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1. Introduction

(1.1) Notation. We use the symbols N, Z*, Z, Q, R, and C to designate the positive inte-
gers, nonnegative integers, integers, rational numbers, real numbers, and complex numbers,
respectively. We denote the circle group by T and will customarily parametrize this group as
{exp(2mit) : —3 <t < 1}. For real numbers a and b such that a < b, let [a,b] be the closed
interval {t : t € R,a <t < b}, and let |a,b| be the open interval {t : ¢t € R,a < t < b}. The
intervals [a, b[ and |a, b] are defined similarly. Given a real number ¢, the symbol [t] denotes the
largest integer not exceeding t.

Throughout the paper, G will denote a compact Abelian group, and the word “character”
will mean “continuous character”. We denote the character group of G by X. The symbols
¢(G), £,(G), and M(G) denote the set of all continuous, complex-valued functions on G, the
set of Haar measurable functions on G with absolutely integrable p** powers (1 < p < o0), and
the set of all complex—valued countably additive Borel measures on G, respectively.

A trigonometric polynomial ® on G is a function of the form

= Zaxx,

where a is a function on X that vanishes off of a finite subset of X. The set of x € X for which
ay # 0 is called the set of frequencies of ®.

Given a set X and a subset A of X, we write the complement of A in X as X'\ A or sometimes
as A’, where there is no doubt as to what the set X is. The indicator function of A, written as
14, is the function on X equal to 1 on A and equal to 0 on X \ A. (In every case, it will be clear
from the context what the set X is.)

(1.2) The subgroups of Q. Recall that G is a solenoid if G contains a continuous homomorphic
image of the additive group R that is dense in G, and also that G is a solenoid if and only if (a)
X is torsion—free and (b) card(X) < 2%0. (All of this is described in [10], Theorem (25.18)). The

solenoids we study in this paper are of a very special sort.

Let A be any noncyclic subgroup of the additive group Q. Plainly the character group of A is
a particularly simple solenoid. The group A can be described in various ways. For our purposes,
we need the following description of A. Throughout the paper, let a = (ag,a1,...,an,...) be an
arbitrary but fixed sequence of integers all greater than 1. Given such a sequence a, we define:

Ag=1;A, = agay ...ap_1 for k € N. (1)



Let Qa be the set of all rational numbers /Ay, as [ runs through Z and k runs through Z™.
Plainly Q4 is a subgroup of the additive group Q; since all of the integers a; exceed 1, Q4 is
noncyeclic.

Beaumont and Zuckerman [3] have shown that every noncyclic subgroup A of Q is isomorphic
to some group Q, as described above. To tell when two groups Q. and QQp, are isomorphic,
proceed as follows. For all primes p, let k,(p) be defined by:

0 if p divides no Ay;

m—+1

ka(p) = ¢ m € N if p™ divides someAy and p™** divides no Ag;

oo otherwise.

Beaumont and Zuckerman (loc.cit.) prove that Q, and Qy, are isomorphic if and only if: (a)
ka(p) = kp(p) for all but finitely many values of p; and (b) ka(p) # kp(p) implies that both are
finite. Plainly a continuum of different sequences a will yield the same subgroup of Q. Note
too that Q, is isomorphic with Q only when Q, is actually Q; and this occurs if and only if
ka(p) = oo for all primes p.

(1.3) The character group of Qa. We will study Fourier series (suitably defined) on the character
group of Q,, Qa being given the discrete topology. Thus its character group is a compact
Abelian group. We will use a particular realization of this group. First we form the group
A, of a—adic integers. This group which is described in [10], (10.1), consists of all sequences
x = (20,%1,...,Tp,...) with z; € {0,1,2,...,a; — 1}. We give A, the Cartesian product
topology, each “coordinate set” {0,1,2,...,a; — 1} being discrete. We define the sum z =x+y
of elements of A, by induction. Write z¢ + yo = 20 + aoqo, where zp € {0,1,...,a9 — 1} and
qo € {0,1}. If z0,21,...,2,-1 and qo,q1,-..,qn—1 have been defined, write x,, + yp + gn—1 =
Zn, + Gnqn, where z, € {0,1,...,a, —1} and ¢, € {0,1}. It is easy to verify that A, is a compact
O—dimensional Abelian group, with normalized Haar measure, say Ao, the product measure of
the measures assigning the measure 1/a,, to each point of {0,1,...,a,—1}. Let u be the element
(1,0,0,...,0,...) of A,.

Next consider the product group R x A, and in it the infinite cyclic discrete subgroup
H = {(n —nu):n € Z}. The quotient group (R x A,)/H is denoted by the symbol ¥,, and is
called the a—adic solenoid. The group ¥, can be conveniently realized as the set [—%, %[an,
which is of course a subset of R x A,. We will denote this set by 3,. Every coset of H in R x A,
contains exactly one element of ¥,. The sum (s,x) 4 (¢,y) of two elements of X, is the element
(s+t—[s+t+ %], [s+t+ %]u +x+y). The topology of ¥, is defined by a complete family of
neighborhoods {Uj : k € N} of the neutral element (0, 0):

1 1
Uk:{(s,x)eza:—%<s<% and zo=x1=---=2x_1 =0}

Note that neighborhoods of the points (—1,x) have the form
1 1
{(—5 +1,y):0<t< % and yo = 0, y1 = 21, - .., Yp—1 = T—1}U

1 1
{(i_ta_u_}_y) 0<t< ﬂ and Yo = Zo, Y1 :3317“wyk—1:33k—1}-

The foregoing description of ¥, differs only in minor details from that given in [10], (10.12)-
(10.15).

Normalized Haar measure y on Y, is the product of Lebesgue measure A on [—%, %[ and the
Haar measure \g on A, referred to above.



(1.4) The character groups of Aa and 3. For x € A, and o = A%_ € Qa, we write

l
XQ(X) = exp 271'2'?(330 + All‘l + Agl‘g +---+ Aj,lxjfl) . (1)
J

It is known [10], (25.2), and easy to verify that each x, is a character of A,, that xaXg = Xa+8
that all characters of A, have the form (1), and that x, = x if and only if & — 3 is an integer.

That is, the character group of A, can be identified with the discrete torsion group Qa/Z.
For (t,x) € ¥, and o = AL € Qa, we write

J

l
Xa(t,X) =exp [27@?(75 + a0+ Az + Aswo+ - + Aj_qx51) (2)
j

l o
2m’A—j (t + Z Akxk>

k=0

=exp

)

where we agree that integer terms in the series ALJ_ Y re o Agxy are to be omitted. As shown in
[10], (25.3), these functions are exactly the characters of the group ¥,. It is easy to see that
XaX8 = Xa+p and that x, = xg if and only if o = 3. That is, the character group of X, can be
identified with the group Q,. We use the same notation in (1) and (2): the context will always
make clear which group we are using.

(1.5) Fourier transforms on ¥,. Once again we consider an arbitrary G. For f € £;(G) and
x € X, write

oo = /G FOXD (D), 1)

where v is normalized Haar measure on GG. The function fon X defined by (1) is of course the
Fourier transform of f. The theory of Fourier transforms on compact Abelian groups and locally
compact Abelian groups has been studied intensively for nearly half a century. The reader may
consult [20, 10, 11]. We will be largely concerned throughout this paper with the case G = X,
and X = Qj,, connected by the definition (1.4.2).

(1.6) Fourier series on compact Abelian groups. The classical theory of Fourier series on the
group T deals with the behavior of the sequences of functions S, f(t), defined for f € £4(T) by

Suf ()= 3 Flk)exp(2rikt), (1)

k=—n

forallm € Z* and t € [—%, %[ Classical Fourier series have occupied a central place in analysis
for well over two centuries. The contemporary theory is set forth in the great treatise [24]. In
many cases of interest where the series (1) converges, it does so only conditionally, and so the
order of summation is vitally important. We may look for analogues of the series (1) for infinite
compact metric Abelian groups G different from T. To do this, we must find a reasonable way
of arranging the character group X into increasing blocks, say I';,, in such a way that:

ITpclhc---CcI'yC...; (2)
each I';, is finite; (3)

Jra=x (1
n=0



The difficulties that attend such a program are apparent even in the apparently simple case
of multiple Fourier series, which is the case G = T! with [ € {2,3,4,...}. (For an interesting
introduction to this theory, see [1].)

Once the sets I';, have been chosen, we define the Fourier series of a function f in £1(G) as
the series whose n'" partial sum is the polynomial

Suf(h) =3 Foox(®) (5)

X€ly

One can then ask a large number of questions, for example: (a) does a given Fourier series
converge, and if so, to what function?; (b) is there a summability method for the Fourier
series giving convergence almost everywhere on G to the function, in analogy with the theorem
of Fejér—Lebesgue?; (c) is there an analogue of the theorem of Riesz [19] giving inequalities
|Snfllp < Apllfllp for f e £,(G) (1 < p < 00)?; (d) is there a uniqueness theorem for convergent
trigonometric series on GG that are not necessarily Fourier series?; and so on. In short, one may
attempt to “rewrite Zygmund” with its treasure house of delicate facts for the group G. (We
refer of course to [25].)

The success of the above program, or any significant part of it, must depend upon a shrewd
choice of the sets I',;. A large number of writers have studied such sets I',, for one or another
class of groups and have answered various of the questions (a)—(d). The earliest success known
to us in this program was achieved by Paley [18], who ordered the Walsh functions (which
are essentially the characters of the dyadic group {0, 1}N0 in a particularly felicitous way and
obtained a number of delicate facts about the partial sums of Walsh-Fourier series. (Walsh,
who constructed the Walsh functions from the Rademacher functions in [23], also ordered the
Walsh functions, but not in the same way as Paley.) Billard [4] and Sjélin [21] have used Paley’s
ordering to achieve very precise results on the almost everywhere convergence of Fourier series
on the group {0, 1}%0.

Vilenkin [22] obtained a whole class of orderings for the characters of an arbitrary metriz-
able O—dimensional infinite compact Abelian group. Under his oderings, a number of standard
facts about classical Fourier series admit analogues. Vilenkin’s construction admits Paley’s as
a special case. Moore [17] used one of Vilenkin’s orderings to obtain convergence theorems for
Fourier series on a countably infinite product of cyclic groups of bounded orders. Hunt and
Taibleson [13] studied the compact additive group of integers in a totally disconnected locally
compact nondiscrete field, imposing an order on its characters under which the Carleson-Hunt
theorem holds. Gosselin [7] has obtained the Carleson-Hunt theorem and Riesz’s theorem on
£, norms of partial sums of Fourier series for a large class of 0-dimensional compact Abelian
metric groups. His results contain those of Hunt and Taibleson, Sjolin, Billard, and Moore.

2. Fourier Series on X,

(2.1) Definitions. We return to our principal object of interest, the group 3, defined in (1.3).
For this group and its character group Q,, we make a selection of sets I';, as follows. Let (cj)?‘;o
be a sequence of positive integers for which the properties

]

lim > = 1
and - c
7+ J .
—_ > = for 7 =0,1,2,... 2
A A J (2)
hold.



The j* complete block in Cj in Qg is defined by

l
Cj:{A—j:ZGZ,MScJ}, for j=0,1,2,... (3)

The j* first entrance block Bj is defined by
BOICO,Bj:Cj\Cj_l forj:1,2,3,... (4)

Plainly (1.6.2)—(1.6.4) hold for the blocks C;. These blocks have been used by Hewitt and
Katznelson [9] to study uniform distributions on ¥, for the case in which Q, is a subring of Q
(i.e., all nonzero ka(p) are o).

For distinct positive o and G in Qa, we write o < (3 if:

« and (3 are in the same first entrance block B,, and
a < [ in the usual ordering of Q (5)

or
a € By and § € B, with I < m. (6)

That is, the ordering < is carried out as follows. We first list all of the positive integers in
By = Cj in their natural order; then all positive nonintegers [/A; not exceeding ¢y in their
natural order; then all [/A; such that ¢y < [/A; < ¢1/A; in their natural order; and so on. We
plainly get a one—to—one map n — «,, of N onto the positive numbers in Q, such that m < n if
and only if o, < ay,. Finally we set ag =0 and a_,, = —a,.

(2.2) Definitions. Let ¢ be a complex—valued function on Q4. For every nonnegative integer n,
let s, ¢ be the polynomial on ¥, defined by

8n¢ t X Z ¢ al Xal t X) (1)

l=—n

The functions s, ¢ represent a general {rigonometric series on ¥a. If ¢ is the Fourier transform
f of a function f in £;(Xa), we change the notation of (1) for historical reasons and write

$nf(t,%) Z F (e ) Xat (£ %). (2)

l=—n

The function s, f is called the n** partial sum of the Fourier series of the function f. We will
devote our attention to a subsequence of the sequence of functions (s, f)5> . This is defined by

Sif(t,x) = foaxa(tx) for j =0,1,2,... (3)
acC—j

That is, we obtain the polynomial S;f by summing over the 4% complete block of characters.
It is plain that

Sif =sc; f. (4)
3. More on the Structure of X,

(3.1) A construction. It is essential for our analysis to consider the subgroups A; of ¥, defined
by

Aj:{(O,X)Ezaix‘():.l‘l:"':.xj_lz()} (1)



for j=1,2,3,..., and by
Ao = {(0,x) € £, : x is arbitrary in A,}. (2)
(This notation differs from that used in [10], (10.4)). The sets A; are obviously closed subgroups

of ¥,. For all j, the quotient group 3a,/A; is topologically isomorphic with the circle group T.
The natural mapping 7; of ¥, onto ¥5/A; ~ T can be conveniently realized as

1
mi(t,x) = X174, (t,x) = exp [%ZI (75 + Z Ahfé‘h) (3)

J h=0

for 7 =1,2,3,... and for j =0 as
mo(t, x) = x1(t,x) = exp[2mit]. (4)
To verify this, note first that the annihilator in Q, of the subgroup A; is exactly the cyclic

subgroup A%Z of Qa. Thus 7; is a continuous homomorphism of ¥, onto T with kernel A;.

Hence it induces a one-to-one map of 3,/A; onto T, which we also denote by the symbol ;.
The definition of the topology of the quotient group ¥,/A; (see for example [10], (5.15)) shows
that 7; maps ¥,5/A; continuously onto T. Since ¥5/A; and T are compact, 7; is a topological
isomorphism. More specifically, we note as well that:

1 1
the j + 1-tuples (¢;x0,21,...,2j-1) for — 3 <t< 3 and zj, € {0,...,a, — 1}
are in one-to—one correspondence with the cosets of A; in 3,. (5)

We shall also have occasion to use normalized Haar measure A\; on Aj, regarded as a measure
in M(Ea) Note that H/\]H = )\j(Ea) = )\J(A]) =1.

(3.2) Remark. Let p be any polynomial on the group T:

p(exp[2mit]) = Z a, exp(2mit]. (1)

k=m

For every nonnegative integer j, the function p o 7; is plainly a polynomial on Xj:

pom;(t,x) = Z ay exp |:27TZ'/€% (t + Z Ahwh)] = Z akXr/A,; (t,X). (2)
k=m J h=0 k=m

For our construction of divergent Fourier series on ¥ ,, we need detailed information about mea-
surable subsets of X,.

(3.3) Definition. For a finite subset F of ZT and an element ¢ of the Cartesian product
Picr{0,1,...,a; — 1}, let C(F,c) be the set of all x € A, such that z; = ¢; for all j € F.
Such sets are called cylinders in A,. The entire group A, is a cylinder with F' the void set. Let
H be any interval in [—3, [ of the form [a,b[ with —3 < a < b < %. A subset of X, of the form
[a,b[xC, where C is a cylinder in A,, is called an interval in X,.

(3.4) Theorem. FEvery open subset U of ¥4 is the union of a countable family of pairwise dis-
joint intervals in Y.

*Note that intervals in X5 as we have defined them are not open subsets of ¥,. Thus the present theorem is

not an analogue of the classical structure theorems for open subsets of R and T. Note also that the decomposition

obtained in the present theorem is by no means unique. The open set } - i, %[ X Aa for example is the union

Usre [tk, te—1[ X Aq for every strictly decreasing sequence of real numbers (tx )7~ such that to = % and limg_— oo tr =
i

4



Proof. Every open subset of ¥, is a union of intervals H x C, the notation being as in (3.3),
where the intervals H in [—1,1[ have rational endpoints. The family of all such intervals and
the family of all cylinders in A, are both countably infinite. Accordingly our open set U is a

countable union of intervals in X 4:

o0
U= U H, x C,,. (1)
n=1
We next write

n—1

3

U = (Hy x ) U ([ ((Ha x Co)\

TC

(Hj, x Ck))

i
[N}
7
L

:(H1 xCl)U

s

((Hn x Cp) N [ ) (Hy x C’k)’>
1

3
||
o
B
Il

—nu @
n=2

It is obvious that the intersection of two intervals in Y, is an interval in ¥, or is void. It is
a simple matter to show that the complement of an interval in X, is a finite union of pairwise
disjoint intervals in >,: we omit the details. Applying these observations to the sets J, in
(2), we see that each .J, is a finite union of pairwise disjoint intervals in ¥,. The sets J, are
constructed so as to be pairwise disjoint. This completes the proof.

(3.5) Theorem. Let S be an arbitrary subset of X5 and € an arbitrary positive number. There
is a countable family {I,,}5°_, of pairwise disjoint intervals in X5 such that

(1) 5 CUn=11m

and
(i) p(S) > 3oy wlIm) — €.

Proof. The general theory of measure shows that
w(S) =inf{p(U) : U is open and U D S}.
See for example [10], Theorem (11.22). Choose such a set U for which

w(S) > u(U) —e. (1)

Use Theorem (3.4) to write U = J,,_; Imm, where the sets I, are pairwise disjoint intervals.
Since intervals are Borel subsets of 3,, every Borel set is y—meaurable, and p is countably
additive on p—measurable sets, (1) shows that

M(S)>,u<[j[m>—6:i,u([m)—5. O

m=1 m=1

4. Divergent Fourier Series of Continuous Functions on .,

We will prove the following fact.

(4.1) Theorem. Let N be any subset of ¥a with Haar measure zero. There is a function
f € €(Xa) such that the sequence (S, f(t,x))°%, is unbounded at every point (t,x) € N.

n=0



For our proof we need a lemma of Kahane and Katznelson [15], which we state in a slightly
sharpened form.

(4.2) Lemma. Let E be a subset of T that is the union of a finite number of closed intervals,
not necessarily disjoint, and suppose that A\(E) > 0. Let « be any number greater than 1. There
s a polynomial ® on T such that:

(i) @(exp(2mit)) = Zi]\:/lo an exp(2mint);
(ii) [|®floo <15

() |05 an exp(2min)| > 108 (55t

for all exp(2mit) in E.

Proof. Repeat the proof in [16], pp. 57-58, noting that the function v; can be chosen so that
its real part exceeds é on I, and replacing e=*M* by e'M*t in the definition of the function ¢. O

(4.3) Proof of (4.1). Since u(N) = 0, we may apply Theorem (3.5) to find, for every positive
integer [, a family {1; ,} 2 of pairwise disjoint intervals in ¥, such that

> (i) < 22 (1)
n=1

and -
Nc | L (2)
n=1

It is obvious that
(oo}

o= (St <1 3)
n=1

=1
For every positive integer k, there is a positiv integer nj such that

ng Nk
0= Y pwlin) < exp(—(k+1)°). (4)
=1 n=1
Without loss of generality, we suppose that n1 < ng <ng <.... Write
ny ni
My = Iin, (5)
l=1n=1

and Nk ng ny ng
Mk:( U UIlvn>U<U U Iz,n) for k=2,3,... . (6)
l=ngk_1+1n=1 I=1n=nk_1+1
It is plain that

—

p(Mp) <o < —.

N

The set of M}, is contained in |J I} ,,, the union being taken over the set A(k) consisting of all
pairs of indices ({,n) with max(l,n) > ni_;. From (4) we see that

Tg—1 Mk—1
p(Mp) < Y php)=0— Y Y wllin) < exp(—k?). (7)
(I,m)eA(k) I=1 n=1



The relations (2), (5), and (6) imply that

o o0
N c () | My = limsup M. (8)

j=1h=j h—o0

Definitions (5) and (6) show that each set My, is a finite union of intervals in the group Xa.
We may take these intervals to be pairwise disjoint, as in the proof of (3.4). We write

Sk

My, = J Hi x C(Fy,c)). (9)

=1
With no loss of generality, we may suppose that the sets Fj are all equal to {0,1,2,...,r; — 1}
for a positive integer r; that depends only upon k. Possibly each H; consists of a single point.

In this case, enlarge some H; to be an interval in [—3, 3| of positive length such that p(My)
remains less than exp(—k?3). We now consider the set

T (My,) = P, C T.

It is clear that

Sk

Py = m (H x C(F, 1))
=1

Let 3(c;) be the complex number
1 1
exp [2711’(/1 c;(0) + 20 ca(l)+---+

Ark Apr—1
It follows from the definition of m,, ((3.1.3) and (3.1.4)) that =, (H; x C(Fj,c)) is the set of all
numbers

eyl — 1))].

Tk

{B(cl)exp [27Ti<At )} it e Hl}. (10)

Tk
This set is an interval in T whose Lebesgue measure is - A(H;). (This set is a single point if H,
Tk

is a single point.) In any case, P} is the union of a finite number of intervals in T. The relations
0 < A(Py) = u(My) (11)

are obvious from (9), (10), and the fact that m,, can be regarded as a one-to—one mapping of
Ya/Ay, onto T. Note that My = My + A,,.

We now apply the lemma of Kahane and Katznelson (4.2) to the subset Py of T. We find a
trigonometric polynomial

Uk
Oy = Dy (exp[2mit]) = Y ayp exp[2milt] (12)
=1
on T such that:
[Pxll < 1; (13)
there is a vy < ug such that
Vg
1 1 1 1
2'lt‘>—1 ( ):—1 ( ) 14
‘Zalv’fe’{p[ mitt]] > Zloe \ xmy) ~ 7 8 G (14)

=0



for all exp[27it] in Pg. Let us define
¢k = q)k O Ty - (15)

That is,

or(t,x) = i ay exp [QM'(Al (t + iij]))] > i a1k X1/A,, (t,x) (16)
1=0 "k 3=0 1=0

for all (¢t,z) € Xa.
From (13) and (15), we have

el < 1. (17)
Since 7,5 (Py) = 7 (16 (M) = My, (14) and (15) show that
3 oesp ori( +§ijj))]¢ > Do () (19

for all (¢t,x) € M.

We now define by induction a sequence (ji)72; in N and a sequence ()72, of positive
numbers in the group Q,. Let j; be a positive integer (the smallest one if you like) such that

r < j1 (19)
and 1
U1 le —
< =4 20
Am N Aj1 ( )

We can find j; in view of (2.1.1) and (2.1.2). Now let b; be the nonnegative integer such that

v + bt <Cj1—1<’01—|—b1+1

21
Ay T Ajl Ar, ( )
and let 5 )
1
o] = + —. 22
' Ar, Ajl ( )
Consider the possible frequencies of the polynomial x, ¢1: they are contained in the set
b 1 1+0 1 b 1 b1 +1 1 b 1
{ L ’ +1_|_ ,”"Ul+ 1+_}U{Ul+ 1+ n ’“.’U1+ L }
AT1 Aj1 Ah Aj1 AT1 Aj1 AT1 Aj1 AT1 Ajl

= E171 U ELQ.

Next consider the complete blocks C; and first entrance blocks B; defined in (2.1.3) and (2.1.4).
A trifling calculation based on (19) shows that (E1; U Ej2) N Cj -1 is void, while (21) shows
that (El,l U El,g) N le = E171 and El,g U le is void. Thus we have

v1
Sj1 (Xal Cbl) = X Z X1 /Ay - (23)
1=0
We proceed by induction. Suppose that ji, jo,...,jr—1 and a1, 9, ..., a1 have been defined.

We select the positive integer jj so that:
T < Jk3 (24)

10



the complete block C;, _1 contains all of the frequencies of the polynomials x o, 1, Xas 2, - - - » Xay_ 1 Ph—1;
and

Vi Cj, — 1
L A— 25
Ark B Ajk ( )
Let b; be the nonnegative integer such that
vk+bk§cjk—1<vk—|—bk+17 (26)
Ark Ajk ATk
and define
b, 1
o = —
Ark Ajk
The frequencies of the polynomial x,, ¢, are contained in the set
b 1 1+09 1 vp + b 1 v+ b, +1 1 ug + b 1
{ oy - 2k, R ’“+—}u{%+—,..., i ’“+—}
ATk Ajk ATk Ajk Ark Ajk Ark Ajk Ark Ajk
= Ek1 U Ek 2.

The relation (24) shows that (Ej 1 UEj 2)NCj,—1 is void and (26) that £y ; C Bj, and Ey2NCj,
is void. Finally, we define a function f on X, by

— 1
f=2_ 35 Xon®h (27)
h=1

From (17) we see that f is a continuous function: the series in (27) converges uniformly on 3.
The uniform convergence of this series shows also that for every 8 € Qa,

fxe) = %@(Xﬁ)-
h=1

The number (xa,®n) (xg) is the coefficient of x 3 in the polynomial xq, ¢ if 5 is a frequency
of Xa,¢n and is 0 otherwise. Furthermore, our construction ensures that all of the rational
numbers 3 lying in a given Cj, that are frequencies of any polynomial X, ¢, occur in the sum
Zi:l %Xa,ﬁbh- We have proved that

1 -
1S f = Sjecs fl= 73| Xaw D akxija,, | (28)
1=0
For (t,x) € My, use (28), (18), and (7) to show that
1 1 1
|55 f (t,%) = S, f(t,x)] > ) log (m) > m(k’g —log ). (29)

Finally, consider any point (¢,x) € N. As noted in (8), (¢,x) is an infinite number of the sets
M. From (28) and (29), we infer that

klgrolo |Sjkf(t7x) - Sjk—lf(t’x)’ = 00,

and so the sequence (S, f(t,x))5, is unbounded. O
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5. An £, Fourier Series that Diverges Everywhere

(5.1) Preliminaries. We will establish an exact analogue of Kolmogorov’s construction of an
everywhere divergent £ Fourier series on T. Most of our work is carried out on T. Throughout
(5.1)-(5.5), all functions are defined on T, and £; norms and iniform norms refer to T. For
real-valued functions ¢ and 1 defined on T, inequalities of the form ¢ < ¢ and ¢ < v are to be
interpreted as holding pointwise everywhere on T.

~

For f € £1(T), the Fourier coefficients f(k) are defined as usual by

Fik) = |7 flexp(2mit)) exp(2rikt) dA(D) (1)

N

for all k € Z. For nonnegative integers n, we write also as usual

Sy f(exp(2mit)) = Z F1) exp(2milt). (2)

l=—n

Let p(exp(2mit)) = Y, ar exp(2mwikt) with apma, # 0 be a trigonometric polynomial on T.
The number max{|m|,|n|} is called the degree of the polynomial p.

The key to our construction is a theorem of Kahane [14], p. 105, Theorem 3, which reads as
follows.

(5.2) Theorem. Let (v(k))72, be any nondecreasing sequence of positive integers such that
limy oo v(k) = 00. There exists a real-valued function f in £1(T) for which

(i) sup;<r<oo SV(T)f(eXp(27Tit)) = 00
for A\-almost all t in [—3, 3[.

We need to replace “A-almost all” by “all” in Theorem (5.2). Throughout (5.3)—(5.5), the
sequence v will be as in (5.2).

(5.3) Lemma. Let «, 3, and § be positive real numbers. There ezists a real-valued trigonometric
polynomial p on T,

(i) plexp(2mit)) = SoN v agexp(2milt)  (a_; = @),
such that
(i) Ilpll < La
and
(iil) A({exp(2mit) : maxi<j<k Sy(j) f(exp(2mit)) > B}) > 1 — 4.
Proof. Let f be as in (5.2). For each positive integer k, let Ay be the set

71 s
o)

{exp(?wit) : lrgjag(k Sy) f (exp(2mit)) > (1)

We have A1 C Ay C ... and by (5.2.1), A (U2, Ar) = A(T) = 1. Hence we can choose a positive
integer k such that
AAg) >1-46. (2)

Let V) = 2Fy,1)—1 — Fyx) be the de la Vallée=Poussin kernel on T, as defined for example
in [16], p. 15 (Fj is the Fejér kernel of course). Let p be the trigonometric polynomial

p= (ﬁf) * Vi(k)-

12



To check (ii) for the polynomial p, note that

(0% «
< — V, < =-3<a/2
el < 1) Vol < 23 < af

Since YA/,,(k)(l) =1 for || < v(k), we also have
a
SuHP = s Svif (3)
M FIT

for j = 1,2,...,k. The equalities (3) imply that the set described on the left side of (iii) contains
Apg. Thus (2) proves (iii). O

(5.4) Lemma. Let o and (3 be positive real numbers. There is a trigonometric polynomial q on
T such that
(1) llglh <«

and
(ii) maxi<r<eco |SV(T)Q| > f.

Proof. We apply (5.3). For the number ¢, take %exp (#) Let p be the polynomial of (5.3)

for a and 8 as in the present lemma and for the § just specified. The partial sums S, ;)p are
real-valued trigonometric polynomials and so the sets

Dj = {exp(2mit) : S,(jyp(exp(2mit))| > [}
are open sets that are finite unions of open intervals in T. The same is true of the set

D = {exp(2mit) : max_S,p(exp(2mit))| > 5} (1)

which is a finite union of sets D;. (Since p is a polynomial, its Fourier series has only a finite
number of distinct partial sums.) Let E be the set T\ D. The set E is a finite union of closed
intervals in T, and so is either finite or has positive Lebesgue measure. By (5.3.iii), we have
A(D) >1—6, and so AM(E) =1— A(D) < 4. If E is finite, embed it in a finite union of closed
intervals the sum of whose lengths is positive and less than §. Let F' denote the set E if E is
infinite and the enlarged set if F is finite.

We now apply Lemma (4.2) to the set F', where the number « of (4.2) is taken as 2. With
a trivial change, we find a trigonometric polynomial

2M
O (exp(2mit)) = Y _ an exp(2mint) (2)
n=0
such that
1]l < /2 (3)
and
M—1 o 1
‘ nz;) an exp(2mwint)| > o log ) > 20 (4)

for all points exp(2wit) € F.

Let « be the degree of the polynomial p. Let k be any positive integer such that v(k) >
(M — 1) +~. Let go be the polynomial

qo(exp(2mit)) = exp(2mi(v(k) — M + 1)t)®(exp(2mit)). (5)

13



Finally let ¢ be the polynomial

q=p+aq (6)
For j such that v(j) < v+ 1, (5) shows that
Su(ie = Sv(i)P- (7)

For exp(2mit) in D, (7) and (1) imply (ii).

Now consider a point exp(2mit) not in D. This point belongs to E and hence to F. Since it
is in E, (1) implies that
N < 3.
122}{ ‘Su(r (eXp(27TZt))| = 6 (8)
We look at the individual partial sum S, q(exp(2mit)), k being as above. We find
1Sy q(exp(2it))| = S, kyp(exp(2mit)) + S, k) qo(exp(27it))|
2 |5y (k)0 (exp(2mit))| — S, yp(exp(2mit))|
=A-B. 9)

Since exp(2mit) is in F', (4) and the definition (5) of ¢o show that

M-1
A= ‘ Z an exp(2mint)| > 2. (10)
n=0
By (8), we have
B<gB. (11)
Combining (11), (10), and (9), we get (ii) for all points in E. This completes the proof. O

(5.5) Theorem. There is a function f in £1(T) for which

(1) SUP1<r<oo |Su(r)f(exp(27rit))| =00
for all exp(2mit) € T.

Proof. We construct by induction a sequence of trigonometric polynomials (¢;)7°, on T. We
write 7; for the degree of the polynomial ¢; and k; for the greatest positive integer s such that
v(s—1) < v < wv(s). We will apply Lemma (5.4) repeatedly. First let ¢; be as in (5.4) with
o= % and B = 2:

ol < 27! (1)

and

ax 1Sumar| > 2. (2)

Suppose that g1, ¢, ..., ¢n have been constructed. We apply Lemma (5.4) again to define ¢y,41
as a trignonometric polynomial such that

lgmall < 27 T min{v (k) vke) ™. v(kn) ) (3)

and

 max 1Sy Gm+1] > 2max{

o} g
J:
Define the function f by

F=> g (5)
j=1

14



From (3) we see that f is in £1(T). Now fix a positive integer [. It is easy to verify that

-1 [e's)
Sy f = Su(r (Z Qj> + Syma + Z Sumqi = o1+ Sumq + 2. (6)
Jj=1 j=l+1

For j > 1+ 1 and r < ki, (3) shows that

_2u(ky) +1 .
18yl < (2ur) + Vgl < 279 2 E T g o,
v(k
It follows that -
p2lloo <3 > 277 =3-27" (7)

j=l+1
It is clear that

¢$1 < max
1<r<oo

-1

Sum(zqa')moo =c. (8)
j=1

Combining (6), (7), and (8), we find for r < k;

|Sy(r)f| > ’SV(’I’)ql‘ —c—3- 2_l

and so
S ISy f| 2 max |S,¢)f] > max |S,¢yal —c—3- 27, (9)
Since
|max 1Symall = nax 1Symyail,

the relation (4) with m + 1 replaced by [ shows that

1
¢ <3 max 1Suryal-

Therefore (9) and a second application of (4) yield

1
sup ‘Sl/('l‘)f| > 5 sup |Sy(r)§m -3 2_l >1-3- 2_l~ (10)
1<r<oo 2 1<r<o0
Since [ can be arbitrarily large, (10) implies (i). O

(5.6) Theorem. There is a function F in £1(3,) such that
(i) SUP1<n<oo ‘STZF(t7X)’ = o0
for all (t,x) in X,.

Proof. For all nonnegative integers j, let v(j) be the integral part of the rational number c¢;/A;.
Let f be the function on T described in Theorem (5.5), and let F' be the function f o mg. (All
notation is as in Sects. 2 and 3.) Thus F' is a function in £1(X4). A simple calculation, which
we omit, shows that the Fourier transform Fof F , which is a function on Q,, has the form

ﬁ(L): f(1) fork=0and! € Z;
Ay 0 for k=1,2,3,... and ] € Z.
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It follows that

l=vn

Suf(t.x) = > FB)xs(t,x) = Y JOxi(t,x) = Sy fexp(2rit)). (1)

BeCH l=—vn

The second line of (1) is unbounded over n for all exp(2mit) in T, as proved in (5.5). Hence (i)
follows. a

(5.7) Remark. The function F' constructed in Theorem (5.6) is independent of the x—coordinate
in ¥,. We can also define F' as f o wj, for an arbitrary positive integer h. The essentials of the
construction remain on T in any case.

6. £, Fourier Series on X, Converge Almost Everywhere

Throughout this section, p denotes a fixed but arbitrary real number strictly greater than 1.
The symbol C), denotes a constant depending upon p, which may vary from one occurence to
another. Combining the maximal theorem of Carleson—-Hunt and a classical submartingale the-
orem of Doob, we will prove that S, f(t,x) converges almost everywhere on ¥, to f(¢,x), for f
in £,(Xa).

(6.1) Notation. Let n and k be nonnegative integers and f a function in £1(Xa). Let T}, x f be
the trigonometric polynomial

Torf =5 Fl)ve, 1)

the sum being extended over all s in A%LZ such that |s| < i—’;. For each n and each (¢,x) in X,
let

N f(t,%) = sup{|Tno f (&, X) |, | Ta1 f (&, X)), -, [ To f (£, %)) 1 (2)
Let
Mf(t,x) = sup{[So f (£, x)|, |SLf (. )|, ... [Snf(t,x)],... } 3)
where S, f is as in (2.2.3).

(6.2) Lemma. Let k and n be integers such that 0 < k < n. Let D be any Borel subset of X,
that is the union of cosets of the subgroup Ay of Xa. Let h/A, be a number in Qn that cannot
be written in the form h'/Ay. Then we have

() Jp xn/a, () dp(u) = 0.
Proof. The hypothesis on D implies that 1p = 1p * Ag, and so we have

/D Xh/A, () dpp(u) = / 1p * Ae(w)Xn/a, (w) dp(u) = (1p * /\k)A( - A%)

L I G NS (S BT

(6.3) Theorem. Let f be a real-valued function in £1(Xa). The sequence of functions
(Nof,N1f,...,Nuf,...) forms a submartingale. We also have

) [[Nnfllp < Cpll Fllp-

Proof. Let B,, be the smallest c—algebra of subsets of ¥, with respect to which the character
X1/4, is measurable. This is the family of Borel subsets of ¥, that are unions of cosets of the

16



subgroup A,. Let us for the moment fix the integer k. Let m and n be integers such that
0 <m < n. Lemma (6.2) shows that

/D Ty o f dpi = /D Tpif dp 1)

for all sets D in B,,. That is, the sequence of functions (7}, ; f)72 is a martingale with respect
to the sequence of o-algebras (B,)72,. (Note that all of the functions T), ; f are real-valued,
since f is real-valued.) It is elementary to show that if (X,,) and (Y},) are submartingales, then
(max{Xy,Y,}) is also a submartingale. See for example [2], Theorem (57.5). Now let k run from
0 to a positive integer K. We find that the sequence of functions (max{|Ty of|,...,|Tn,x f|})rZo
is a submartingale. Going to the limit we see that the sequence of functions (N, f)>2, satisfies
the submartingale inequalities. To show that (N, f)52, is a submartingale, we need only to
prove that each function N, f is in £1(Xa). This of course will follow by Holder’s inequality
from (i).

To complete the proof, we thus need only to establish (i). Fix n, and consider the function
f # A, for which it is clear that (f * \,) * A, = f * A,. We note the familiar inequalities

1 * Anllp < I llpllAnll = 11£1lp- (2)

Now let g be any function in £1(3,) for which the equality g * A\, = g holds. Parametrizing the
cosets of A, as in (3.1.5) and using (3.1.3) we write

12
[ st dutex = [ e TN 3)

(This is a special case of the identity [11], (28.54.iii); it can be Veriﬁed in the present case by

starting with functions 14 where A = %,i(l ) and I is an interval in [—3, 2[.) Note that g o 7771 is
a function on T. From (3) and (2) we find that

1(f * An) 0 Tallp = 11 % Aallp < £l (4)

Let us find the Fourier coefficients of the function ¢,, = (f * A\,,) o 7rn For h € Z, (3.1.3) and (3)
give

R 1/2
G (h) = / exp|—2mihs]n (s) dA(s) = / expl—2mihmn (£, %) (f * An) (£, %) dp(t, )
~1/2 Ta

= [ xnaex0f xR dnte 0 = (70 (4) €

a

~—

Note as well that L
(f*xA\) =f=1F 1A;12' (6)

We may now apply a theorem of Carleson [5] and Hunt [12]. Let Mg, be the function on T
defined by

Moy (s) = Sup‘ Z (bn ) exp[2mils]|. (7)

m>0

That is, M ¢,, is the classical maximal function for ¢,,. Theorem 1 of Hunt [12] asserts that

(/ " aronts)y ax©) " < Cyllonlly (8)

—-1/2
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We use (3) and (2) to rewrite (8) in the form

([ @on0miexr aute) " <Gl Q

a

The definition (6.1.1) of T}, , f makes it clear that
N f(t,x) < M o mn(t,%) (10)

for all (¢,x) in X,. From (9) and (10) we obtain

([ vusexopant)" <l
This is (i). O

(6.4) Theorem. For f in £,(Xa) we have

(i) limp—o0 [[Sn.f = fllp=0.
Proof. We use the notation employed in the proof of Theorem (6.3). A famous theorem of

Riesz [19] (for a recent exposition, see [24], Ch. VII, p. 266, Theorem (6.4)) tells us that

m

1/2 B » -
/1/2( S™((f % An) 0 ma) (h) expl2mihs)| dA(s) < CEI|(f * An) o a2 (1)
- h=—m

for all m € Z. Set m = ¢, in (1) and recall that S, f = (S, f) * A\,. Combining (1) and (6.3.3),
we see that

150 fllp < Cpll fllp (2)

forn=0,1,2,... Given a positive real number ¢, write f = f1 + fo, where f; is a trigonometric
polynomial on ¥, and || f2|| < e. For all large enough n, the partial sum S, f1 is fi itself, and so
(2) yields

1SS = fllp < [1Snf1 = fillp + 1Snfallp + | f2llp < (Cp + D f2ll, < (Cp + e

This of course implies (i) ot

(6.5) Theorem. For all £,(Xa), we have:
(i) the mazimal function M f is in £,(3a) and ||M fl, < Cpl| fllp:
(ii) the sequence (Snf(t,x))02, converges to f(t,x) for p—almost all (t,x) in X,.

Proof. We apply Doob’s theorem (Ch. VII (3.4), p. 317 of the treatise [6]) to the submartingale
(Np)o2 . This yields

max(Nf. N Np b < (S25)" [ 1)
T p—1/ Js,

for all nonnegative integers m. Apply (6.3.1) to the right side of (1) and B. Levi’s theorem to
the left. We find
[ sup{VENENG Y an < R, )

a

"Dr. Walter Bloom has also proved this theorem (written communication)
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Since S, f is the trigonometric polynomial T, ,, f, the function |S,, f| is majorized by Ny, f. There-
fore the inequality (2) proves (i).

With (i) and (6.4), it is easy to establish (ii). We sketch the argument. We have
Joa M(f = Suf)du < Cyllf = Sufllp = o(1),
ie.,

fga SUPm>n ‘Smf - Snf| dp = 0(1)'
Therefore there is a subsequence (ny);2, of N such that

lim{ sup |Sof(t,%) — Su, f(£,%)[} = 0 (3)

m>ng

for p—almost all (¢,x) in X,. Since ||Sy, f— f|l, = o(1), there is a subsequence (ny,);°; of (ny);,
such that

T[S, £(6,%) — f(t,%)] =0 (W
for pr—almost all (¢,x) in X,. Combine (3) and (4) to obtain (ii). O

(6.6) Remarks. It is known that the Fourier series of a function f on the circle T converges to
f almost everywhere not only for f in £,(T) (p > 1), but also if

[ 1#110g" 105" 7] dp < .
T
See Sjolin [22] and for additional details Hunt and Taibleson [13], pp. 609-612. It is tempting

to conjecture that a like result holds for functions on >,. In order to prove this, it would suffice
to show that an inequality of the form

p(l(8.) € S M7 () > )7 < S ], (1)

holds for all y > 0 and all f in £,(Xa), for 1 <p <1+ ﬁ. Details are given in [13], pp.
609-612. Our methods do not yield an inequality (1), but only (1) with Iﬁ replaced by a higher

power of il. It would be interesting to establish (1) for the group X, perhaps by a close study

of Carleson’s original construction, or by modifying Sj6lin’s proof to take account of (1) with
1

(p—1)"

(6.7) Historical note. After this paper has been written, Professor Kenneth A. Ross kindly
drew our attention to the unpublished doctoral dissertation of Douglas N. Hawley [8]. Hawley
introduced certain cases of our blocks C'; and used them to obtain analogues on ¥, of Fejér and
Poisson summability methods, which are of course classical for the group T. To our knowledge,
Hawley was the first to consider summing Fourier series on the groups ¥, by using blocks of the
form Cj.
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