symbolically ¢ =, if (¢ <> 1)) is valid.
4

. @ is satisfiable if there exists an L-structure 2 and an assignment § in 2 such that
A P[J], ie., AE x[B] for all x € .

5. @ (logically) implies ¢, symbolically ® & ¢, if 2 = p[5] for every L-structure 20 and
every assignments [ in 2 with 2 = ®[5].

Remark 2.4.2.
1. ¢ is valid if and only if = is unsatisfiable.
2. du{p}Eif and only if ® £ (¢ > ).
3. ® = pif and only if ® U {-y} is unsatisfiable.
Example 2.4.3. Let ¢, be L-formulas and z ¢ free(y). Then

-Jdxp =Vr-p, =Vrp=Jr-p

dz(p v ) = (Fze v Izy), V(e ay) = (Yap AVay),
(o n3zp) = 32(0ny), (pvIzy) =32(p Vi),
(pAVzp) =V2(pAy), (pvVay) =Vz(p V).

2.4.1 Prenex forms

Definition 2.4.4. An L-formula is prenez if it has the form

Q171 Qrrpp
where k € N, the z; are pairwise distinct, the (); are 3 or V, and ¢ is quantifier free.
Proposition 2.4.5. Every L-formula is equivalent to a prenex one.

Proof. We proceed by induction on ¢. Abbreviate Qy;---Qryr by Qy. If ¢ is atomic,
then it is prenex (with k& = 0). If p(Z) = =(Z), by induction ¥(z) = Qyx(z,y) for some
quantifier free x(z, 7). Then ¢(z) = -Qyx(Z,7). Let Q'y be obtained from Qg by swapping
3/V. Then ¢(z) = Q'y~x(Z,7) follows using row 1 in Example 2.4.3.

If o(2) = (Yo(Z) A Y1(Z)), suppose ¥o(Z) = QoYoxo(Z, %o) and ¥1(Z) = Q1yix1(Z,91)-
Let g, y; be copies of ¥,y consisting of variables that do not occur in the formulas. Let
x1(Z,7;) be obtained form x;(Z,y;) by replacing the variables 7; by g;. It is easy to
check that Q171x1(Z,91) = Q1y;x1(Z,¥7). Similarly, QoYoxo(Z, o) = Qo¥yxo(Z;¥p). Then
o(Z) = Qouo@Q17; (xo(Z, 7)) A xa1(Z,7;)) follows using rows 3 and 4 in Example 2.4.3. [
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Example 2.4.6. This proof implicitly specifies an efficient recursive algorithm computing
equivalent prenex formulas. Given ((IyExy A -3xExy) A -VyFEyx) it works as follows:

(FyExy AVr-Ezy) A Jy-Eyx)
(Fy'Exy’ AV2'-Ex'y) A Jy-FEyx)
(y'Va'(Exy' A -Ex'y) A Jy-=Eyzx)
(Fy'Va'(Exy' A =Ex'y) A Jy"-Ey"x)
Jy'Va' Iy ((Exy' A -Ex'y) n=Ey'z)

2.4.2 Tautologies

We now aim to show that equivalences observed for propositional logic continue to hold.
More precisely, e.g. the equivalences in Example 1.3.4 hold for first-order formulas ¢, ¥, x.

Definition 2.4.7. An L-formula ¢ is a tautology if there is a propositional tautology «,
say in propositional variables X := X;---X,, such that ¢ is obtained from replacing the
propositional variables by L-formulas 1) = v;---1),,. More precisely, this means ¢ = a[X /1]
defined by recursion (writing some extra parentheses):

Xil X[9] =i, (ma)[X /9] = ~(en[ X [P]), (a0 nan)[X /0] = (ao[X/¥] A aa[X/0]).

Example 2.4.8. E.g. (JyVaeExry — VrIyExy) or (xo=xo vV —x1=21) are valid but not
tautologies. Tautologies are e.g. (zo=xgV-xo=1g) or (VroFEror, - ((3x7Ex707A-EX129) >
V.ToEI(].Z'l)) — take o := (Xl g (XQ - Xl))

Example 2.4.9. The equality axioms Eq; (for language L) are valid and not tautological;
these are for r € N and r-ary function symbols f € L and r-ary relation symbols R € L:

Vo x=x, Vey(zzy - y=z), Yaeyz((x=y Ay=z) - x=2),
vxl"'xryl"'yr((/\;;l Ti=y;) fxl"'-rrifyl"'yr)a
Varzyryr (AL 2i2y:) = (Raya, > Ryry,)).

Proposition 2.4.10. Tautologies are valid.

Proof. In the notation above, show for every L-structure 2l and every assignment (5 in 2:

Ae ([ X/P]D[B] = BpopEa

where [, Is a propositional assignment that maps X; to 1 if 2 & ;[ 8], and to 0 otherwise.
This is a trivial induction on a. [

Definition 2.4.11. An L-literal is an atomic L-formula or a negation thereof. A DNF
is an L-formula of the form V], /\;7’;'1 Aij, a CNF'is an L-formula of the form AL, \/;7’;'1 Aij
where n,n; € N and the \;, \;; are L-literals.
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Corollary 2.4.12. Every quantifier free L-formula is equivalent to both a DNF and a CNF.

Proof. Let ¢ be quantifier free. It can be seen as a propositional formula where the
propositional variables are atomic L-formulas. More precisely, ¢ = a[X/¢] where « is
a propositional formula and v is a tuple of atomic L-formulas. If (o < ') is a valid
propositional formula, then (a < o/)[X/¥] = (a[X /] < /[ X/¢]) is a valid L-formula
by Proposition 2.4.10, so a[ X /1], /[ X /1] are equivalent L-formulas. By Corollary 2.4.12
a’ can be chosen as a propositional DNF or CNF. O]

Exercise 2.4.13. Replacing within a subformula occurrence ¢ by an equivalent formula y
leads to an equivalent formula. Prove this as follows. Let P ¢ L be a 0-ary relation symbol,
¢ an Lu {P}-formula and ¢, x L-formulas. Let ¢[P/v] be obtained from ¢ by replacing
every occurrence of P by 1. Define this by recursion on ¢. Then prove

Y=x = @[P[v]=p[P[x].

2.5 Skolemization

Let L be a language and 2 an L-structure.

2.5.1 Substitutions

Informally: suppose you have a formula ¢(z) =...2...z..., and a term s. Substituting s
for x gives p[x/t]:=...t...t.... The truth of ¢[x/t] should be equivalent to the element
denoted by s satisfying ().

Some care is needed here: let § be an assignment in A, ¢(z) := Vy x=y and ¢ := y.
Then ¢[z/t] = Vy y=y is a valid sentence, so true in 2. The “element denoted by t” is
t*[ 8] = B(y) =: a. That it “satisfies p(x)” means Ak p[a] — if and only if A = {a}.

Intuitively, the problem is that a variable in ¢ gets quantified within ¢ after substitution.
We now proceed formally and carefully verify a corrected version of the initial intuition.

Definition 2.5.1. A substitution is a function o with finite domain dom(c) € Var and
values in the set of L-terms. For an L-term ¢ define t° by recursion:

— if t =y is a variable, then y7 := o(y) if y € dom(c), and y7 =y otherwise.
— it t = fty---t, for some r €N, f e L and ¢4,...,%,, then t7 := ft{---t°.
For an L-formula ¢ define ¢? by recursion:
— if ¢ = tp=t; for some ty,%;, then @7 := 1§ = t7;
— if ¢ = Rt;--t, for r-ary R € L and L-terms ¢;, then @7 = Rt{--17;
— if o = =) for some v, then ¢ := —1)7;
— if ¢ = (¢ A x) for some ¥, x, then ¢7 := (7 A x7);



CHAPTER 2. FIRST-ORDER LOGIC 43

— if ¢ = Jyap for some ¢ and y € Var, then 7 = Iy for o’ = o1 (dom(c) ~ {y}).

If z1,...,2 lists dom(o) and t; := o(x;) we denote o by [z1/t1,...,zx/t;] and @7t by
oleifty, .. xefte], t{e[th, ... 2k fty]. Further, if o = (21, ..., 2k, T) we write
o(ty, .t T) =,

Note substitution is “simultaneous”: Fxy[z/y,y/z] = Eyz and (Exy[z/y])[y/z] = Ez=.
Definition 2.5.2. Let x be a variable, ¢t an L-term and ¢ an L-formula. Recursively define
x 1s free for t in :

— x is free for t in every atomic L-formula;

— x is free for t in —¢ if and only if x is free for ¢ in ;

— x is free for t in (¢ A x) if and only if x is free for ¢ in both ¢ and y;

— x is free for ¢ in Jy1p if and only if either x =y, or, y # x and z is free for ¢ in ¢ and
y does not occur in t.

Observe that if ¢ is closed, then x is free for ¢ in ¢ for all z, ¢.

Lemma 2.5.3 (Substitution). Let x be a variable, t an L-term, 5 an assignment in 2 and
a:=t¥p] € A.

1. For every L-term s: (s[z/t])2[58] = s¥[Bz/a]].
2. For every L-formula ¢ with x free fort in ¢:

Ak (pla/t)B] <= Ar¢|Blz/a]].

Proof. 1 is proved by a straightforward induction on t. We prove 2 by induction on ¢. If ¢
is atomic, the claim follows from 1: e.g., if ¢ = to=t; then the L.h.s. means (to[z/t])*[5] =
(t:[z/t])*[B],and the r.h.s. means ¢2[S[z/a]] = t3[S[z/a]]; these are equivalent by (1).

The cases that ¢ is a negation or a conjunction are easy. Suppose ¢ = Jy. In case
y=x, p[x[t] = p and we have to show A £ p[[] <= A = p[B[x/a]]. This follows from the
first coincidence lemma because x ¢ free(y).

So assume y # . Then z is free for ¢ in ¢ and y does not occur in t. Then ¢[x/t] =
Jy(v[x/t]), so A E (p[x/t])[F] if and only if A = (Y[z/t])[1s] for some b € A where
Y = B[y/b]. By induction this is equivalent to

A Y[ wle/t*[w]]].

But by the coincidence lemma for terms, t*[y,] = t*[8[y/b]] = t*[5] = a, so Y[z/t*[]] =
(Bly/bD[x/a] = (B[z/a])[y/b] as y # x. Thus, the above is equivalent to

A e O[(Blz/a))y/0]].
That this holds for some b€ A means 2 = Elyw[ﬁ[x/a]]. O
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Exercise 2.5.4. Let ¢ be an L-formula, x € Var and ¢ an L-term.

1. Rename bounded variables to get ¢’ equivalent to ¢ such that z is free for ¢ in ¢'.
2. If x is free for ¢ in p(z,), then (@(t,z) - Jzp(r,x)) is valid.

Exercise 2.5.5. Let 7" be an L-theory, ¢(Z) an L-formula, and ¢ a tuple of constants
outside L. Show that T = Vzp(z),T E ¢(Z) and Tk ¢(¢) are equivalent.

2.5.2 Skolemization

Definition 2.5.6. Let ¢(Z) be a prenex L-formula, i.e., it is of the form

VfﬁfUlszE'yQkaakaka@D(fa jla ylw,i?)y?v cee 7jk7yk‘7jk+1)

where k € N, ¢ is quantifier free, the variables displayed are pairwise distinct, and some
tuples z; may be empty. Let r; be the length of Z; (r; = 0 is allowed).

Let fi,...,fx ¢ L be function symbols; the arity of f; is r; + -+ r;. Let o be the
substitution y; — f;z1---x;. A Skolemization of ¢ is the Lu{fi,..., fx}-formula:

Sk e o 0O — S 2 S - Y 2 =
©7 = VI T = VI Th ¢($7I17 JiT1, Ta, faT1Zo, ..., Tk, [ET1-Tk, l‘k+1)-

The notation 5% suppresses the choice of new function symbols.

Example 2.5.7. Continuing Example 2.4.6 for ((JyExy A -3zExy) A -VyEyzx) gives a
Skolemization Vz/(( Ezc A -Ex'y) A -E fa'x) for a constant ¢ and unary f.
Another equivalent prenex formula is computed

((JyExy A -3xExy) A =VyEyz),
Va'((JyExy A ~Ex'y) A -VyEyx),
Va'3y' ((Exy' A -Ex'y) A =YyEyz),
Va'3y' " ((Exy' A -Ex'y) A Ey"x),

and gives a Skolemization Va'((Exfx' A ~Ex'y) A Egx'z) for unary f,g.

Example 2.5.8. We write the group axioms with a ternary relation P for the graph of
the group operation and ~ skolemize with binary g, unary ¢ and constant e:
Existence of values (uniqueness omitted): Vry3zPxyz ~ Prygry.

Vayzuvw((Pryu A Pyzv A Prow) —» Puzw)
Vayzuvw((Pryu A Pyzv A Puzw) - Prow)

Jz(VuPzuu A VyIzPzyx)
= JxVyIzVu(Pruu A Pzyx) ~ Vyu(Peuu A Piyye)

Associativity:

Left neutral and left inverse:

We see that Skolemization introduces symbols for the group operation, inverse and neutral
element — for suitably chosen prenex forms.
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Lemma 2.5.9. Let ¢ be a prenex L-sentence.

1. (% > ) is valid.

2. Every model of ¢ has an expansion to a model of 5.
In particular, ¢ 1is satisfiable if and only if so is ©*.

Proof. We claim that for every L-formula ¢(z,Z,y) such that y is free for fz in ¢:

(a) (VZ(ely/fT]) = YZIyyp) is valid;
(b) if 2 & VZ3Iyp[S] for some L-structure 2 and assignment /3 in 2, then there is an
L u{f}-expansion 2" of 2 such that A’ = Vz(p[y/fz])[B].

(a): ((ply/fz]) = Jyp) is valid by Exercise 2.5.4. (b): suppose 2 £ VzIyp[S] and let
b:=3(%). Let A be the L u{f}-expansion of 2 that interprets f by a function that maps
a to an a with 2 = (2, 7,y)[b,a,a]. Note 2 & ¢[B[z/a,y/a]] for a = (fz)¥[B[z/a]]. By
the substitution lemma, 2" = (¢[y/fz])[B[z/a]].

We prove 1 for formulas ¢ of the form displayed above by induction on k. If k£ =0, then
©% = . For k>0 let p_ be p with VZ;3y; deleted. Note

o = (Vai (o Ty /fa)) ™

Hence, by induction, (% - VZ1(@_[y1/fZ1])) is valid. Since also (VZ1(¢_[y1/fT1]) = @)
is valid by (a), the claim follows.

For 2, we show for every 2, 5 there is an expansion I’ of 2 such that: if 2 = ¢[S], then
A" = [ B]. For k = 0 there is nothing to show. For k > 0 assume 21 £ VZ;3y190_[5]. By (b)
choose an L U { f; }-expansion ' of 2 such that A’ = Yz, (p_[y1/f171])[F]. By induction
there is an expansion 21" of 2’ such that

A" = (Vo (o-[n/ Him]) 6]

This formula equals @5 O

2.5.3 Lowenheim-Skolem theorem

A set S is countable if there is a bijection from N onto S, and at most countable if it is finite
or countable. An L-structure 20 is (at most) countable or (in)finite if so is its universe A.

Theorem 2.5.10 (Lowenheim-Skolem - downwards). Assume L is at most countable and
T is an L-theory. If T is satisfiable, then T has an at most countable model.

Proof. There are countably many L-formulas, so we can write T = {1, ps...} (possibly
with repetitions). Set 7% := {@9* 5% ...} where each Skolemization 7* uses its own finite
set of new functions symbols. Let A = T and 2’ be the expansion to the new functions
symbols simultaneously for all ¢ — so that 2’ = T (Lemma 2.5.9 (2)). Note the language
L’ of A" is at most countable, in particular, there are at most countably many L/-terms ¢(z).
Let a € A be arbitrary and consider ({a})%". As the universe consists of the values t*'[a], it
is at most countable. As T is universal, ({a})* & T (Exercise 2.3.21). Then ({a})* & T
by Lemma 2.5.9 (1), so ({a})*'1L & T by the second coincidence lemma. O
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Example 2.5.11. Consider the language L = {+,-,—,0, 1} of fields and let € be the field of
complex numbers. Apply the above to the theory T of all sentences true in €. Then there
is a countable field €’ that satisfies the same L-sentences as €. In fact, methods of model
theory show that the algebraic closure of the field of rational numbers is such a field.

2.6 Formal reasoning I: Gentzen’s Logischer Kalkiil

Let L be a language and C' be a countable set of constants with LnC' = @.

Definition 2.6.1. A sequent is a pair (I'; A) of finite sets of L-sentences, written I' = A.
It is walid if ' VV A. Tt is LK-provable if there is an LK-proof ending with it.

An LK-proofis a finite sequence of sequents such that every sequent in it is a conclusion
of an LK-rule with premisses appearing earlier in the sequence.

There are the following LK-rules, written &remisses .
) Conclusion

— Rules of propositional LK (for sequents as above);

r A
— J-left o) = where c € C' does not appear in the conclusion;
[ 3zp(x) = A
I'= A p(t
— J-right = 8.¢(t) where t is a closed L u C-term;
['= A, Jzp(x)
'=A¢ o= A
— Cut: ’ ;
" '=A ’

— Equality rules:

D= At=t’ D=t = A=t D=t 1=t = A=t

F’tlgti, coo At = A,fto---tﬁft’l---t;’ F,tlit’l, oo b=t Ryt = A,Rt’l---t;

where 7 € N, f,R € L are r-ary function and relation symbols, and ¢,#',¢",t;,t; are
closed L u C-terms.

Intuition: as in the propositional case LK-proofs are best read and constructed bottom-
up, reading a sequent I' = A as “all formulas in " are true and all formulas in A are false”.
Then the new rules 3-left/right become clear: 3-right assumes Jxp(x) is false and infers
() is false for arbitrary ¢; 3-left assumes Jzp(x) is true and gives a new name to an
example, that is, infers p(c) is true for a new constant c.

Remark 2.6.2. Define LK*-proofs like LK-proofs but adding the left /right-rules for v, -
and < from Remark 1.4.3 and additionally:

Foo(t) = A

V-left
¢ [ Vep(z) = A

where ¢ is a closed L u C-term;
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['= A ¢(c)

V-right
He I'= A Vap(x)

where ¢ € C' does not appear in the conclusion.

Then LK*-provable sequents are LK-provable.

Proof. Replace V-left /right applications by

L o(t) = A I'= A, ¢(c)
= A, -p(t) [ -p(c) = A
['= A, Jz-p(x) [, 3z-p(z) = A
[, -3z-p(z) = A I'= A -3z-p(z)
For the 3-left application on the right, note ¢ does not appear in I', 3x-p(z) = A. O]

Example 2.6.3. The following is an LK*-proof for distinct ¢,d € C' and a formula ¢(z,y)

p(d,c) = p(d,c)
¢(d,c) = Jyp(d,y)
Vap(z,c) = Jyp(d,y)
Vrp(z,c) = YrIyp(x,y)
yVap(z,y) = YaIyp(z,y)

Exercise 2.6.4. Show that the equality axioms from Example 2.4.9 are LK*-provable.

2.6.1 Equality free case

Definition 2.6.5. Let LK™ -proofs be defined as LK-proofs but omitting Cut and Equality
rules. A sequent I' = A is =-free if all formulas in ['u A are, and a formula is =-free if =
does not occur in it.

Theorem 2.6.6 (LK~ completeness). A =-free sequent is valid if and only if it is LK~ -
provable.

Proof. < (Soundness): it suffices to show for all rules that if the premisses are valid, then
so is the conclusion. We verify this for the new rules 3-left /right. Write -A := {-¢) | € A}

Assume I' = A, Jxp(x) is not valid. Then there is a L u C-structure 2 such that
AETu-A and A E -Jzp(x), so A E -p[a] for all a € A. In particular, given a closed
term ¢, we have 2 £ —p[t*]. Since t is closed, = is free for ¢ in . By the substitution
lemma, 2A £ -p(t). Hence A witnesses that I' = A, ¢(¢) is not valid.

Assume T', Jzp(x) = A is not valid. Choose a finite Cy € C' such that all formulas in
this sequent are L u Cy-sentences. Then there is a L u Cy-structure 2A such that A = T'u-A
and 2 = Jxe(z). Choose a € A such that 2 = ¢[a] and ¢ € C \ {c}and let A’ be the
L uCu{c} expansion of 2 that interprets ¢ by a. Then ' E ¢[c*], so A = p(c) by
the substitution lemma. Since ¢ does not occur in I' U =A, the second coincidence lemma
implies A" = T'u =A. Hence " witnesses that I, o(¢) = A is not valid.



CHAPTER 2. FIRST-ORDER LOGIC 48

= (Completeness): suppose I' = A is =free and not LK--provable. Choose a finite
Lo € L such that only LyuC-sentences appear. By the second coincidence lemma, it suffices
to construct an Ly u C-structure 2 satisfying I' u - A.

Consider triples (b, p,t) for be {0,1},¢ an LyuC-sentence, and ¢ a closed Lou C-term.
Let (bo, ¢0), (b1,%1,t1), ... be an enumeration such that every triple appears infinitely often.

We inductively construct LK--unprovable sequents I'g = Ay, 'y = Ay, ... starting with
[g:=T,Aq:=A. Assume I'; = A, is constructed and LK~-unprovable.

To define I';;; = A;,1 consider (b;, ¢;,t;) and do the following:

1. if p; = = € I'; and b; = 0, then ['; = A;, ¢ is LK -unprovable; set I';;; := I'; and

Ajir = Aju{};
2. if Qi = —|1/J € Az and bz = 1, then set Fi+1 = Fz @] {¢} and Ai+1 = AZ,

3.if p; = (¥ Ax) el and b; = 0, then [';,1), x = A; is not LK--provable; set I';;; :=
Lyu{y, x} and Ay = Ay

4. if ¢; = (Y Ax) € A; and b; = 1, then T'; = A, ¢ or Iy = A, x is not LK -provable;
choose I';;1 = A;,1 accordingly.

5. if p; = Jzp(x) € I'; and b; = 0, then choose ¢ € C' not occurring in I'; = A;; then
[y, o(c) = A; is not LK=-provable; set I';;1 :=T; u {p(c)} and A;q = A,

6. if p; = Jxp(x) € A; and b; = 1, then I'; = A;, p(t;) is not LK--provable; set I';;; := T
and Ai+1 = Az U {gO(tl)}

7. if none of the above, set I';,1 :=1'; and A1 = A,.
By construction we we have I'ocI'y € --- and Ag € Ay -+, Set
[*=Uien Iy and A* = Uien A

Claim: (I'*, A*) has the Henkin properties, namely for all LyuC-sentences v,y and LouC-
formulas ¢ (x):
H1) I'*n A" = g;
H2) if —1p € I'*, then ¢ € A¥;
H3) if =1 € A, then ¢ € I'*;
4) if (¢ Ax) €, then ¢, x € ',
)
)
)

T

(
(
(
(
(H5) if (¢ A x) € A*, then 1p € A* or y € A%,

(H6) if Jxp(z) € I'*, then ¢p(c) e I'* for some c e C;

(H7) if Jzp(z) € A*, then p(t) € A* for every closed Lyu C-term ¢.

Proof of the claim: (H1) follows from I'; n A; = & for all i e N (by LK--unprovability). To
see e.g. (HT), assume Jxp(z) € A*, say € A;,, and let ¢ be given. Choose i > i such that
(bi, i, t;) = (1, 3zp(x),t). By construction, Ay = A; U {p(t)}, so p(t) € A*.

The proofs of (H2)-(H6) are analogous. -
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The Henkin properties allow to “read-off” a model 2 satisfying ['* and falsifying A*.
The universe A is the set of closed Lyu C-terms. For r € N and f € Ly an r-ary function
symbol, the interpretation f* maps (¢i,...,t,) € A" to fty-~t, € R. For r e N and R € L
an r-ary relation symbol the interpretation is

R*:={(t1,....t,) € A" | Rt;t, eI*}.

Observe that 2l interprets every term “by itself”, namely t% = ¢ for every closed Lqu C-
term ¢. Use induction: by definition ¢* = ¢ for a constant ¢ € Lo u C, and (ft;--t,)% =
A ) = () = et

We are left to show for every =-free Ly u C-sentence ¢:

pel™ = Ak,
pe A = AH .

To prove this we use induction on the number n of occurrences of = A 3 in ¢.

If n =0, ¢ is atomic. Since ¢ is =-free it is of the form Rt;---t,. Then ¢ € I'* implies
(t1,...,t,) € R¥; but ¢; = t¥, so A = Rty--t,. Further, ¢ € A* implies ¢ ¢ I'* by (H1), so
(t1,...,t,) € R% by t; = %, we get A # Rty-t,.

For n > 0, we distinguish cases:

o=
If p €T*, then ¢ € A* by (H2); by induction, 21 # 1, so A = .
If o € A%, then ¢ € I'* by (H3); by induction, 2 = 1, so A # .

—e=(rx).
If p €', then v, x € I'* by (H4); by induction, 2 = ¢ and 2 x, so A = ¢.
If p € A, then ¥ € A* or x € A* by (H5); by induction, 20 # 1) or A # x, so A # .

— = 3x(x).
If p € I'*, then ¢(c) € I'* for some c € C' by (H6); by induction, 2 & 1(c), so by the
substitution lemma 2 = ¢[c¥], so A E .
If o € A*, then () € A* for all closed LyuC-terms ¢ by (H7); by induction, 21 # ¢ (t),
so, by the substitution lemma, 2 # ¥[t¥] for all closed Lyu C-terms t; recalling t* = ¢
and the definition of A, this implies 2 # p[a] for all a € A, that is, A # . O

2.6.2 General case

Theorem 2.6.7 (LK completeness). A sequent is valid if and only if it is LK-provable. In
particular, if (&) is an L-formula and ¢ a tuple of constants from C, then o(Z) is valid
if and only if = p(¢) is LK-provable.

The proof is by reduction to the =-free case. To this end let £ ¢ L be a new binary
relation symbol intended to be used instead of =. Recall the set of equality axioms Fgq;
from Example 2.4.9.
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Definition 2.6.8. For an L-formula ¢ let ¢F be obtained replacing atomic subformulas
t=t' by Ett’. For a set ® of L-formulas let ®F := {pF | ¢ € ®}.

Recall, a relation K is an equivalence relation on a set A if K ¢ A? is reflexive, symmetric
and transitive, i.e., for all a,b,c € A, (a,a) € K, and, (a,b) € K implies (b,a) € K, and,
(a,b),(b,c) € K implies (a,c) € K.

Definition 2.6.9. Let 2 be an L-structure. A congruence on 2l is an equivalence relation
K on A such that for all r € N, every r-ary function symbol f € L, every r-ary relation
symbol R e L and all aq,...a,,by,...,b, € A:

(Kl) if (alabl)a--'a(arabr) EK? then (fm(alw">ar)7fm(bl>"'7br‘)) EK;
(K2) (a,...,a,) € R* < (by,...,b.) € R*.

Remark 2.6.10. Let 2 be an L u {E}-structure. E* is a congruence on 1L if and only
if A= Eqr.

The construction in the following lemma generalizes familiar quotient structures in
algebra, like quotient vectorspaces, quotient groups, a ring modulo some ideal,. ..

Lemma 2.6.11. Assume 2 is an L U {E}-structure that satisfies EqY. Then there is an
L-structure A/ E such that for all L-sentences ¢:

AEf <= A/EE.

Proof. The universe of A/FE is {a/E | a € A} where a/E := {a’ € A | (a,a’) € E*} is the
E*-equivalence class of a € A. The interpretations of r-ary function and relation symbols
f, R € L are given stipulating for all aq,...,a, € A:

fm/E(al/Ew")ar/E) = fm(alw"aa?”)/Ea
(a1/E,...,a,/]E) e R* — (ay,...,a,) € R™

This is well-defined: by (K1) and (K2) the r.h.s. do not depend on the choice of a; € a;/E.
By definition of 2/E we have 7 : A1L -, A/E for w(a) := a/E. By Exercise 2.3.6,
7 (tML[B]) = t*F[7 o 8] for all L-terms ¢ and assignments 3 in 2.
It now suffices to show for all L-formulas ¢ and assignments [ in 2:

Ar pP[B] == U/E = p[rof].

This is proved by induction on . The induction steps being straightforward we only
verify the atomic case. If ¢ = Rty--t,, note pF = ¢, so A = P[] means (F[S],...,t2[5]) €
R¥. By definition, this is equivalent to (¢3[S]/E,...,t*[8]/E) € R¥E. Since t*[S]/E =

tE 1 o B], this means A/E & o[ro B]. If ¢ = ty=t1, note pF = Etgt;, and argue

)

Ak pF[5] = B[B]/E = 1[B]/E =ty [r 0 f] =t} "[n o ]l == A/EE p[ro f]. O
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Corollary 2.6.12. An L-formula ¢ is valid if and only if EqY implies pF .

Proof. = given an Lu{FE}-structure 2 = quo and an assignment [ in 20 we have to show
A E pF[5], equivalently, 2/E = p[m o 3] (see the previous proof). This holds if ¢ is valid.

<: assume the r.h.s.; and let 2 be an L-structure and § an assignment in 2. Let 2’
be the L u {E}-expansion interpreting E by the identity E* := {(a,a) | a € A}. Then
A' = Eqy, so A = pE[B]. By the previous proof, A'/E & pE[7 o B]. But, clearly, //E = A
via a/E* = {a} » a, i.e. 771, Then A E p[n o7 o (] (Exercise 2.3.19). O

Proof of Theorem 2.6.7. The second statement follows from the first noting ¢(z) is valid
if and only if p(¢) is valid (Exercise 2.5.5 with T" = ).

<: (Soundness) clearly, all rules lead from valid premisses to valid conclusions. By a
simple induction, all sequents in an LK proof are valid.

=: (Completeness) let I' = A, hence (AT — VV A) be valid. This is an Ly-sentence for
some finite Ly € LUC. By the corollary, Eq;, & ((AL)? — (VA)P), so Eqf, uT'F = AP is
valid. By Theorem 2.6.6 it is LK--provable. Replacing Ett’ by t=t’ throughout the proof
gives an LK-proof of Fq; uIl' = A. Exercise 2.6.4 and Weakening, gives LK-proofs of
['= A, for all ¢ € Eq;,. Then |Eq;, | many cuts give a proof of I' = A. O

Gentzen’s Hauptsatz states Theorem 2.6.7 for LK without the Cut rule. A proof is
outside the scope of this course.

Exercise 2.6.13 (Semi-decidability of Hilbert’s ENTSCHEIDUNG). There is an algorithm
that, given an L-formula ¢, halts in a finite number of steps if and only if ¢ is valid.

2.6.3 Compactness theorem and applications

Let T be an L-theory.

Theorem 2.6.14 (Compactness). T' is satisfiable if and only if every finite subset of T' is
satisfiable.

This could be called the “Fundamental Theorem of Model Theory”. A proof is outside
the scope of this course.

Definition 2.6.15. Let ¢ be an L-sentence. T' LK-proves ¢, symbolically T' + ¢ if there
is a finite Ty € T such that Ty = ¢ is LK-provable.

Theorem 2.6.16 (Deductive LK completeness). Let ¢ be an L-sentence. Then T & ¢ if
and only if T+ ¢.

Proof. The following are equivalent: T & ¢, T U{-¢} is unsatisfiable, Ty U {-p} is unsatis-
fiable for some finite Ty € T' (compactness), Ty = - is valid for some finite Ty € T', Ty = ¢
is LK-provable for some finite 7t € 7" (Theorem 2.6.7), T+ ¢. O

Theorem 2.6.17 (Lowenheim-Skolem upwards). Assume T has an infinite model. Let S
be any set. Then T has a model whose universe contains S.
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Proof. 1t suffices to show tat T" has a model such that there is an injection of S into
its universe. We can assume S n L = @ and view S as a set of constants. We claim
T :=Tu{-s=s"| s,s" € S,s + s'} is satisfiable. Then, if 2 = T", we have Q1L = T and
s = s% is injective. To prove the claim, by compactness, it suffices to show that every finite
T§ € T" is satisfiable. Choose s1,...,s, € S such that T ¢ T'u {-s;=s; | 4,7 € [n],i # j}.
Choose an infinite 2 = T" and pairwise distinct aq,...,a, € A. Then the LU {s1,...,8,}-
expansion of 2 that interprets s; by a; models 7§. O

Example 2.6.18 (Undefinability of connectedness). Recall a graph & = (G, E®) is con-
nected if for all g,¢’ € G there is a path from g to ¢’ in &. There does not exist an
{E}-theory T whose models are precisely the connected graphs.

Proof. Assume T’s models are precisely the connected graphs. Let ¢, d be constants, n >0
and ¢, := =371, (=21 A d=x, AN Exiwisg). Then T u {@, | n >0} is unsatisfiable: if
20 would be a model, then A1{E} is a graph with no path from ®to d%; but A1{E} =T, a
contradiction. By compactness, there is m > 0 such that T'u {p, | n < m} is unsatisfiable.
Take a graph that is a path of length m. This is connected, so satisfies T'. Its {E,c,d}-
expansion interpreting ¢, d by the endpoints models all ¢,,,n < m — contradiction. ]

Exercise 2.6.19. Assume L is finite and T is a decidable L-theory, i.e., there exists an
algorithm that, given an L-sentence ¢, decides whether ¢ € T'. Describe an algorithm that,
given an L-sentence ¢, halts in a finite number of steps if and only if T+ .

Exercise 2.6.20. Let 7" be an L-theory. Assume for every n € N there is 2 £ T with
|A| 2 n. Show T has an infinite model. E.g., there is no {E}-theory whose models are
precisely the finite graphs.

Exercise 2.6.21. Find examples of satisfiable sentences without finite models (e.g. recall

the ordering and pigeonhole principles from Section 1.8).

2.6.4 Godel’s first incompleteness theorem

The following result is outside the scope of this course but not hard to prove given a basic
development of computability theory.

Theorem 2.6.22. There is no algorithm deciding

ARITHMETICAL TRUTH

Input: an Lps-sentence .
Problem: MNE@?

This implies a weak version of Godel’s first incompleteness theorem. The full version
concerns satisfiable instead of true (in ) theories.

Theorem 2.6.23 (Gddel’s first incompleteness theorem). Assume T is a decidable Lpy-
theory with M= T. Then there exists an Lpa-sentence @ such that T # ¢ and T ¥ —p.
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Proof. For contradiction, assume T+ ¢ or T'+ - for every Lps-sentence ¢. Then N & ¢ if
and only if T'+ . Indeed, < is clear by soundness and M = T'; =: if N ¢, then N ¥ -y,
then T'#t —¢ (by <), so T + ¢ by assumption.

It suffices to give an algorithm deciding ARITHMETICAL TRUTH. Run the algorithm
from Exercise 2.6.19 in parallel on ¢ and -, i.e., do computation steps alternatingly on
these two inputs. Exactly one of the two computations halts after a finite number of steps.
If it is the one on ¢ output 1; if it is the one on —p output 0. ]

2.7 Universal theories

Skolemization reduces the satisfiability question to universal formulas. This gives special
interest to universal formulas. We establish Los and Tarski’s semantic characterization
of universal formulas and give an application in graph theory. We then give Herbrand’s
theorems showing that the satisfiability question for universal formulas is essentially propo-
sitional. This is the basis of logic programming (Section 2.9).

Let L be a language and 2 be an L-structure with universe A.

2.7.1 Los-Tarski theorem

Definition 2.7.1. Let L(A) := Lu{c, | a € A} where the ¢, are pairwise distinct constants
outside L. Let A4 be the L(A)-expansion of 2 that interprets ¢, by a. The algebraic
diagram D,(2A) of 2 is a set of true (in 2A4) L(A)-sentences, namely —c,=cq for a # a’ and
those of the form

Reqy++Capy =Ry Cays fCayCa, = Ca

where r € N, f, Re L are r-ary and aq,...,a,,a € A.
Lemma 2.7.2. Let T be an L-theory. The following are equivalent.

1. A satisfies every universal L-sentence @ implied by T'.
2. TuD,(2) is satisfiable.

3. Some extension of A satisfies T

Proof. 1 = 2: assume T'u D,(2l) is unsatisfiable. By compactness, there are p1,...,p, €
D,(2A) such that T'u {¢1,...,¢,} is unsatisfiable. Write ¢; = ¢;(¢) for L-formulas ¢}(z)
and ¢ constants in L(A) \ L. Then T implies V., =¢!(¢), hence also Yz Vi, ~¢(Z) (Exer-
cise 2.5.5). This is a universal L-sentence that is false in 2.

2=3:let C=TuD,(2). It suffices to show that €1L is isomorphic to an extension
B 2 2. By Exercise 2.1.14 it suffices to show that there is an embedding of 2 into &1 L.

We claim that the map a — ¢¢ is one. It is injective because —c,=c, € Dy(2A), so
CE ~Cy=Car, 80 & # 8, for a +al.

For an r-ary function symbol f € L, we have to show that a := f%(ay,...,a,) is mapped
to fe(cg,,...,c¢ ), ie., = fE(cl,,...,ct ), i.e., the sentence co=fcq, +-Cq, is true in €; this

al) ai?

holds because it is in D,(2l).
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For an r-ary relation symbol R € L, we show (ai,...,a,) € R* < (c&,...c5 ) € RYL,

e, AqE Reg,-Co. < € Rey,-¢,,. This follows from Rcgy,-++cq,, ~Rcg o, € Do(2A).
3=>1 ifACB =T and T E ¢, then B £ ¢. If ¢ is universal, then A = ¢ (Exer-
cise 2.3.21). O

Exercise 2.7.3. Let L’ 2 L be a language such that L'\ L contains only relation symbols.
Let 7" be a universal L’-theory. The following are equivalent.

1. A satisfies every universal L-sentence ¢ implied by T".

2. 2 has an expansion 21’ £ 7".

Theorem 2.7.4 (Los-Tarski). Let T be an L-theory and ¢(Z) be an L-formula. The
following are equivalent.

1. For oll A,B T and all tuples a from A of suitable length:

AcBEpla] = AE=ylal.

2. There ezists a universal L-formula ¥(Z) such that T = VZ(p(Z) < ¥(Z)).

Proof. 2= 1: if B & p[a], then B = ¢[a] since B = T, then A = ¢[a] by Exercise 2.3.21,
then A = p[a] since A= T.
1 = 2: choose new constants ¢. Then for all L' := L u {¢}-structures A,B = T we have

AcBEp(c) = AE (o).
Let U be the set of L’-sentences implied by 7" := T'u {p(¢)}. We claim:
TuU &= ¢(¢).

Let 2= TuU. The lemma gives an L/-structure 8 with 2 € B = T". This implies 2 £ ¢(¢).

Then TuU u {-¢(¢)} is unsatisfiable. By compactness there is a finite Uy € U such
that T'u Uy U {=p(¢)} is unsatisfiable. Then T &= (AUy = ¢(¢)). As T E (¢(¢) - 9) for
all ¢ € U, we have T' = (A Uy < ¢(¢)). But AU, is equivalent to ¢(¢) for some universal
L-formula ¥ (z). By Exercise 2.5.5, T = VZ(p(Z) < ¥(T)). O

2.7.2 Forbidden subgraph characterizations

Suppose L is finite and relational (contains only relation symbols). For L-structures 2,5
let B < 2 mean that there is an embedding of B into 2.

Proposition 2.7.5. Let ¢ a universal L-sentence. There are n € N and finite L-stuctures
B1,...,B, such that for all L-structures 2A:

A — By HA....B, 42
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Proof. Write ¢ = VZ(x) for quantifier free ¢)(z). If A # ¢, there is a tuple a over A of

the length of T such that 2 = —ip[a]. Then (a)* = —[a]. Let the B, list (a)* for all such
20, a — up to isomorphism. O

Example 2.7.6. Recall, graphs are {E}-structures & with & £ @y, = Vay(-Ezz A
(Ezy - Eyz)). Equivalently, (J,e—e < & (where we depict E by —).

We now focus on graphs. A prominent topic of graph theory is to characterize graph
properties by forbidden graphs in one or another sense.

Definition 2.7.7. Let P be a class of graphs.

1. P is subgraph closed if it contains all subgraphs of every graph & € P.
2. P is definable if there is an { F'}-sentence ¢ such that for all graphs &:

GeP — Gk

3. Let F be a set of graphs. P is characterized by forbidding F if for all graphs &:

B eP < no H e F is isomorphic to a subgraph of &.

Theorem 2.7.8. Assume P is a class of graphs that is subgraph closed and definable. Then
there is a finite set F of finite graphs such that P is characterized by forbidding F.

Proof. Let ¢ define P. As P is closed under subgraphs implies it is closed under induced
subgraphs, so closed under substructures — i.a.w., Theorem 2.7.4 (1)holds for ¢ and T :=
{@Grapn}, Thus, there is a universal ¢ such that {@empn} E (¢ < ©), so the sentence
((© A @Grapn) < (Perapn A 1)) 1s valid. Let x be universal and equivalent to (¢ grapn A ¢).
Then P is the class of models of y.

Choose a list By,...,B,, according to Proposition 2.7.5 of { E'}-structures. Delete B;
if it is not a graph, or there is j # ¢ such that B; is isomorphic to a proper subgraph of B;.
Let B;,,...,B;, be the new (sub)list of finite graphs.

Let & be a graph. Then & # y if and only if B; > & for some i € [n]. We claim this
holds if and only if there is j € [/] such that B, is isomorphic to some subgraph of &.

=: if B; - &, then B, is a graph: if B, 2 H ¢ &, then H E Ygrapn, 50 Bi E Qgraph
(Exercises 2.3.21, 2.3.19). Hence, some B;, is isomorphic to a subgraph of %;. Then B;,
is isomorphic to some subgraph of £, hence of &.

«<: if B, is isomorphic to some subgraph of &, then it is isomorphic to an induced
subgraph of some subgraph &’ of &, ie., B; — &’. Then & # x, so & ¢ P. As P is
subgraph closed, & ¢ P, i.e., & # x. O

Example 2.7.9 (Lovész). Let k > 0 and P, be the class of graphs that contain a ver-
tex cover of size < k. Then there exists a finite set Fj of finite graphs such that Py is
characterized by forbidding Fy.

Proof. P}, is subgraph closed and defined by 3z,---x,Vyz(Eyz - V& (22y v ;22)). ]
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2.7.3 Herbrand’s theorems

Let L be a language that contains at least one constant.

Theorem 2.7.10. Let T be a universal L-theory and p(Z,y) a quantifier free L-formula.
If T implies YzIyp(Z,y), then there are n > 0 and L-terms t1(Z),...,t,(Z) such that T

implies VZ V7, o(Z,t;,(Z)).
Proof. Let ¢ be a tuple of constants outside L. It suffices to show
T* :=Tu{-p(ct(c))|t(z) is an L-term}

is unsatisfiable: then compactness gives n > 0 and L-terms t1(Z),...,t,(Z) such that
Tu{-p(c,t1(2)),...,=p(c t,(¢))} is unsatisfiable, i.e., T implies /I, ©(¢,t;(¢)); as & does
not appear in 7', this yields our claim (Exercise 2.5.5).

For contradiction, assume there is an L U {¢}-structure 2 = T*. Since L U {¢} contains
at least one constant, (@)* ¢ 2 is defined. Its universe is the set of t* where ¢ is a closed
Lu{c}-term. As T is universal, (@)* £ T' (Exercise 2.3.21). Then (@) £ Jyp(¢, y), so there
is t* satisfying (¢, z) in (@)%, so (@)* £ ¢(¢,t). Write t = ¢/(¢) for some L-term #'(Z).
Since ¢ is quantifier free, 2 £ (¢, t'(¢)). This contradicts 2A & T*. O

Remark 2.7.11. The above is true if L does not contain a constant and  is non-empty. We
shall see important situations where we can ensure n = 1 (Corollary 2.7.20, Theorem 2.9.2).

Exercise 2.7.12. Formulate and prove a version of the above for a tuple of variables g
instead of a single variable .

Observe that T':= @ = Y3y (T, y) means that the existential formula Jyp(T,y) is valid,
and the above yields that the quantifier free formula V', ¢(Z,t;(z)) is valid. We now aim
to show that this validity is essentially propositional validity. We choose to equivalently
talk about unsatisfiable universal formulas instead of valid existential ones.

Definition 2.7.13. Let ¢(x1,...,zx) be a quantifier free L-formula. The Herbrand ex-
pansion of YZ1) is the set

H(VZY) = {w(tl, ooy ti) |t ..ty closed L—terms}.
We also set H(¢(z)) = H(VZY) and H(T') = Uyer H(p) for a universal L-theory T'.

Definition 2.7.14. A quantifier free L-sentence ¢ is propositionally satisfiable if it is
satisfiable as a propositional formula over propositional variables Vary, the set of atomic
L-sentences. A set of quantifier free sentences is propositionally satisfiable if it is satisfiable
viewed as a set of propositional formulas over Vary,.

Remark 2.7.15. Clearly, satisfiable implies propositionally satisfiable — but not vice-
versa: e.g., for distinct constants c,d, both ~c=c and (c=d A ~d=c) are unsatisfiable but
propositionally satisfiable. In the =-free case this cannot happen:
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Lemma 2.7.16. Let T be a set of universal =-free L-sentences. Then T 1is satisfiable if
and only if H(T) is propositionally satisfiable.

Proof. If A =T, then 2 = v for all 1» € H(T'). Define an assignment 5 to Var, mapping
every x € Varp to its truth value in 2. A straightforward induction shows that a quantifier
free sentence v is propositionally satisfied by g if and only if it is true in L.

Conversely, if 3 : Vary, — {0, 1} propositionally satisfies #(7T"), define 2 with universe A
the set of closed L-terms as follows: for an r-ary function symbol f € L let f* map
ti,...,t. € Ato fty--t, € A; for an r-ary relation symbol R € L set

R*:={(t1,....t,;) € A" | B(Rty-++t,) = 1}.

Let ¢ = Yz () € T for quantifier free (7). We have to show 2 = ¥ [t], i.e., A & (t) for
all tuples ¢ from A. As ¢(t) e H(p) € H(T) it suffices to show that a quantifier free =-free
sentence 1) is propositionally satisfied by g if and only if 2 £ ¢ — an easy induction. ]

Recall the set of equality axioms Eq; from Example 2.4.9 and note they are universal.

Theorem 2.7.17. A universal L-sentence @ is unsatisfiable if and only if some finite
subset of H(Eq; U {p}) is propositionally unsatisfiable.

Proof. The following are equivalent: ¢ is unsatisfiable, ¢ is valid, E¢¥ implies ~¢F (Corol-
lary 2.6.12), Eqr u {pF} is unsatisfiable, H(Eqr u {©F}) is propositionally unsatisfiable
(Lemma 2.7.16). But this is just a copy of H(Eq; u{¢}). Now apply compactness of
propositional logic (Theorem 1.4.9). ]

Exercise 2.7.18. Formulate and prove an analogue for a universal L-theory 7' in place
of . Infer Theorem 2.7.10 from it.

2.7.4 Search algorithms from proofs

Intuitively, Theorem 2.7.10 has the following computational reading. We have a search
problem: given Z compute y such that ¢(z,y). We assume this is well-defined — for all &
there exist such y. Suppose you know more than mere truth of this, namely that a true
universal theory 7" implies VZ3yp(z,y). Then you can solve the problem by computing
the values y; := t1(Z),...,y, = t,(Z) and check which one works; note n is a constant, i.e.,
independent of the input. To give a precise version of this idea, recall Example 2.1.8.

Definition 2.7.19. VPV is the set of universal PV-sentences true in €.

Below note € = Vo Rx fr means that the efficient algorithm f solves the search problem
associated to R.

Corollary 2.7.20. Let R € PV be a binary relation symbol. If VPV implies YxIyRxy,
then there is f € PV such that € e VxRx fx.
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Proof. By Theorem 2.7.10 there are PV-terms ti(z),...,t,(x) such that VI, Rxt;(z) is
true in €. Consider the following algorithm A: on input a € {0,1}* compute by :=
t¥[al,...,b, = t¢[a]; output the first b; such that (a,b;) € RC.

The b; are computed by composing the efficient algorithms denoted by the symbols
in ¢;. Hence A is efficient and PV contains a symbol f for it. Then € = VzRx fx. [

Remark 2.7.21. PV stands for “polynomially verifiable” and goes back to Cook (1975).
He defined an equational theory in the language PV based on Cobham’s historical char-
acterization of efficient algorithms (1965); his theory can be seen as a subset of VPV. A
superset has been considered by DeMillo and Lipton (1979). Cook’s work initiates the field
of Bounded Arithmetic whose foundations were developed by Buss (1986).

2.8 Formal reasoning 1I: Resolution

Let L be a language that contains at least one constant. Let us sum up how to reduce the
satisfiability problem for L-sentences to propositional satisfiability. Observe the equality
axioms can be written as universal quantifications of clauses:

z=z, (-a=yvy=z), (~r=y Vv -y=zVvr=z),
(Vg =22y v farae = fyrun)s (Vi ~i2ys v ~Raya, v Ryr-y,).

Corollary 2.8.1. There is an algorithm that computes for every L-sentence ¢ an =-free
CNF ¢ (in some language L' 2 L) such that ¢ is unsatisfiable if and only if H(p') is
propositionally unsatisfiable.

Proof. We can assume L is finite. Compute a prenex ¥ = ¢ (Exercise 2.4.6). Compute a
Skolemization ¢°* say in a finite language L; 2 Lg. By Corollary 2.4.12, % = VZx ()
where x(Z) is a CNF — and it should be clear that such y can be computed. As seen
in the proof of Theorem 2.7.17, YZx(Z) is unsatisfiable if and only if H(Eqr, u {x*}) is
propositionally unsatisfiable. Output the conjunction ¢’ of x¥ and the above clauses for
the equality axioms (with Exy instead x=y). O

2.8.1 Gilmore’s algorithm

Gilmore’s algorithm solves Exercise 2.6.13 based on the above corollary using Resolution
for propositional unsatisfiability checks. We restrict attention to the =-free case and, as in
the propositional setting, write clauses as sets of literals, i.e., from now on an (L-)clause
C' is a finite set of =-free L-literals. Whenever using a clause C' (a set of clauses C) in a
context where an L-formula is expected, we mean \/ C' (resp. Acec V C) — but we also allow
the empty clause (empty set of clauses) understanding it to be unsatisfiable (valid).

To be clear, we spell out the semantics:

— A = C[f] means 2 = A[] for some A € C. Note this never holds for the empty clause
C = @. Further, A = YzC[S] means A = C[B[z/a] for all tuples a from A.
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— A E C[F] means A = C[[] for all C' € C. Note this trivially holds for C = @. Further,
A = VZC[F] means A = C[S[z/a] for all tuples a from A and all C' eC.

We write C =C(z),C = C(%) to indicate that variables are among z. The substitution
o of terms tq,...,t for T =1z in C(Z) gives C7 = C(ty,...,tx) = {\(t1,..., ) | AM(T) €
C(z)}. The Herbrand expansion of C(Z) is

H(C) = {C’(tl,...,tk) | C(x1,...,21) €C,ty,... 1 closed L—terms},
In other words, H(C) is the set of closed instances of clauses in C:

Definition 2.8.2. A substitution o is closed if its image contains only closed L-terms. A
closed instance of a clause C is C° for a closed o defined on all variables in C.

We view clauses without variables as propositional clauses where the propositional
variables are atomic L-sentences. We refer to a cut of two such clauses as a propositional cut.

Proposition 2.8.3. There is an algorithm that, given a set of clauses C(Z), halts in a
finite number of steps if and only if YzC(Z) is unsatisfiable.

Proof. By Lemma 2.7.16, VZC(z) is unsatisfiable if and only if #(C) is propositionally
unsatisfiable. Let C1,Cs. .. be an effective enumeration of H(C), i.e., i = C; is computable.

i<—17 D<—{Cl}
while g ¢ D
i<—i+1, D<—DU{C¢+1}

D « D u set of propositional cuts of clauses C',C’ € D

™ o=

This algorithm halts only if VZC(Z) is unsatisfiable. Indeed, if % £ VZC(Z), then A = C;
for all 7, and clearly 2 satisfies every propositional cut of clauses it satisfies.

Conversely, assume YzC(z) and hence H(C) is unsatisfiable. By propositional compact-
ness, there n € N such that {C1, ..., C,} is propositionally unsatisfiable. By Theorem 1.6.10
there is a Resolution refutation of {C1,...,C,}, say of length ¢. Then the algorithm halts
latestly when 7 reaches n + £. ]

Example 2.8.4. Let E, P be binary and unary relation symbols, f,¢g unary function
symbols, and ¢, d constants. For readability we write E(z,y), P(z) instead of Exy, Px.
Consider the set of clauses C:

{E(:E,y),E(fC,Z)}, {—lE(fx,gy),P(fy)}, {_‘P(‘r)}

Applying respectively the closed substitutions [z/fc,y/gd, z/gd],[z]c,y/d],[x]fd] gives
the following closed instances in H(C):

{E(fe,g9d)}, {-E(fc,gd), P(fd)}, {-P(fd)}.

A propositional cut on the first two gives {P(fd)}, and another cut gives the empty
clause @. Hence, YxyC(zy) is unsatisfiable.
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Observe in the first cut we use substitutions that unify FE(x,y), E(fc,z), E(fz,qy).
Instead of d we could also use ¢ or ffgfd or any other closed term — and why not a
variable u to indicate this freedom? This leads to the notion of a most general unifier.
Intuitively, this is a unifying substitution with maximal freedom. First-order Resolution
is based on the idea to speed-up Gilmore’s algorithm by avoiding the generation of many
useless closed instances but instead performing cuts after applying most general unifiers.

2.8.2 First-order Resolution
Definition 2.8.5. The composition of substitutions
o=[x1ftr,. . xefte,y1/S1, - Ym[Sm] and o' =[x [t], .. @[ty 21T,y 20 T0]

with z;,y;, 2, pairwise distinct, is the substitution

oo’ =[x [t xoftd ]SS s Y] S0 2T s 2T

A set of literals L is unifiable if there is a unifier of L, that is, a substitution o such
that L7 := {\? | A € L} has size 1. A unifier o of L is most general if for every unifier 7 of
L there is a substitution o’ such that 7 = oo’.

Note C7%" = (C?)?" for every clause C.

Lemma 2.8.6 (Unification). There is an efficient algorithm that, given a set L of literals,
outputs a most general unifier of L in case L is unifiable, and otherwise outputs “fail”.

Proof. On input L the algorithm works as follows.

1. o0 « the empty substitution
2. while |L°| > 1
3. choose distinct A\], A € L7; i < first position ¢ where A], \§ differ
4. if none of A7, \J has a variable at position ¢, then output “fail”
5. else choose such a variable z (in one of the literals);
t < the term starting at position ¢ in the other literal
6. if x occurs in ¢, then output “fail”.
7. else 0 < o[x/t]

Observe that, after each while loop, the variables in the domain of ¢ do not occur in
the terms in its image. Hence each while loop decreases the number of variables in L.
It follows that the algorithm is efficient. To prove correctness it suffices to show that it
outputs a most general unifier given a unifiable L. Say, 7 unifies L. It suffices to show that
the while-loop maintains the property of o that 7 = oo’ for some o’.
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Assume this for 0. Then ¢’ unifies L7, in particular 2 = t°". Hence line 7 is reached
and o is updated to o[z/t]. We claim 7 = (o[z/t])o” where o is the restriction of ¢’ to
its domain without x. For a variable y # x we have

y’T — (ya)a’ - (yo[ac/t])a' - (ya[x/t])o";

indeed, the 2nd holds because x does not occur in the terms in the image of o;the 3rd
holds because z does not occur in ¢ hence not in yol*/t.
For variable x, note x does not occur in ¢ and o is not defined on z, so

7 = :Eaa' _ .CCJI _ tcr’ _ tU” _ a:(cr[x/t])o". ]

Definition 2.8.7. A renaming is a substitution whose image contains only variables. For a
literal A = =ba with o atomic and b€ {0,1} let X := =~ denote the complementary literal.
Let Cp, Cy be clauses and pg, p1 be renamings so that C§°, C7" do not share variables. Let
Mooy A € CE° iy ooy € O and o be a most general unifier of {1, ..., An, fi1, ..., fim }-
Then a (first-order) cut of Cy, C} is the clause

(O~ s A )) 0 (CF Ny i)

A (first-order) Resolution proof from a set of clauses C is a sequence (1, ...,Cy of clauses,
for some ¢ € N, such that for every i € [¢], C; is a (first-order) cut of two clauses in
Cu{C;|j<i}. It is a proof of Cy; if Cy =@ it is a (first-order) Resolution refutation of C.

Example 2.8.8. In Example 2.8.4 we have {F(x,y),E(fc,2)}, {-=E(fz',9y"), P(fy')}
after renaming. The following table shows a computation of a most general unifier of
L:={E(z,y),E(fc,z), E(fz’', gy")}; the position ¢ is underlined.

Le o
E(z,y) E(fe,z) E(f2',gy') | [z]fc]
E(fe,y) E(fe,z) E(f',gy') | [z/felly/?]
E( [/ fc]
E( [/ fc]

E(fe,z) E(fr',gy') [y/=][«'[c]
E(fe,z) E(fe,gy') [y/z][2'[c][2/9y']
E(fc,gy")

A most general unifier is o = [x/fec,y/gy’,2"[c,z[gy’]. Thus, {P(fy")}? = {P(fy')} is a
first-order cut of our clauses. In a picture:

Ew.y). E(fe.2)  ~E(fa',g5). P(fy)

A4 A4

E(fc,gy') -E(fe,gy'), P(fy')
N v
P(fy')

In Example 2.8.4 we had the propositional cut {P(fd)} of closed instances. Note
{P(fd)} is a closed instance of { P(fy’)}. We show next that this always happens.




CHAPTER 2. FIRST-ORDER LOGIC 62

Lemma 2.8.9 (Lifting). Let Cy, C} be clauses and C' a propositional cut of closed instances
C4, C1. Then there is a first-order cut C' of Cy,Cy such that C' is a closed instance of C'.

Proof. Let pg,p1 be renamings so that C§°,C7" do not share variables. Choose closed
substitutions 79, 7y such that C} = C§°™ and C] = C{*™. Since the domains are disjoint, we
can replace 1,7 by 7= 7971 Say C’ = (Ch~ {\}) U (C! U {\}) is a propositional cut on
A Let Ag,..., A, list all literals in C§° with AT = X and let py, ..., py, list all literals in C}*
with u7 = X\. Then 7 unifies {\1,..., Ay, fi1, ..., fm}. Let o be a most general unifier. Then
7 =00’ for some o’. Then C7 = C" for C':= (C5°~{ A1, .. ., M })70(CP N {pa, -« )7 O

PO P1
CO Cl
10 X
v
Cgoa C{Jw
1 O'/ | O',
v \u v v

! !
OO , Cl

NV v
C’

Theorem 2.8.10 (Refutation completeness). Let C(Z) be a set of clauses. Then YzC(Z)
is unsatisfiable if and only if there exists a Resolution refutation of C(Z).

Proof. < (Soundness): it suffices to show that, if C(z) is a cut of Cy(Z),C1(Z), then
VzC(z) is implied by {VzCy(z),VZCi(Z)}. Assume A # VzC(z), say A # C[F] for some
assignment . In the notation of Definition 2.8.7, let A = A7 = fif. We have 2L & A[ 3] or not.
Assume the Ist (the 2nd case is similar). Then 20 # u7[B]. As (C7' N {pt1, -, pm})? € C
this clause is not satisfied in 2 under 5. Hence 21 # C'?[(] and thus A # Yz C'(Z).

= (Completeness): if VZC(Z) is unsatisfiable, then there exists a propositional Resolu-
tion refutation C7,...,C} of H(C) (recall the proof of Proposition 2.8.3). We can assume
it contains no weakening steps (Lemma 1.6.6).

Fori=1,...,¢ we find C; such that C is a closed instance of C; and C1, ...,y is a first-
order Resolution refutation of C(z). If C! is a closed instance of some C € C, set C; := C.
If ¢} is a propositional cut of C7, Cy with j, k <1, choose C; by the lifting lemma. ]

Exercise 2.8.11 (Russell’s paradox). The job of a barber is to shave exactly those persons
who do not shave themselves. Does a barber shave himself?

Let Bx mean “x is a barber” and let Sxy mean “x shaves y”. Formalize “Every barber
shaves everybody who does not shave himself” and “No barber shaves somebody who
shaves himself” by clauses. Use Resolution to show that barbers do not exist.

2.9 Logic programs

2.9.1 Clark’s theorem

Again, we fix a language L containing at least one constant.
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Definition 2.9.1. A literal is negative if it starts with —= and otherwise positive. A goal
clause contains only negative literals. A logic program P is a set of clauses each containing
exactly one positive literal.

Let G = G(Z,y1,...,yx) be a goal clause and A ¢ L a k-ary relation symbol. A compu-
tation of P on G is a sequence of clauses C1, ..., C, with Cy = GU{Ay,--yr}, Cp = {Atq--t1}
where ¢ > 0 and ¢y, ..., are terms such that for all i € [(-1], C},; is a first-order cut of C;
and some clause in P. The output of the computation is ¢;---t.

For ¢t = ty--ty write G(&,t) for G(Z,ty,...,t;). Writing ¢ = ¢(Z) means all ¢; have

variables among 7. Further, we write t7 := t--¢7 for a substitution o.

Intuition: say k = 1 and we know (or correctly hope) that, in a situation satisfying P, there
exists an object y satisfying a wishlist of properties. Our search problem is to compute such
a y given input Z. Let the goal clause G(Z,y) negate the wishlist, so VZP implies Jy-V G.
Theorem 2.7.10 gives many terms ¢(Z) such that some y := t(z) works — which one depends
on . In the present context, we even get a single term ¢(Z) and P can compute it. In
fact, P can compute any such t(z):

Theorem 2.9.2 (Clark). Let P(Z) be a logic program, and G(Z,y) a goal clause such that
VZP(z) implies 3y-\ G(Z,y). Then there exists a computation of P on G. Moreover,

1. YZP(x) implies =\ G(Z,t) for every output t of a computation of P on G.

2. IfVZP(z) implies -\ G(z,5(Z)) for certain terms 3(Z), then there is a computation
of P on G with some output t and a substitution o such that §=1°.

Proof. Let ¢ be new constants and work in the language L u {¢}. Assume VYZP(z) U
{VyG(¢,y)} is unsatisfiable. By Corollary 1.6.18 we get a propositional SLD refutation
C1,...,C)of H(P)UH(G). As C] is negative, it is in H(G), say C1 = G(¢,5) for certain
closed L u{¢}-terms 5. As all C! are negative, the side clauses are in H(P). Add As to
all C! and, as in Theorem 2.8.10, lift to a first-order resolution proof Ci,...,Cy. Then
Cy = {At} for certain L U {¢}-terms ¢ and ¢° = 5 for some 0. We can assume T appear
nowhere, and replace ¢ back by = to get L-terms.

2: VZP(z) u{G(c,5(¢))} is unsatisfiable, and H(G(¢,5(2))) = {G(¢,35(¢))}, so C] =
G(c,s(¢)) above.

1: let  be the output of a computation of P on G(Z,7). Then VZP(Z) u{Vy(G(Z,y)u
{Ag})} implies At by soundness (see Theorem 2.8.10). Let B = VZP(Z) and [ an assign-
ment. Let @ be the values of ¢ in B under . Let B’ be the L u {A}-expansion of B with
A% = Bk {a}. Then B’ # At[3]. Then there is b € B* such that B’ & (=V G(Z,7) A
-A[L[y/b]]- Then b=a and B’ -V G(Z,5)[B[y/a]], so B =-VG(z,1)[F]. O

Remark 2.9.3. PROLOG is a declarative programming language. The user writes a logic
program and a goal and the algorithm looks for a computation. Albeit this is known to be
uncomputable, various engineering tricks make it work well on real life instances.
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2.9.2 Examples: computing, planning and proving

Many recursively defined functions are naturally evaluated by logic programs. In fact, it is
known that every computable function can, in a reasonable sense, be computed by a logic
program. We illustrate this for addition.

Example 2.9.4. Addition is recursively defined by x +0 = 2,z + s(x) = s(x + y) where
s is the successor. We write this as a logic program using a unary function symbol s, a
constant 0 and a ternary relation symbol S intended for the graph of addition:

{Sx0x}, {-Swyz,Sxsysz}.

We whish to compute “u = 2 + 27, so write the goal clause G = {=Sss0ssOu}. Set
Cy = {Au,-Sss0ss0u} and oy := [2/ss0,y/s0,u/sz]. This is a most general unifier of
Sss0ssOu and Sxsysz from the 2nd program clause. A cut gives Cs := {Asz,~Sss0s0z}.
Next, rename the 2nd program clause to {-=Szyz’, Sxsysz'}. Then oy :=[x/s50,9/0, z/s2']
is a most general unifier of Sss0s0z and Szsysz’. A cut gives Cj := {Assz’, ~Sss00z'}.
The 1st program clause with o3 := [2:/5s0, 2’/ss0] gives the cut Cy := { Assss0}.

The output of the computation is ssssQ — as expected.

Exercise 2.9.5. Write logic programs for multiplication, exponentiation, the Fibonacci
sequence and the Ackermann function.

A planning problem is given by a set of situations and actions that change situations.
It asks for a sequence of actions that change a given start situation to one out of given
goal situations. Many planning problems can be naturally formulated and solved by logic
programs. We illustrate this with the following frequently used toy problem.

Example 2.9.6 (Monkey-banana-problem). A situation determines positions of the mon-
key, the chair and the banana (hanging from the top). The monkey has actions walk, push
(the chair), jump (on the chair), and grasp (the banana) to change situations.

We use a 4-ary relation symbol P for the 3 positions determined by a situation, unary
relation symbols @), G indicating being on the chair or being a goal, constants a,b, ¢, s for
positions of monkey, chair, banana in the start situation, and function symbols w,p, j, g
for the actions; w, p are ternary, 7, g unary. We use some extra parentheses for readability.

1. {Pabes} Monkey, banana, chair are at positions a, b, ¢ in start situation s.
2. {=Pzxyzu,Qju} If the monkey is at the chair, it can jump on it.
3. {=Pzxyzu,Pryzju} Jumping does not change positions.

The goal is reached, if monkey, chair and banana

4 {-Prrzu, ~Qu, Ggu} align and the monkey is on the chair and grasps.

5. {=Pzxyzu, Pr'yzw(uzxz')} The monkey can walk anywhere.

If the monkey is at the chair,

!/ ! /
6. {~Peyzu, P2'yzp(uzz')} then it can push it anywhere.
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This is a logic program P. Here is a computation of P on {-G(u)}:

computation P

Au, -Gu 4 [u/guo]

Agug, ~Prororougy, ~Quq 2 | [uo/jus]

Agjuy, ~Prozorojur, ~Priyiziuy | 3 | [2ay2z0us/ToToTot]

Agjuy, ~Priyiziuy, ~Prozorouy | 6 | [219125y3/T0T0z0mo ] [u1/p(uszszo)]
Agjp(uszsrg), ~Pz3rgz3us 5 [x4y424/23x023][uz/w(u4x4z3)]
Agjp(w(ugryzs)z3zo), ~Pryzozsug | 1 | [42023u4/abes]

Agjp(uw(sac)ch)

The 1st column shows the computation, a sequence of goal clauses plus A:--. The 2nd col-
umn shows the clause from P used in each cut. We use canonical renamings of the program
clauses: {=Pxoxoxoug, ~Qug, Ggug} in the 1st step, {=Pxiy1x1ui, Qju, } in the 2nd, and so
on. The 3rd column gives the most general unifier o used in the cut to yield the clause in
the next line. E.g. consider line 4: clause 6 is renamed to {~Pz3yszsus, Pz5yszip(uszs25)}.
The displayed o unifies Pzlyszip(uszsz}) with Proxozour, Priyiziuy in line 3. Then the
cut yields the clause in line 5.

The output is the term gjp(w(sac)ch). It means: in the start situation s, walk from a
to ¢, then push the chair from ¢ to b, then jump, then grasp — as expected.

Finally, we illustrate the use of logic programs in automated theorem proving.
Example 2.9.7. We want to derive the existence of right inverses
¢ = JxVuyIz(Pruu A Pyzx)
from the group axioms in Example 2.5.8. Write them as a logic program P:

Cy := {~Pzxyu,-Pyzv,-Prow, Puzw}

i= {=Pryu, -Pyzv, ~Puzw, Prow} = * ={Peuu}, Cy:={Piyye}.

Cri={Prygry}, o
Prenex and skolemize —¢ to get the goal clause G = {~Pxjzjr,~Pkxzz} with new unary
function symbols k, j. Tt suffices to refute P u{G}, i.e., to find a computation of P on G.
Here it is — omitting the O-ary A:

computation P

-Pxjrjr,~Pkxzx Cs [x/e uljz]
—~Pkeze Colz/2'] [u/ke, 2" [z, w]e]
~Pzyke,~Pyzv,-~Pzve | Cyy/y'] [u/ke, 2" [z, w]e]
-Piy'yke,~Pyzv Cs [x/iy',v]e, w/ke]
- Piy'eke Cy [x/iy’,v]e, w/ke]
-Piy'yu, -Pyze,~Puzke | C3[ufu'] = { Peu'u'} | [u'[ke, z[ke,u/e]
- Piy'ye, -~ Pykee Cyly/z] = {Pizze} | [ylike,z]/ke]

- Piy'ikee Cy [y/ike,y'[ike]

]



Chapter 3

Model-Checking

Generically speaking model-checking refers to the study of the computational complexity of
the problem to decide whether W E ¢ for a given world W and a given sentence ¢ of some
logic. Typically the problem is computationally hard and one asks for efficiently solvable
restrictions to a class of worlds W and a set of sentences @, i.e, considering only inputs
with W e W and ¢ € ®.

In computer science model-checking is studied from two main perspectives: database
theory and formal verification. In database theory, W is a class of databases, i.e., relational
structures (recall Example 2.1.7) and ® a set of queries, typically formalized in first-order
logic. In formal verification W is a class of reactive or concurrent systems, and ® a collection
of correctness specifications one intends the systems to satisfy.

These two perspectives lead into orthogonal directions to look for efficiently solvable
restrictions of interest. As a rule of thump, the perspective from database theory aims at
rich classes W and targets efficiency for highly restrictive classes ® of first-order formulas;
from the formal verification perspective very special structures W fall on the table and one
aims at strong logics tailored to reason about the reactive systems at hand.

The bad news is that, unless P = NP, there are no efficient algorithms even when
severely restricting both W and ®. But there are also good news: for example, we shall
find a model-checker for linear time temporal logic over concurrent systems that runs in
time 200D - |IW| even though the problem is NP-hard (even PSPACE-complete). Such a
runtime can be considered feasible and, in fact, works well in practice. The point is that,
from both perspectives, typical instances of the problem have a large W and a relatively
small ¢. An adequate complexity analysis has to take this asymmetry into account. We
do so, aiming at runtimes that might depend badly on || but not on |W].

Hardness results in terms of classical complexity theory like the PSPACE-completeness
mentioned above are meaningless. It is parameterized complexity that provides an adequate
theoretical frame but a development of this theory is outside the scope of this course.

66
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3.1 Monadic second-order logic

We define monadic second order logic as an extension of first-order logic by quantifiers
JX that range over subsets of the universe. Full second-order logic would also quantify
over relations X of higher arity. The definition is straightforward adding new rules how to
construct formulas and how to evaluate them. Recall Definitions 2.2.5 and 2.3.8.

Definition 3.1.1 (Monadic second-oder logic). Let L be a language. Add to the alphabet
of first-oder L-formulas a set VAR of set variables X1, Xs,.... The set of monadic second
order (MSO) L-formulas is the smallest set F' satisfying (F1)-(F5) and
(F6) if X € VAR and t is an L-term, then Xt € F’;
(F7) if p € F and X is a set variable, then 3Xp e F.

Let 2 be an L-structure. An (MSO) assignment in 2 is a function § with domain
Varu VAR that maps every individual variable x € Var to an element f(z) € A and every

set variable X € VAR to a subset 5(X) ¢ A.
For MSO L-formulas, we define 2 = ¢[3] by (T1)-(T4) and

(T5) if ¢ = Xt for X € VAR and t an L-term, then
Ak p[B] = t*[B] e B(X)

(T6) if ¢ =3IX1) for X € VAR and MSO L-formula 1), then
Ak (8] <= thereis Bc A: Ak ¢[B[X/B]],
where B[ X /B] is the MSO assignment that maps X to B and otherwise agrees with 3.
Notation: For X € VAR we let VX ¢ abbreviate =3X-p. Then
AEVXyp[f] < forall Bc A: AE ¢[p[X/B]]

Remark 3.1.2. The Lemma 2.2.6 on unique readability is adjusted adding case 6: ¢ =
3 X for some set variable and an MSO L-formula . This justifies the definition of £ by
recursion on syntax. Similarly, one defines the set of free variables free(y) ¢ Varu VAR
of an MSO L-formula ¢ as before plus: if ¢ = X9 then free(p) := free(p) ~ {X}. The
coincidence Lemmas 2.3.12, 2.3.13 hold for MSO L-formulas with the same proof.

Let Z = 21w, and X = X;---X,, be tuples from Var (individual variables) and VAR
(set variables). We write an MSO formula ¢ and (X, Z) to indicate that the free variables
of ¢ are among X,z. If a=(a1,...,a,) € A" and B = (By,...,B,,) € P(A)™ we write

A = @[B,&]

to express A £ ¢[ 3] for some (equivalently, all) MSO assignments 5 in 2l mapping z; to a;
and X; to B;. An MSO L-sentence is a MSO L-formula ¢ with free(¢) = @. We write
A = ¢ and say ¢ is true in A if A = p[[] for some (equivalently, all) j.
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Example 3.1.3. Recall Example 2.6.18. Define
¢ = VayVX(Xz A Vuo((Xua Buv) > Xv)) » Xy).

Intuitively, Yuv((Xu A Fuv) — Xv) states that X is closed under taking E-steps; that
every such X containing x also contains y means that there is a path from z to y.
More precisely, ¢ is true in a graph & if and only if & is connected.

This example shows that MSO is more expressive than first-oder logic. It also shows
that the compactness theorem is false for MSO. Also the upward Lowenheim-Skolem The-
orem 2.6.17 fails for MSO:

Exercise 3.1.4. There is an MSO L ps-sentence @ that is true in an L pg-structure 2A if
and only if A = 91.

Hint: oy states that +,- satisfy their recursive definitions and
VX((X0AVz(Xz - Xsz)) - VaXx).

Corollary 3.1.5. There is no algorithm that, given an MSO Lpa-sentence ¢, halts in a
finite number of steps if and only if ¢ is valid (i.e., true in all Lps-structures).

Proof. If A is such an algorithm, we can decide ARITHMETICAL TRUTH contradicting
Theorem 2.6.22: given a first-order Lp4-sentence o, run A in parallel on (¢n - ¢) and
(om = —¢), i.e., do steps of both computations alternatingly.

To see correctness, observe that (¢n — ) is valid if and only 9 = . [

Informally speaking, this implies that there does not exist a sound and complete calculus
for MSO. Hence the gain in expressiveness comes at a huge price, in some sense, MSO is
out of control. However, restricting to certain classes of special structures, important for
computer science, some control can be established.

In particular, this is so for word structures &(w) — recall Example 2.1.6. Recall, an
alphabet A is a non-empty set of letters, and a language L is a set of non-empty words,
ie., L c At := A* \ {e}. The restriction to non-empty words is inessential but convenient
because S(¢) is not defined.

Definition 3.1.6. Let A be an alphabet. A language L ¢ A* is MSO-definable if L = L(p)
for some MSO L 4-sentence . Here, L(y) is the language defined by :

L(p) = {w e AT | S(w) E 90}.

Exercise 3.1.7. Show that the set PAR ¢ {0,1}* of binary strings with an odd number of
1s is MSO-definable.
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3.2 Finite automata

A language L is regularif L = L(A) for some finite automaton A — we recall the definitions:

Definition 3.2.1. A (nondeterministic) finite automaton is a tuple A = (S, 1, F, A, A)
where S is a set of states, I € S a set of initial states, F' € S a set of final states, A is an
alphabet, and A € S x A x S is the transition relation. A is deterministic if |I| < 1 and for
all (s,a) € S x A there is exactly one s’ € S such that (s,a,s’) € A, i.e., s' = A(s,a) and
A:SxA—- S is a function.

A computation of A on w =ay...a, € A" is a sequence s, ..., S, of states such that
so € I and (s;,a;,8;41) € A for all i < n. The computation is from sy and to s,; it is
accepting if sq € I and s, € F. If such a computation exists we say A accepts w.

The language of A is the set L(A) of w e A* accepted by A. Two finite automata are
equivalent if they have the same language.

Remark 3.2.2. If A is deterministic, then for every w € A* there is exactly one computa-
tion of A on w.

Example 3.2.3. We depict a finite automaton A as usual, exemplified below. We have
S={0,1,2,3,4}, So = {0} indicated by the tail-less arrow, F' = {4} indicated by the double
circle, A = {a,b}, and A is given by the A-labeled arrows; e.g., the loop arrow means
(0,a,0),(0,b,0) € A and the arrow from 0 to 1 means (0,a,1) € A. A is not deterministic
because there are two a-labeled arrows leaving state 0.

The language L(A) is the set of words w € A* whose 4th letter from right is a.

a,b

4& a @ a,b 32 a,b . a,b @

Exercise 3.2.4. Draw an automaton whose language is PAR, the set of binary strings
with an odd number of 1s.

Lemma 3.2.5. Let ki,ky € N and Ay, Ay be ﬁm'ze automata with alphabet A and ky, ko
states. There are finite automata A1®Ay, A1dAy, Ay such that

1. Ai®Ay has ki - ke states and L(A1®A2) = L(Al) N L(Ag)
2. A@®Ay has ky + ko states and L(A1®As) = L(A1) U L(Ay).

3. Ay has 2% states and L(A,) = A* ~ L(A}).

PT’OOf. Write Al = (Sl,ll,Fl,A,Al) and AQ = (SQ,IQ,FQ,A,AQ). For 1, define A1®A2 =
(S1 % Sa, It x I, Fy x Fy, A, A) where A contains ((s1,s2),a, (s},s5)) if both (s1,a,s]) € Ay
and (sa,a, sh) € Ag. Then (s},s2),...,(sk,s2) is a computation of A;®A; on w e A" if and
only if, for i =1,2, sf,...,s% is a computation of A; on w.
For 2, assume Sy, Sy are disjoint and set Aj@A, := (S1U Sy, I[pu I, F1 U Fy, A, A UA,).
For 3, the next lemma gives a deterministic finite automaton (S, I, F, A, A) with |S| =
2k1 equivalent to A; set A= (S,1,S\F,A,A). O
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Lemma 3.2.6. Let k € N. For every finite automaton with k states there is an equivalent
deterministic finite automaton with 2% states.

Proof. Given A = (S,I,F,A,A) define a deterministic A’ := (S", I’ F", A, A’) by S’ :=
P(S), ' ={I},F'={XcS|XnF+g}and A’:S"xA— S" by

A'(X,a):={s"€eS|(s,a,s)e A, se X}

for X € S',a e A. It is straightforward to check that for the computation Xj,..., X,, of A’
on w e A", the set X x .- x X, is the set of computations of A on w. O

This exponential blow-up can, in general, not be avoided:

Proposition 3.2.7. For every k >0 there is a finite automaton with k+1 states such that
every equivalent deterministic automaton has > 2% states.

Proof. As in Example 3.2.3 one defines a finite automaton with k+1 states that accepts the
words whose kth letter from the right is a. Let A be an equivalent deterministic automaton
and assume it has < 2% states. Then there are distinct w = a1---a, w’ = a---aj, € {a, b}* such
that, if there exist computations of A on both w,w’, then they end in the same state.
Choose i € [k] minimal such that a; # a]. Then A accepts a1---axb’ if and only if A accepts
aj---ajb’. But exactly one is in L(A) — contradiction. O

Lemma 3.2.8 (Pumping). Let A be an alphabet and L < A* be reqular. There is p € N
such that every sufficiently long w € L equals vow’ for certain u,v,w’ € A* and |uv| < p and
v # € and such that uvv™w’ € L for all n € N.

Proof. Choose a finite automaton A with L = L(A). Let p be its number of states. Let

w = ay---a, € L with n > p. Choose an accepting computation sg,...,s, of A on w. Choose
i < j < psuch that s; = s;. Set u:=a;---a; (empty if i =0) and v := a;---a; (not empty) and
w' = aj4q--a, (empty if j =n). O

Exercise 3.2.9. Let A, A’ be alphabets.

1. Assume there is a bijection a: A - A’; for every finite automaton A with alphabet
A there is a finite automaton A’ with alphabet A’ such that

L(A') = Upso {a(ar)-—a(a,) € (A)* | ag--a, € L(A)}.

2. For every finite automaton A’ with alphabet A x A’ there is a finite automaton A
with alphabet A such that

L(A) = Upso {a1--a, € A* | (a1,a})+(an, al,) € L(A’) for some a}--al, € (A')*}.

3. For every finite automaton A with alphabet A there is a finite automaton A’ with
alphabet A x A’ such that

L(AY) = Upso {(a1,a})(an, al,) € (Ax A')* | ar-a, € L(A)}.
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Exercise 3.2.10. There is an efficient algorithm deciding

NFA EMPTINESS
Input: a finite automaton A.
Problem: L(A)=@ 7

3.3 Bichi’s theorem for words

Fix an alphabet A. This section aims to prove:
Theorem 3.3.1 (Biichi — finite). A language L is regular if and only if it is MSO-definable.

For the proof we need to extend Definition 3.1.6 to MSO L s-formulas, say ¢(X1, X>)
with free set variables X, X5. The idea is to use alphabet A x {0,1}2; e.g. a length 6 word
w looks as follows, for aq,...,a € A and writing letters as columns,

ay Gz asz a4 a5 dag
O 1 0 1 0 O
1 0 0 1 1 O

The binary rows code two sets, namely the first By := {2,4} and the second Bs := {1,4,5}.
Per definition, w satisfies p(X1, X) if and only if S(ay---ag) E ¢[B1, Ba].

Definition 3.3.2. Let ¢(X) with X = X;---X}, be an MSO L s-formula. Let

w= (al’bll'“blk) (anubnl"'bnk)

be a word of length n > 0 over the alphabet (A x {0,1}*); here, a; € A and b;; € {0,1}. We
say w satisfies ¢ it &(w) & @[ By, ..., By]| where Bj:={ie[n]|b;; =1} for all j € [k].

Lemma 3.3.3. Let o(X) with X = X1---X;, be an MSO La-formula, i € [k], and A a finite
automaton with L(p(X)) = L(A). Then there is a finite automaton A’ with

L(3Xip(X)) = L(A).

Proof. Let a: Ax{0,1}F - (Ax{0,1}*1)x{0,1} map (a, by---b) to ((a,by---b;_1bi1---bp_1),b;).
For A choose A" according to Exercise 3.2.9 (1). For A” choose A’ according to Exer-
cise 3.2.9 (2) plugging (A x {0,1}¥-1) for A and {0,1} for A’. Then

(a1, bll"'bl(k—l))"'(am bnl"'bn(kfl)) € L(A")

> ((a1,b11--b1(k-1)), €1)*((@n, bp1--bn(i-1)), ¢n) € L(A") for some bits ¢;

== (CLl, bll---bl(i_l)clbli---bl(k_l))---(an, bnl'"bn(i—l)cnbni"'bn(k—l)) € L(A) for some bits Cj
~— &(aya,) Ep[By,...,Bi.1,C, By, ..., By_1] for some C ¢ [n],

where B; = {j € [n] | bj; = 1}; for the last equivalence, C' = {j € [n]]|¢; = 1}. O
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Proof of Theorem 3.3.1. =: given a finite automaton A = (S, I, F, A, A) we want an MSO
L 4-sentence ¢, such that for all w e A* we have G(w) E ¢, if and only if A accepts w.
Intuitively, the sentence ¢y, evaluated in &(w), expresses that A accepts w. We can
assume S = [k] for some k € N and use set variables Xj; intuitively, X;x means A is in
state ¢ at step x. We define

Op = EIquXk(Part/\ Start A Step A Acc)

where Part states the X; form a partition, Start states the first state is reached from an
initial state, Step states the states accord to A, and Acc states the last state is final:

Part = Vz( \/ Xzn A (-Xizv-X;z));
ie[k] 1<i<y<k
Start = Vz(Vz-z<z-> \/ (PaaX;));

(i,a,5)eAiel

Step = V:Uy((x <ynVz=(z<znaz<y))—> V (XizAPyn ij);
(i,a,5)eA

Acc = V:U(Vz —T<z—> \/Xlx)
ieF

<: we first write MSO L s-formulas in translatable form: formulas built by means of
v,- and 3X from the the following formulas for any X,Y € VAR:

Sing(X) = Fx(XazaVy(Xy - z2y));
Before(X,Y) := Vay((XzAYy)—z<y);
Letter,(X) := Vaz(Xz - P,x).

For individual variables x1,xs,... € Var reserve set variables Y1,Y5,... € VAR.

Claim: for every MSO Ly-formula o(X;--- Xy, x1---xy) there is a trimslatable MSO Ly-
formula ¢*(X;-+- X}, Y1-+-Y}:) such that for all words w € A* and all B = By---B, € P([n])*
and all 7 = iy--+y € [n]k:

S(w) E ¢[B,7] <= &(w)E ¢ [B,{it},...,{ir}].

Proof of the claim. We define ¢ — ¢* by a straightforward recursion: (z; < x;)* :
Before(Y;,Y;), (Powi)* = Lettero(Y;), ((p v )" = (¢* v ), ()" = ~¢*, (Jzip)*
Y (Sing(Yi) n9*), (3Xp)* = 3X ™.

It thus suffices to find, given a translatable MSO L s-formula (X ) where all set vari-
ables occurring in ¢ (fllee or bound) are among X = X;---X}, a finite automaton Az
with L(A,x)) = L(p(X)). Indeed: if ¢ is a translatable MSO L 4-sentence, then Exer-
cise 3.2.9 (2) applied on A5y (with A":= {0,1}*) yields A, with L(¢) = L(A,).

We construct A,k by recursion on . We leave it to the reader to construct A, x,
for p(X) one of Sing(X;), Before(X;, X;), Letter,(X;).

Using Lemma 3.2.5, we set A_ 5y = Ay x) and A, x)apx)) = Apx)®Ayx)-
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To construct Ajy,,(x), Lemma 3.3.3 gives B with L(B) = L(3X,;p(X)). Its alphabet
is A x {0,1}+1. Exercise 3.2.9 (3) gives A with alphabet A x {0,1}*, intuitively, padding
with arbitrary k-th bits. Use Exercise 3.2.9 (1) with a that swaps this padding to place i,
namely, o maps (a,by-+-bg) to (a,by--b;_1bgb;-by_1). O

Exercise 3.3.4. Show that the set of binary palindromes is not regular. Infer that there
does not exist an MSO Ly 13-formula ¢(x, y, z) such that for allw € {0,1}* and 4, j, k € [|w|]:

S(w) Epli,j, k] < i+j=k.

3.3.1 Corollaries

The proof of Biichi’s theorem actually establishes the following effective version.
Corollary 3.3.5.

1. There is an algorithm that given an MSO L s-sentence ¢ outputs a finite automaton

A, such that L(p) = L(A,).

2. There is an algorithm that, given finite automaton A, outputs an MSO L 4-sentence
wa such that L(A) = L(pa).

Mapping ¢ to @, we see:

Corollary 3.3.6. There is an algorithm that, given an MSO L4-sentence ¢, outputs an
MSO L 4-sentence of the form 3Xx where no set quantifiers occur in x and such that

L(¥) = L(3XX).

Corollary 3.3.7. There is a computable function f:N - N and an algorithm that decides

MC(MSO,A*)
Input: an MSO L s-sentence ¢ and a word w e A*.
Problem: S(w)Ee¢?

in time polynomial in f(|o|) - |w|.

Proof. Given ¢, w, compute a deterministic finite automaton A equivalent to A, (see
Lemma 3.2.6) and check whether it accepts w.

Choose a computable function f’ such that the computation of A takes f’(]¢|) many
steps. The check takes |w| many evaluations of the transition function of A, each done by
scanning A, so is efficient given A. ]

Exercise 3.3.8. There are algorithms that decide whether a given MSO L 4-sentence is
true in some (resp. all) word structures.
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Remark 3.3.9. In the beginning of this chapter, we announced to aim for runtimes as in
Corollary 3.3.7. But how fast does f grow? From our proof, f(|¢|) is at least the number

olel
of states of A, and this is not elementary, that is, not bounded by 2" for any constant
height tower of 2s: our construction has an exponential blow-up for every - in ¢. Frick
and Grohe proved in 2004 that Corollary 3.3.7 fails for elementary f (assuming P # NP),
even when we restrict to first-order ¢ (assuming a certain hypothesis from parameterized
complexity theory, namely FPT # AW[x]). This is outside the scope of this course.

3.4 Biuchi’s theorem for w-words

Fix an alphabet A.

Definition 3.4.1. A“ is the set of w-words (over A), namely functions w : Nyg - A. A
Biichi automaton is a finite automaton A = (S, I, F, A, A). A computation of A on w e A%
is a function s : N — S such that s(0) € I and (s(i),w(i+1),s(i+1)) € A for all i € N; it is
accepting if {i € N | s(i) € F'} is infinite. If such a computation exists, A accepts w.

An w-language is a subset of A¥. The w-language of A is the set L,(A) of w-words
accepted by A. L ¢ A% is w-regularif L = L,(A) for some Biichi automaton A. Two Biichi
automata are equivalent if they have the same w-language.

We often write w, s as sequences aj as -+ resp. Sg S1 So -+ of letters resp. states, under-
standing w(i) = a;, s(i) = s;.

Example 3.4.2. Let A:={0,1}. A, A, are equivalent as Biichi automata but not as finite
automata.

Al AQ Ad
0 0 a,b b

—C 0 0 O 0 O &8

L(Al) = {02n+1 | ne N} L(Ag) = {O2n | n e N>0} L(Ag) = {wb | w € A*}
Lo(Ay) = {000---) Lo(As) = {000---) Lo(Ay) = {whbb € A | w e A*)

Exercise 3.4.3. Find equivalent finite automata, not equivalent as Biichi automata.
Determinization (Lemma 3.2.6) fails:
Proposition 3.4.4. Aj is not equivalent to any deterministic Biichi aiutomaton.

Proof. Assume A is deterministic and equivalent to Az. Then its accepting run on bbb--- is
in a final state, say at step ni, so after reading b"!. Being deterministic A visits the same
state in its accepting run on b"tabbb---. Choose ny such that this run is in a final state
after reading b"1ab™2. Continuing like this gives an accepting run on a word with infinitely
many as — contradiction. O]
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Exercise 3.4.5. For Biichi automata A, B over the same alphabet there is a product au-
tomaton A ® B such that L,(A®B) = L,(A)n L,(B).

Closure under complementation requires a new proof outside the scope of this course:

Theorem 3.4.6 (McNaughton, Saf{a). There is an algorithm that, given a Biichi automa-
ton A, outputs a Biichi automaton A such that L,(A) = A\~ L,(A).

Exercise 3.4.7. A generalized Biichi automaton A = (S, I,F, A, A) is defined like a Biichi
automaton but F ¢ P(S) (instead of F € P(S)). A computation (defined a before) s of A
on w € A% is accepting if {i | s(i) € F'} is infinite for all F' € F; A accepts w if such a
computation exists. Show there is an efficient algorithm that, given such A, outputs a
Biichi automaton B that accepts the same w-words.

Definition 3.4.8. Let w € A¥. The word structure S(w) is the L s-structure with uni-

verse Nyg, <®®) the natural order, and Py = {i € Nog | w(i) = a} for a € A. An

w-language L ¢ A% is MSO-definable if there is an MSO L 4-sentence ¢ such that
L=L,(p)={weA|S(w)E ¢}

Theorem 3.4.9 (Biichi — infinite). An w-language is w-reqular if and only if it is MSO-
definable.

Proof. =: given a Biichi automaton A we define ¢, as before but with
Acc:=VrIy(x <y AVier Xiy).

< has the same proof as before — this also holds for Lemmas 3.2.5 (2) and 3.3.3 and
Exercise 3.2.9 used therein. O

Remark 3.4.10. It should be clear that the L -analogues of Corollaries 3.3.5, 3.3.6 follow.
We shall need in particular that there exists an algorithm that given an MSO L 4-sentence
outputs a Biichi automaton A, such that L, (¢) = L,(A,).

Exercise 3.4.11. There is an efficient algorithm deciding

NBA EMPTINESS

Input: a Biichi automaton A.
Problem: L,(A)=a7

Infer that there exists an algorithm that, given MSO L 4-sentences @, ¥, decides whether
L,(p) =L,(v), i.e., p and ¥ are equivalent over w-words.
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3.5 Transition systems and linear time properties

An ATM is a transition system that switches from state to state depending on actions
taken by the user. This can be seen as a deterministic automaton with letters representing
user actions. Once designed the system should satisfy certain correctness specifications,
e.g., “whenever the user inserts a card, there is a later state where the card is output”. The
formal verification perspective on model-checking aims at as efficient as possible algorithms
to check as many as possible correctness specifications. Formally, the specifications are
written in logics tailored for such specifications.

Algorithms are needed because, in practice, huge transition systems arise naturally and
it is a superhuman task to check correctness specifications. E.g., a sensor might be modeled
by a small automaton where the environment takes actions to change states, and a robot
might switch states according to switches of states of many sensors. This can be modeled
by taking ® of many small automata and the result can be huge. Or, imagine concurrent
processes modifying the values of some common variables, the states are given by all or
all reasonable values of the variables; e.g. various secretariats enter student grades into a
university database, or users of a webpage enter text content in chat room. This typically
gives rise to very large, possibly infinite transition systems.

Definition 3.5.1. Let A be an alphabet. A (finite) transition system over A is a tuple
T = (6,0) wher & = (G, E®) is a (finite) directed graph and ¢ : G - A is a labeling. An
execution of T is an infinite sequence gy, ¢s ... of vertices such that (g;,g:41) € E® for all
i € N; its trace t is the w-word £(g1) €(g2) -+ € A%, ie., t: Nyg - A with t(i) == £(g;). A
partial trace is a finite prefiz of a trace, i.e., t1[n] for some trace ¢t and some n € N, i.e.,
t(1)--t(n) e A». A (partial) trace of T is a (partial) trace of an execution of 7'

Definition 3.5.2. Let A be an alphabet and P ¢ A¥. A transition system T satisfies P if
every trace of T is in P. The closure of P is

cl(P) := {t € A¥ | every prefix of t is a prefix of some s € P}.
P is a safety property if cl(P) = P, and a liveness property if cl(P) = A«.
Remark 3.5.3.

1. For P,() ¢ A% one easily checks

Pccl(P), cl(cl(P)) =cl(P), cl(Pu@) =cl(P)ucl(Q).

In fact, cl is topological closure in a natural topology on A“ (which one?).

2. A safety property P states “something bad never happens”: t € P if and only if every
t ¢ P has a prefix w € A* that is P-bad, i.e., no s € P has prefix w.

3. A liveness property P states “something good will happen”: every w € A* is a prefix
of some t € P.
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4. Every P c A¥ is the intersection of a safety and a liveness property.
Indeed, P =cl(P)n (P u(A“~cl(P))); note

cl(Pu(AY~cl(P))) =cl(P)ucl(A¥ \cl(P)) = A~.

Proposition 3.5.4. Let T, T" be finite transition systems over an alphabet A. Then T
and T" satisfy the same safety properties if and only if T and T" have the same traces.

Proof. < is trivial. = first note that 7',T" have the same partial traces. Indeed, assume
w € A* is a partial trace of T" but not of T”; then consider the safety property P of w-words
that do not have w as a prefix.

We show every trace t' of T" is a trace of T' = (&, ¢) (the converse is analogous). Consider
all finite sequences ¢i,...,g, in & where n € N and (g;,¢i41) € E® for all i € [n - 1] and
0(g1)---€(gn) = t"1[n]. By the above such sequences exist for all n. Hence the set of these
sequences is an infinite tree over G. By Exercise 1.4.10, it contains an infinite branch
J1, 9o, - ... This is an execution of T" with trace t'. O]

3.5.1 Model-checking MSO

Below, let |T'| be the length of the binary string encoding a (finite) transition system 7" —
in some reasonable sense, the details are irrelevant for us.

Theorem 3.5.5. There are a computable function f: N — N and an algorithm that decides
MC(MSO,TS)

Input: A transition system T over an alphabet A and an L 4-sentence .
Problem: does T satisfy L, (p) ?

in time polynomial in f(|e|) -|T.

Proof. Given T = (6,/), a (finite) transition system over A, we first compute the trace
automaton Ar = (G,G,G, A, A) where A contains (g,a,g’) if £(g) = a and (g,g") € E®.
Then L, (A7) is the the set of traces of 7. Then compute A_, from Remark 3.4.10, and
then the product automaton Ay ® A_, from Exercise 3.4.5. Note, T satisfies L, () if and
only if L,(Ar ® A_,) = @. Now use Exercise 3.4.11. O

Recalling Remark 3.3.9, f grows very fast and it is dubious whether the above algorithm
should be considered feasible. This motivates the search for other, possibly less expressive
logics with a faster model-checker.

3.6 Linear time temporal logic

Definition 3.6.1. Let k ¢ N and X = XX, a tuple of propositional variables. A
transition system over X is a transition system over A(X) where A(X) is the set of
assignments to X.
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In the literature such transition systems are often called Kripke structures. Linear time
temporal logic (LTL) is a logic intended to express linear time properties of them. It
extends the Definitions 1.1.2 and 1.2.2 of syntax and semantics of propositional logic.

Definition 3.6.2 (Syntax and semantics of LTL). Add to the alphabet of propositional
logic the letters X and U. The set of linear time temporal logic (LTL) formulas is the
smallest set F' of words that contains all propositional variables X, X1, ... and such that
for all ¢, € F:

_'QOEFa (@A%b)EF, XSOEFv (QDU@ZJ)EF

Writing ¢ = p(X) means all variables occurring in ¢ are among X. Let te A(X)“, i.e.,
t(i) is an assignment to X for all i > 0. We define p(X) is true in t at time i, symbolically
t,i = ¢, by recursion on ¢, stipulating for all LTL formulas 1, y and variables X from X:
(T1) t,ie X «<— t(i)(X)=1;
(T2) t,iE ) < t,it;
(T3) t,ie(PpAx) < tikety and t,ikE x;
(T4) t,i =Xy <= ti+1EY;
(T5) t,iE= (¢Uy) <= thereis j >i such that for all i <k < j: ¢,5 = x and ¢,k = ;
Remark 3.6.3. Xy is read “next ¢”, and (pUv) is read “p until ¢”. As usual, the
definition by recursion on syntax is justified by a straightforward lemma on unique read-

ability. Also the set sub(y) of subformulas of a formula ¢ is defined by recursion by
adding, in Example 1.1.8, the conditions: sub(Xy) := {X¢} U sub(y) and sub((oUv)) :=

{(pU)} U sub(p) L sub(¢)).

Exercise 3.6.4 (Coincidence lemma). Let ©(X) be an LTL formula and assume ¢, €
A(X)® are such that, for all i € N, the assignments (i), #'(i) agree on all variables
occurring in ¢ (a subset of X). Then for all i € Nyg: t,i E <=1t ik p.

Remark 3.6.5. let X be a variable and write T := (X v -X). Fp:= (TUp) reads “finally
¢” and Gy := -F-¢ reads “globally ¢”. Then

— t,ieFp <= thereis j>1: t,5kE .

—tiEGp < forall j>i: t,7E¢.
Example 3.6.6. Consider a transition system 7' containing a traffic light, which lights
red, yellow or green in states. Formally, T is over variables X including R,Y,G. Then

“once red the light turns eventually green” is formalized by G(R — FG). Or, “once red,
the light turns eventually green after being yellow for some time” is formalized by

G(R = (RU(Y AX(YUG)))).
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Definition 3.6.7. The w-language defined by an LTL formula ¢ = p(X) is
L,(p):= {t e AX) |t 1k gp}.

LTL-formulas (X)), (X) are equivalent, symbolically ¢ = v, if L, () = L, ().

Exercise 3.6.8. For all LTL-formulas ¢, v, x:

Dualities: =Gy = F-gp, =X¢ = X

Idempotencies: GGy = Gy, (U(pUp)) = (pU)
Absorption laws: FGFy = GFp, GFGp = FGy

Distribution laws: G(pAY) = (GpaGY), F(pvi) = (FevFy), X(pUy) = (Xe U Xv).
Expansion law: (oU) = (¢ v (o A X(eU1))

We now observe that LTL is subsumed in first-order logic. Kamp’s theorem states a
certain converse. This is outside the scope of this course.

Proposition 3.6.9. For every LTL formula ©(X) there is a first-order L y(x)-formula
w*(x) such that for allt € A(X)¥ and all i € Nyy:

tikp < 6&(t)E p*[i].
Proof. We define ¢*(x) by recursion on ¢: for X a variable from X,

X*= \/ Per, (m9)" =0 (2), (0AY)" = (0" (x) At ()

BeA(X),B(X)=1

and, writing x <y for (z <y Vv zzy),

Xp)* = Fy(r<yaVza(x<zrz<y)Ap(y)), 0
(PUp)* = Fy(z<yndr(y) AVz(e <znz<y) = ¢*(2)).

3.6.1 Model-checking LTL

Theorem 3.6.10 (Vardi, Wolper). There is an algorithm that maps an LTL formula ¢ to
a Biichi automaton A, with < 2I¥l states such that L,(¢) = L,(A,).

Proof. Let X list the variables in ¢ and ® := sub(). A type is a set s € ® such that

(Yonir)es <= 1pesand ) €s;
Y = Y¢S

Pres = (YoUy) €55
(oUtp1) € s = 9pgesor i)y €s.

t1
t2
t3

(
(
(
(t4

~— ~— ~— ~—
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hold for formulas in ®; e.g. for (t1) this means that the equivalence holds if (Yo A1hy) € D.
Let S denote the set of types. E.g., given t € A(X)~ and i > 0, we have the type

O ii={yed|tiey}.

Claim: There is a generalized Biichi automaton A = (5,5, F, A(X),A) with |F|<|S| that
on t € A(X)“ has exactly one accepting computation, namely ®; 1, ®;o,---.

This suffices: by Exercise 3.4.7, for A, we can take a Biichi automaton equivalent to
the generalized Biichi automaton (S, 1, F, A(X),A) where I := {s€ S| € s}. Its number
of states is polynomial in |S| < 21¥l. We are left to prove the claim.

We define A to contain (s, ,s’) if and only if the following hold for formulas in ®:

(A1) a variable X from X is in s if and only if 3(X) = 1;
(A2) Xipes < es;
(A3) (oUyh1) € s <= 11 € s or, both 1)y € s and (¢oUr)y) € 5.

The idea is as follows: computing a state s containing (¢oU1);) is a commitment to make

11 true eventually. This means to either make v, true in the next step s’ or to delay this;

when delaying, 1 has to be true in s’ and the commitment maintained. Delaying forever

is not allowed — we demand the automaton to eventually reaching a state where ;is true.
More precisely, we define F to contain

Fw‘:{5€S|(¢0U¢1)¢30r¢1€5}-

for every v := (¢oUtpy) € ®. It is clear that ®,1,P;o,... is an accepting computation.
Conversely, let sq, so,... be an accepting computation. We show for all 1 € ® and 7 € N,q:

Yes; < t,iEY.

We proceed by induction on ¢ and treat the case 1) = (¢»gUt)1). Assume ¢ = 1, for simplicity.

Assume t,1 & 1. Choose ¢ > 1 such that t,7 = ¢y and t,5 E ¢y for all 1 < j <i. By
induction, v, € s; and g € s;. By (t3), ¥ € s;. By ¢ € 5,1 and (A3), ¥ € s,.1. By ¢ € 5,29
and (A3), ¥ € s,_5. Continue and get v € 1.

Assume 1) € 51 and, for contradiction, ¢, 1 # 1. By (t1), ¥ € s1 or ¢y € s1. If 1)1 € 51, then
t,1 =1 by induction, so t, 1 = v contradicting our assumption. Hence, ¥y € s; and v; ¢ s;.
By (A3), ¥ € s5. Also t,2 # 9 since t,1 # 1 by assumption and ¢,1 £ ¢ by induction.
Continuing like this gives v € s1, s9,83,... and gy € s1, 89, 83,... and Y ¢ sq,89,83.... But
then no s; is in Fy € F, a contradiction. O

Corollary 3.6.11. There is an algorithm that decides

MC(LTL,TS)
Input: a transition system 7" and an LTL formula ¢.
Problem: does T satisfy L, () 7




CHAPTER 3. MODEL-CHECKING 81

in time polynomial in 2\¢! - |T)|.

Proof. Argue as for Theorem 3.5.5. From the proof of Theorem 3.6.10 it is clear that A_,
can be computed from ¢ in time polynomial in 2/¢l, O

We see, the factor 24 accounts for the size of A_,. There is, however, not much room
for improvement of Theorem 3.6.10:

Proposition 3.6.12. For every k > 0 there is an LTL formula ¢ of length O(k?) such
that every Biichi automaton A with L,(A) = L,(¢) has at least 2% states.

Proof. Set ¢r(Y) = AFL(XIY < Xk+Y'). Then L, () contains the w-words with a prefix
of the form f;-+-Byf1-+-Fk (with B; : {Y'} = {0,1}). If A accepts these words, choose one and
an accepting computation and let s(f;---0;) be the state after k steps, i.e., after reading
By--Bk. These states are pairwise distinct: if s(51-+6x) = s(B1---8;), then A accepts a word

with prefix By---5 015y, so 1Bk = B0 O

3.7 Computation tree logic

Imagine a transition system 7' in which some states report a problem and some states give
a response. Formally, T has variables including P and R. The liveness property “Whenever
P is true, R is eventually true”, is formalized by the LTL formula G(P — FR). But the
property “whenever P is true, then R can be eventually true”, i.e., “whenever P is true,
then the execution can be continued in a way such that finally R is true” existentially
quantifies over executions. This cannot be done in LTL. In computation tree logic (CTL)
it is formalized by YG(P — 3FR).

Definition 3.7.1 (Syntax and semantics of CTL). Add 3 to the alphabet of LTL and
define the set of C'TL formulas as the smallest set F' of words that contains all variables
X, Xq,... and such that for all ¢, € F

—peF, (pr)eF, XpeF, 3Gpe F, I(pUy) € F.

Writing ¢ = p(X) means all variables occurring in ¢ are among X. Let T = (&,¢) be a
transition system over X. Let ¢(X) be a CTL formula. We define ¢ is true in T at state
g € GG, symbolically T, g E ¢, by recursion on ¢, stipulating for all LTL formulas %, y and
variables X from X:

(T1) T,ge X < ((g)(X)=1;

(T2) T,g ~ < T,g¥#¥;

(T3) T.g= (prx) <= T.grvand T gk x;
(T4)
(T5)

T,gE 3X¢p < there is an execution ¢ = g1, ¢s,... (of T') with T, g, & 9;
T,g9= 3Gy <= there is an execution g = g1, go, . .. such that for all © >0: T, g; = ¢;
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there are an execution g = g1,¢o,... and 7 >0

(T6) T.g=3(WUx) = such that for all 1 <j<i: T,g; = x and T, g; = 1.

Remark 3.7.2. As usual, the definition by recursion on syntax is justified by a straight-
forward lemma on unique readability. Also the set sub(y) of subformulas of a formula ¢ is
defined by recursion adding, in Example 1.1.8, the conditions: sub(3Xy) = {IXp} U sub(p)

and sub(3Gyp) := {IGyp} U sub(p) and sub(I(pU1)) := {I(pU)} U sub(p) U sub(1)).
Lemma 3.7.3. Let p(X),¢(X) be CTL formulas and set:

VXQO = —EIX—!QO,
V(pUy) = (-3(-0U(=p A 1)) A =3G=)).

Then for every transition system T = (&, () over X:

1. T,ge YXp <= for every execution gy, gs,... with g=g1: T, gs E .

for every execution g1, gs, ... with g = g1 there isi >0

2 Togr¥(eWy) such that for all 1< j<i: T, g; Y and T, g; E ¢.

Proof. 1 is trivial. 2 =: assume 7T, g = Y(¥)Uy) and let g = g1, 92, ... be an execution. By
T,g # 3G—1, there is ¢ > 0 such that T, ¢g; £ 9. Choose a minimal such ¢, so T, g; & -9
for all 1 < 7 < 7. Assume for contradiction that 7', g; F —¢ for some 1 < j < i. Then
T,g9;= (=pA—1) and g = g1, ga, . .. witnesses T, g = I(-pU(=p A =1))), a contradiction.

2 «<: assume the r.h.s.. Clearly, T, g £ =3G-%. Assume for contradiction that T, g £
F(-U(=p A =1))), that is, there is an execution g = g1, go,... and ¢ > 0 such that T, g; £
(~pA-tp) and T,g; = - for all 1 < j <i. Then T,g; # ¢ for all j <i. Choose k with
T,9r =1 and T,g; = ¢ for all 1 <j <k. Then k>4 and T, g; = ¢, contradiction. [

Remark 3.7.4. Often one restricts attention to transition systems 7' = (&,¢) without
sinks: every g € G has out-degree at least 1. Then T, g = IXp (resp. VXyp) if and only if
T,g" = ¢ for some (resp., all) g’ € G with (g,¢") € E®.

Notation: Define T:= (X v =X) for a variable X and, for CTL formulas ¢, v,

“Potentially ¢”: JFp:=3(TUyp) “Inevitably ¢”: VFe:=VY(TUp)
“Potentially always ¢”: 3JGep “Invariantly ¢”: VG :=-3F-p

In transition systems T = (&, /) without sinks, T, g = IFp if and only if there is a path
in & from g to some ¢’ with T', ¢’ E .

Exercise 3.7.5. Let ¢(X),¥(X) be CTL formulas and set (¢ ~ ¢) = VG(¢ — VFy),
pronounced “p leads to ©”. Let T" be a transition system over X. Show:

for every execution g1, ¢gs,... with g = ¢g; and all >0

Tgr(p~v) <= there is j > 7: if T, g; = ¢, then T', g; £ 9.

for every execution g1, g2,... with g = ¢;

T,9= VGVFy there are infinitely many ¢ > 0 with 7', g; F ¢.
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3.7.1 Model-checking CTL
Theorem 3.7.6. There is an efficient algorithm that decides

MC(CTL,TS) ) ]
Input: a CTL formula ¢(X), a transition system 7" = (&,¢) over X and g € G.
Problem: T,g=p?

Proof. For a CTL formula ¢(X) let [¢]:= {g e G | T,g = ¢}. It suffices to compute [/]
for every subformula v of . Since there are < || subformulas, it suffices to show how to
efficiently compute these sets. This is done recursively using: [X]={ge G | {(9)(X) =1}
for a variable X from X, [-¢] =G~ [¢], [ A x] = [¥] n[x]. Further:

1. [3Xe)] contains ¢ if and only if there is a relevant gy € [¢] with (g, g0) € E®. Relevant
means there exists an execution starting at go; equivalently, there are g; € G, a path
from gy to g; and a cycle on g;; a cycle on g, is a path from ¢, to g; with at least
one edge (i.e., (g1,91) € E® or there are paths from ¢; to some gy # g; and back).

2. [3Gy] contains g if and only if there are a path from g to some ¢’ and a cycle on ¢’
—in ([¢])®, the subgraph induced on [¢].

3. [3(¥Ux)] contains g if and only if there are go,¢; € G and a path from g to gy in
([¥])® such that g is relevant, (go,91) € E® and gy € [¢].

In each case the r.h.s. of the equivalence is efficiently checked using an efficient algorithm
for REACHABILITY. ]

Remark 3.7.7. The above is often formulated only for transitions systems without sinks
and the model-checker computes fixed-points according to the following exercise. As seen,
this restriction is superfluous.

Note that eliminating subformulas V(pU) by their definition can lead to an expo-
nential blow-up (since v is repeated three times) in length. However, the number of
subformulas is not increased, so the theorem holds true for formulas with V(pU).

Exercise 3.7.8. Let ¢(X),¥(X) be CTL formuals and T = (®,/) a transition system
over X without sinks.

1. [3Gyp] is the largest set S € G such that S ¢ [¢] and for every g € T there is ¢’ € T'
with (g,¢') € E®.

2. [3(pUe)] is the smallest set S € G such that [¢] €S and S contains every g € [¢]
such that (g, ¢") € E® for some ¢’ € S.
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