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Abstract

An ortho-radial drawing is a straight-line drawing of a graph with right angles between
edges drawn on the ortho-radial grid. This grid is composed of increasingly growing
concentric rings around a center point and evenly spaced spokes emanating from
the center. An ortho-radial drawing can be created by finding a valid ortho-radial
representation of the graph in the TSM framework. Up to now, no efficient algorithm
for finding such a representation is known except for an optimized Integer-Linear
Program, which still may require an exponential amount of time. This work shows
that for plane 4-graphs, the problem of finding a bend-free valid ortho-radial drawing
is NP-complete by reducing the 3-Sat-problem to it. The decisive property of ortho-
radial representations used by the reduction is the global condition that every simple
essential cycle must contain edges of specific labels. Further, when restricting oneself
to consider series-parallel plane 3-graphs, a quadratic runtime can be achieved for
findin a bend-free valid ortho-radial representation if one exists. For so-called 2-legged
series-parallel plane 3-graphs, even a linear runtime is possible for bend-minimum
valid ortho-radial representations.

Deutsche Zusammenfassung

Eine ortho-radiale Zeichnung eines Graphens ist, ähnlich zu orthogonalen Zeichnungen,
eine Zeichnung mit rechten Winkeln zwischen geraden Kanten. Der Unterschied
liegt darin, dass ortho-radiale Zeichnungen auf einem Gitter bestehend aus mehreren
größer werdenden konzentrischen Ringen und von der Mitte ausgehende geradlinige
Linien gezeichnet werden. Eine ortho-radiale Zeichnung kann mittels einer validen
ortho-radialen Repräsentation via dem TSM-Framework erstellt werden. Bisher gab
es jedoch keine effiziente Möglichkeit, eine solche Repräsentation zu erstellen. Diese
Arbeit zeigt, dass für allgemeine 4-Graphen das Finden einer validen ortho-radialen
Repräsentation ohne Knicke NP-vollständig ist, indem es auf das 3-Sat Problem
reduziert wird. Ausschlaggebend für diese Reduktion ist die globale Bedingung valider
ortho-radialer Repräsentationen, dass jeder einfache essenzielle Kreis Kanten mit
gewissen Labeln besitzen muss. Diese Arbeit zeigt außerdem, dass dieses Problem in
quadratischer Laufzeit für serien-parallele 3-Graphen lösbar ist und für sogenannte
zwei-beinige serien-parallele 3-Graphen sogar eine lineare Laufzeit für das Finden
von knick-minimaler valider ortho-radialer Repräsentationen erreichbar ist.
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1. Introduction

Orthogonal drawings naturally arise from the desire to make the information encoded in a
graph accessible to a human reader. Their angles of strict 90 degrees and edges having
similar lengths make it easy to trace paths and group information. An orthogonal drawing
is an embedding of the graph into the standard grid, where vertices are mapped to points
and edges are composed of the vertical and horizontal paths between them. The two
arguably most important aesthetic criteria for orthogonal drawings are planarity, meaning
no edges cross except at their endpoints, and the number of bends required to place edges
only on the lines of the grid. Great work has gone into minimizing the number of bends
in a planar orthogonal drawing [GT97, CK12, BBR14, BK94, BKRW11, BLR15, REN06,
ZN05, DKLO22, DBLV98]. A natural extension to orthogonal drawings are ortho-radial
drawings, which are drawings embedded on the ortho-radial grid consisting of increasingly
growing concentric rings around a center point and evenly spaced spokes emanating from
the center. Vertices are placed on the intersection of these lines and edges are composed
of the paths between them. Ortho-radial drawings can arguably, compared to orthogonal
drawings, put better emphasis on the part of the graph placed in the center of the grid
and can better represent the layered nature of a graph. Moreover, ortho-radial drawings
have the possibility to reduce the required number of bends compared to an orthogonal
drawing as seen in Figure 1.1.

(c)

f f

(b)(a)

f

Figure 1.1: A plane graph (a) and an orthogonal drawing (b) as well as an ortho-radial
drawing (c) of it. Both representations have bends indicated by square vertices.
The orthogonal drawing is bend-minimum with 3 bends, while the ortho-radial
drawing only has 1 bend.
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Figure 1.2: An ortho-radial drawing of two cycles (a) and an ortho-radial representation of
a cycle that is not drawable (b) because the edge e changes concentric cycles
without bending. Nevertheless, the sum of angles around each vertex is 360◦

and all faces have the same total rotation of 0 in both representations. A
bend-minimum ortho-radial drawing (c), having an edge e′ that bends both to
the left and to the right.

Many algorithms for finding orthogonal drawings use the seminal work of Tamassia [Tam87],
where this process is split up into three steps known as the topology-shape-metric framework
(TSM). The topology step chooses a planar embedding of the graph to eliminate crossing
edges. The shape step finds an orthogonal representation, which only describes the angles
between edges and excludes the concrete lengths of an edge. The metric step finally assigns
a length to each edge, resulting in an orthogonal drawing. Barth et al. [BNRW21] have
recently adapted this three-step idea to ortho-radial drawings by introducing the notion of
ortho-radial representations. However, their work only covers parts of the framework and a
result about the runtime of finding such a valid ortho-radial representation is not included.
Compared to orthogonal representations, ortho-radial representations have to be so-called
valid to always imply an ortho-radial drawing of the graph. This validity condition is
not local to a vertex or face of the graph, but a global one, resulting from the possibility
of drawing connected cycles around the center. Here, the situation may arise that this
cycle does not reconnect to its starting point because it ends at a different concentric ring.
Figure 1.2 shows this problem based on an example. It also illustrates that a bend-minimum
ortho-radial representation may have both a left and right bend in a single edge. A situation,
that would never occur in bend-minimum orthogonal representations. Adapting the efficient
network-flow technique used to find orthogonal representations [CK12] is unlikely to succeed
since encoding the global condition of ortho-radial representations in these networks is
difficult. In this work, we show that finding a bend-free valid ortho-radial representation is
in general NP-complete, even if a fixed embedding of the graph is assumed. A polynomial
runtime can be achieved though, when restricting the graph to be a series-parallel plane
3-graph. Specifically, we define the problem Bend-Free-Ortho-Radial as, given a
plane 4-graph (G, E), with a fixed embedding E , a fixed outer face fo, and a fixed inner
face fc, to check if G admits a valid bend-free ortho-radial representation of G using the
fixed embedding E as well as the outer face fo and inner face fc. The existence of such a
representation is then equivalent to the existence of an ortho-radial drawing [BNRW21].

Related Works: The complexity of finding planar orthogonal drawings has been widely
studied and can roughly be grouped into results considering planar graphs, where the
drawing may use any planar embedding of the graph, and plane graphs, where the planar
embedding is fixed. In the case of plane graphs, Garg et al. [GT97] give an approach
using a minimum cost flow network to find a bend-minimum orthogonal representation
in O(n7/4

√
log(n)) time by using the TSM framework of Tamassia [Tam87]. Later, Cornelsen

et al. [CK12] improved this bound to O(n3/2) by taking advantage of the planarity of
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the used flow network. Only for planar graphs is the problem of finding a bend-free, and
therefore also bend-minimum, orthogonal representation NP-complete [GT01]. Another
modification making bend-minimum orthogonal drawings of plane graphs NP-complete is
using the Kandinsky-Model [BBR14], where a vertex may have multiple outgoing edges in
the same direction and the degree of a vertex is no longer limited to 4. A k-embedding is
an orthogonal drawing of a planar graph where each edge separately has at most k bends.
A 2-embedding exists for all planar 4-graphs except the octahedron graph [BK94] and
the existence of a 0-embedding, being equivalent to a bend-free orthogonal drawing is, as
previously said, NP-complete. A 1-embedding can be found in polynomial time [BKRW11]
and an FPT-algorithm can be formed with respect to k being the number of edges that
require 0 bends and having an endpoint with degree 4 [BLR15].

Rahman et al. [REN06] use the recursive structure of series-parallel graphs to test in linear
time whether a planar series-parallel 3-graph admits a bend-free orthogonal drawing and, in
the case one exists, to find one. In case no orthogonal drawing with zero bends exists, Zhou
et al. [ZN05] use a similar approach to then also find a drawing with the minimum number
of bends. Recently, Didimo et al. [DKLO22] gave a linear-time algorithm for computing
a bend-minimum orthogonal drawing for a plane series-parallel 4-graph. Di Battista et
al. [DBLV98] analyzed the complexity of finding a bend-minimum orthogonal drawing for
plane graphs and achieved a polynomial-time algorithm for general 3-graphs as well as
series-parallel 4-graphs.

The problem of finding an ortho-radial drawing of a planar graph using C-shapes was
investigated by Hasheminezhad et al. [HHT09], who found that different to P-shapes for
orthogonal representations, the existence of a C-shape for a graph is not equivalent to the
existence of an ortho-radial drawing. Barth et al. [BNRW21] use the TSM framework to
show that the existence of a valid ortho-radial representation is equivalent to the existence
of an ortho-radial drawing. Moreover, they show that creating an ortho-radial drawing
given a valid ortho-radial representation is possible in quadratic time. Niedermann et
al. [NR20] give an Integer-Linear-Program to search for a valid ortho-radial representation
of a given plane 4-graph, which can still has an exponential runtime. Up to now, no
other results about finding ortho-radial representations exist. This work now uses the
notion of ortho-radial representations and shows that the problem of finding a bend-free
ortho-radial drawing is NP-complete. It also gives the first sub-exponential algorithm of
finding bend-free and bend-minimum valid ortho-radial representations for series-parallel
3-graphs.

Contribution and Outline: The preliminaries in Chapter 2 introduce basic definitions and
facts about ortho-radial and orthogonal representations, as well as small changes to their
definition compared to other literature. Chapter 3 covers the proof that finding a bend-free
ortho-radial drawing is NP-complete for general graphs, while Chapter 4 shows algorithms
to find such a representation for series-parallel 3-graphs. Specifically, Section 4.1 gives
a linear-time algorithm to find a bend-minimum valid ortho-radial representation, if one
exists, for so-called 2-legged series-parallel 3-graphs, and Section 4.3 generalizes this to
normal series-parallel 3-graphs resulting in a quadratic runtime to search for bend-free
valid ortho-radial representations.
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2. Preliminaries

A graph of maximum degree n is called an n-graph. For an oriented edge e⃗, we use the
notation ⃗e to represent the edge in its reversed orientation. Paths and cycles contain
edges in its undirected form, but the traversal of one implies an orientation of its edges.
We assume that a path in a graph is always simple, meaning it contains a vertex at most
once. Cycles, on the other hand, can contain vertices multiple times. For a path P , we use
the notation P [u, v] to mean the subpath of P between vertices u and v on the path. For
edges e and f on the path, P [e, f ] represents the subpath of P between e and f including
their endpoints and P (e, f) represents this subpath excluding their endpoints. The length
of a path represents the number of vertices contained in it. The concatenation of two paths
is represented by P +Q, and the reverse of a path P is P .

A planar drawing of a graph G is a straight-line drawing of G on the plane where no
two edges cross except at their endpoints, and a graph is called planar if it admits such
a drawing. A planar drawing partitions the plane into disjunct faces, where each face
is represented by the cycle formed by its incident edges. An embedding E of a graph G
represents an equality class of planar drawings of G that all partition the plane into the
same set of faces. A rotation scheme [v1, . . . , vk] around a vertex v is a cyclic ordering of
its adjacent vertices, and an embedding is uniquely described by a rotation scheme for
each vertex. A graph G embedded in a plane with a specific fixed embedding E is called
a plane graph (G, E). A simple cycle C in a plane graph separates the set of faces into
two disjunct subsets. When selecting one face to be the outer face fo of the plane graph,
one of the subsets must contain this outer face. We call the edges and vertices that are
incident to a face in this subset the exterior of C. The incident edges and vertices to
a face in the other subset is called the interior of C. By definition, C is contained in
both its interior and exterior. When traversing a simple cycle C, its cyclic list of edges is,
unless stated otherwise, traversed such that its interior lies locally to the right of it. We
then say that we traverse C clockwise. If we traverse C in the other direction, we traverse
it anticlockwise. The notation of subpaths can now also be used for a simple cycle C,
where C[u, v] represents the path contained in C starting at u and traversing C clockwise
to v.

Let G be a planar 4-graph and let E be an embedding of G. Between two adjacent edges uv
and vw let the angle α ∈ {90◦, 180◦, 270◦, 360◦} represent the angle over the right-hand
side of uvw. The rotation from u to w over v is defined as rot(uv, vw) = 2− α/90◦. The
rotation is therefore 1 for a 90◦ angle, 0 if the angle is 180◦, and −1 if the angle is 270◦.
If u = w, then the angle is 360◦ and the rotation is −2. Figure 2.1a shows an edge uv
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Figure 2.1: (a) An edge uv with the rotations rot(uv, vw), rot(uv, vx), and rot(uv, vy)
written along the corresponding edge. (b) A path from v1 to v6 with rotation −2.
The summed up rotations up to each edge are shown next to the edges. (c)
An angle assignment for the faces f and g with and its incident edges. (d) An
ortho-radial representation with reference edge e∗ and an essential cycle C with
rotation 0. The label ℓC(e) of each edge e in C is shown next to each edge.

and its rotations to its adjacent edges. A rotation of 1 represents a right turn, a rotation
of −1 a left turn, and a rotation of 0 represents no turn at all. We define the rotation of a
path P = v1 . . . vk as rot(P ) = ∑k−1

i=2 rot(vi−1vi, vivi+1), which is the sum of the rotations
along the path (see Figure 2.1b). It then follows that rot(P ) = − rot(P ), and for any
edge e in P = s . . . t, it follows that rot(P ) = rot(P [s, e]) + rot(P [e, t]). We also define the
rotation for a cycle C = v1 . . . vkv1 with vk = v0 as rot(C) = ∑k

i=1 rot(vi−1vi, vivi+1). This
also includes the last rotation back to the starting vertex v1. For a face f , the incident
edges form a cycle Cf around f . We then define the rotation of f as rot(f) = rot(Cf ).

An angle assignment A of a plane 4-graph (G, E) contains a list H(f) for every face f in E .
Each H(f) is a circular list of pairs (e, a) containing the incident edges of f in a clockwise
order together with an angle a ∈ {90◦, 180◦, 270◦, 360◦} representing the inner angle be-
tween e and the succeeding edge in the list. An edge e may have multiple entries in H(f) if e
is incident to f on both of its sides. An angle assignment for the graph in Figure 2.1c could
be formed by H(f) containing the entries (a, 90◦), (b, 90◦), (c, 180◦), (d, 90◦), and (e, 90◦),
and H(g) containing the entries (a, 270◦), (e, 270◦), (d, 180◦), (c, 270◦), and (b, 270◦). We
call H = (A, fo) an orthogonal representation with angle assignment A and outer face fo if
the following holds.

1. The sum of the angles in A at each vertex is 360◦.

2. For each face f , it holds that

a) either rot(f) = 4 if f is a regular face,

b) or rot(f) = −4 if f is the outer face.

The previously mentioned angle assignment for Figure 2.1c forms an orthogonal representa-
tion with fo = g. Our definition of orthogonal representations is different to the one by
Tamassia [Tam87], where each entry in H(f) also contains an edge descriptor indicating the
internal bends of e. As we will represent bends of edges by bend-vertices added to an edge,
we use the simpler definition above. We know that G admits an orthogonal representation
if and only if G admits a straight-line orthogonal drawing [Tam87]. A graph G is called
rectilinear-planar if it admits an orthogonal straight-line drawing, which is equivalent to
admitting an embedding E and an orthogonal representation H using this embedding. A
plane graph (G, E) is called rectilinear-plane if it admits an orthogonal representation using
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the fixed embedding E . We define Ω(G, E) to be the set of all orthogonal representations
of the plane graph (G, E).

The definition of an ortho-radial representations not only contains an outer face fo, but
also a central face fc that should be placed in the middle of the drawing and will contain
the center-point of the ortho-radial grid. This also implies that, at least without manual
modification, no vertex of the graph will be placed at the center-point. For a plane
4-graph G we call T = (A, fc, fo) an ortho-radial representation with angle assignment A,
central face fc and outer face fo if the following holds.

1. The sum of the angles in A at each vertex 360◦.

2. For each face f , it holds that

rot(f) =


4 if f is a normal face
0 if f is the outer or central face but not both
−4 if f is both the outer and central face

Having G admit an ortho-radial representation is not yet equivalent to having G admit
an actual ortho-radial drawing. A cycle C is called an essential cycle if it separates the
central and the outer face. An essential cycle in an ortho-radial representation may not
connect back up, as the starting and end vertex could be placed on different concentric
rings. See again Figure 1.2b where this results in the representation not being drawable.

To exclude this problem, Barth et al. [BNRW21] introduce the notion of a reference edge e∗,
which we define as an oriented edge incident to fc. This special edge must explicitly be
drawn in a clockwise direction on a concentric ring of the ortho-radial grid, also fixing the
orientation of every other edge in the representation. Our definition of a reference edge is
different to the one by Barth et al., who require e∗ to be incident to the outer instead of the
central face. When looking at the so-called flipped ortho-radial representation [BNRW21,
Lemma 6] one can see that both placements of a reference edge are equivalent. The
placement of e∗ incident to fc is chosen to help in the construction of recursive algorithms
that build up an ortho-radial representation from the center outwards. Let e and e′ be
two undirected edges in an ortho-radial representation and let e⃗ = xy and e⃗′ = uv be an
orientation of e and e′. A path P from x or y to u or v is called a reference path from e′

to e if it does not contain e or e′. With a reference path the combinatorial direction of e⃗
with respect to e⃗′ over P is defined as

dir(e⃗′, P, e⃗) =


rot(e⃗′ + P + e⃗) if P starts at v and ends at x,
rot( ⃗e′ + P + e⃗)− 2 if P starts at u and ends at x,
rot(e⃗′ + P + ⃗e) + 2 if P starts at v and ends at y,
rot( ⃗e′ + P + ⃗e) if P starts at u and ends at y.

With two reference paths P and Q, it holds that dir(e′, P, e) ≡ dir(e′, Q, e) (mod 4).
Moreover, dir(e′, P, e) = dir(e′, Q, e) if there exist simple essential cycles C and C ′ such
that

1. C lies in the exterior of C ′,

2. e lies on C and e′ lies on C ′,

3. and P and Q lie in the exterior of C ′ as well as in the interior of C.

Our definition of combinatorial direction and the above implications are again slightly
different to the ones by Barth et al. [BNRW21, Lemma 3] in the way that the signs of the
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Figure 2.2: On the left, an ortho-radial drawing of a graph around the center point indicated
with a cross. On the right, the same drawing cut at the red-dotted line and
unwrapped into a rectangular form. The clockwise-facing dashed arrow becomes
a rightwards-facing straight-line arrow. Similarly, the clockwise facing reference
edge e∗ on the left is horizontal and rightwards-facing on the right.

constants 2 and −2 in the definition of combinatorial direction are flipped and that the
usage of exterior and interior is flipped in the conditions for equality of two combinatorial
directions. This is a consequence of placing the reference edge incident to fc instead of fo.
We are now interested in the combinatorial direction of edges with respect to the reference
edge e∗. The value dir(e∗, P, e⃗) (mod 4) indicates that the oriented edge e⃗ either points
clockwise (0), inwards (1), anticlockwise (2), or outwards (3). For a simple essential cycle C,
a reference path from some edge e′ to an edge e ∈ C is said to respect C if the path is
contained in the interior of C. If two reference paths P,Q from the reference edge e∗

to e ∈ C both respect C, it follows that dir(e∗, P, e) = dir(e∗, Q, e). Let e be an edge on a
simple essential cycle C and let P be a reference path from e∗ to e that respects C. Then
the label of e in C is defined as ℓC(e) = dir(e∗, P, e). Figure 2.1d depicts an ortho-radial
representation with reference edge e∗ and the label for every edge e on the simple essential
cycle C. A simple essential cycle also always has rotation 0. A simple essential cycle is
called valid if

1. there either exist two edges e+, e− ∈ C such that ℓC(e+) > 0 and ℓC(e−) < 0

2. or every edge in C has exactly label 0,

and the cycle is invalid otherwise. An ortho-radial representation T of a graph G is
called valid if every simple essential cycle in G is valid. It now holds that G admits an
ortho-radial drawing if and only if it admits a valid ortho-radial representations [BNRW21].
A graph G is called orthoradial-planar if it admits an ortho-radial drawing, which is
equivalent to admitting an embedding E and a valid ortho-radial representation T using
this embedding. A plane graph (G, E) is called orthoradial-plane if it admits a valid
ortho-radial representation using the fixed embedding E . We define Θ(G, E) to be the set
of all valid ortho-radial representations of the plane graph (G, E).

Throughout this work, ortho-radial representations are rarely drawn in their circular shape.
As the center point of the ortho-radial grid never contains a vertex of the graph, the
representation can be cut at an arbitrary emanating spoke of the ortho-radial grid. This
cuts every essential cycle, and the representation can then be unwrapped into a rectangle.
See Figure 2.2 for an illustration of this process. In this rectangle, edges that cross this
vertical cut are represented with dashed lines on both sides. These dashed lines vertically
line up for a valid simple essential cycle and do not for an invalid one.
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In the following, some general mathematical notations. Let P be the set of all boolean
expressions. We define [·] : P→ {0, 1} to be the Iversion bracket notation with

[P ] =
{

1 if P,
0 if ¬P.

We sometimes define an interval without knowing which of the bounds is the upper and
which is the lower one. To eliminate excessive case distinctions we use the following
definition. Given two whole numbers x, y ∈ Z, the signed closed interval [x, y]s between x
and y is defined as

[x, y]s :=
{

[x, y] if [x, y] ̸= ∅,
[y, x] otherwise.

and the signed open interval [x, y)s between x and y is defined as

[x, y)s :=
{

[x, y) if [x, y] ̸= ∅,
(y, x] otherwise.

9





3. NP-Completeness For General Plane
4-Graphs

This section shows that the Bend-Free-Ortho-Radial-problem is NP-complete for
general plane 4-graphs. This stands in contrast to the sub-quadratic runtime achievable
for orthogonal representations [CK12].

To show NP-completeness, the well-studied 3-Sat problem is reduced to Bend-Free-
Ortho-Radial. An instance I = (V, C) of 3-Sat consists of a set of variables V =
{x0, . . . , xn−1} and a set of boolean clauses C = {c0, . . . , cm−1}. Each clause must be
of the form cj = l0j ∨ l1j ∨ l2j where each lij is a literal, x or ¬x, of a variable x
in V. A variable-assignment A is an assignment of the variables in V to boolean values.
The problem is then to check if there exists a variable-assignment A such that every
clause in C is satisfied (evaluates to true). We then say that A satisfies I and I is
satisfiable. An example of a 3-Sat-instance would be the variable set V = {w, x, y, z}
together with the four clauses c1 = ¬x ∨ ¬y ∨ z, c2 = w ∨ y ∨ ¬z, c3 = ¬w ∨ ¬x ∨ z,
and c4 = w ∨ x ∨ ¬y making up the set C. This instance is satisfiable since the variable-
assignment (w, x, y, z) = (true, false, true, true) results in all clauses evaluating to true.

Our reduction from 3-Sat to Bend-Free-Ortho-Radial creates in polynomial time a
plane graph (GI , EI) given an arbitrary 3-Sat-instance I such that there exists a valid
ortho-radial representation of GI if and only if I is satisfiable. The idea of the reduction is
to represent a literal of a variable in V as a vertical segment of the ortho-radial grid and a
clause as a simple essential-cycle traversing every segment. See Figure 3.1 for an illustration.
Each segment contains a widget per traversing cycle representing the occurrence of the
literal in the respective clause. Such a widget has two states for the two possible boolean
values a literal can assume. These states are constructed such that the validity constraint
of a simple essential cycle models satisfied and unsatisfied clauses. The state assumed by a
single widget also has to be transferred to all other widgets in the same segment as well as,
in its inverted state, to the widgets of the segment representing the negated literal. For
this, widgets in the same segment are connected via vertical synchronization-widgets, and
a pair of matching segments is connected via two more special essential cycles.

3.1 The Scaffolding
As a start, we define the scaffolding S(n,m), which divides the ortho-radial grid in the
aforementioned segments and is a holding structure for the widgets. An example of S(n,m)

11
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Figure 3.1: An abstract view of the NP-completeness reduction. One vertical segment,
which represent a single literal of the 3-Sat-instance, is highlighted red. The
blue essential cycles contain a widget per segment and represent the clauses.

Seg1

Co

Cc

C0

C1

C2

C3

C4

C5

C6

C7

C8

Seg0 Seg2 Seg3 Seg4 Seg5 Seg6

v1,5 v2,5

P0 P1 P2 P3 P4 P5 P6

Figure 3.2: The scaffolding S(3,2). The cycles Cc and Co are colored red and the paths Pi are
colored black. The gray subgraphs indicate widgets placed inside the scaffolding
forming the clause-cycles Cj . The widget w1,5 is highlighted in blue and placed
between the vertices v1,5 and v2,5.
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for n = 3 and m = 3 is shown in Figure 3.2. Formally, the scaffolding consist of the simple
cycle Cc called the central cycle and the simple cycle Co called the outer cycle, both having
length 2n+ 1, as well as 2n+ 1 simple paths Pi with i ∈ [0, 2n] each of length 2n+m+ 4.
A path Pi is joined to both cycles by identifying the i-th vertex of Cc with the second vertex
from Pi and the i-th vertex of Co with the second-to-last vertex of Pi. The scaffolding is
embedded such that the last vertex of each path Pi is on one side of Co and the rest of the
path on the other side. We define the outer face fo to be the face created by Co and the
last vertices of each path. Then the rest of the paths (including Cc) are contained in the
interior of Co. To complete the embedding, the first vertex of each path is placed in the
interior of Cc and they, together with Cc, form the central face fc. We label the vertices of
the paths with vi,j , i ∈ [0, 2n], j ∈ [−2, 2n+m+ 1] representing the (j+ 2)-th vertex in Pi.
The shift in the index j is used so that now for a path Pi, the 2n+m vertices from vi,0
to vi,2n+m−1 lie between Cc and Co. As these vertices will be the places where widgets get
attached, this index scheme helps in clearly describing where which widget is placed. We
call for some i ∈ [0, 2n] the face of S(n,m) incident to Cc, Co, Pi, and Pi+1 the segment Segi.
When associating P2n+1 with P0, there exist 2n+ 1 segments. Given a 3-Sat instance I
with n := |V| and m := |C|, the scaffolding S(n,m) will be used in the graph GI and has
enough space for one essential cycle per clause and two special cycles per variable. The
following lemma shows that, once all widgets are in place, the scaffolding can only have
one specific valid ortho-radial representation.

Lemma 3.1. A scaffolding Sn,m only admits a single ortho-radial representation if the rep-
resentation is required to have rotation rot(vi,jvi,j+1, vi,j+1vi,j+2) = 0 for all i ∈ [0, 2n], j ∈
[0, 2n+m− 2]. This representation is valid and in it, the cycles Cc and Co are lying totally
on concentric rings around the center and each Pi is totally lying on a spoke radiating from
the center.

Proof. As Cc and Co only contain vertices of degree 4, the rotations around their vertices
are already fixed. The same can be said about the degree-1 vertices on the ends of each
path. Together with the restriction on the rotations in the statement, every rotation is
fixed and so there exists exactly one angle assignment of the graph. It is easy to see that
this angle assignment forms a valid ortho-radial representation when using an arbitrary
reference edge e∗ ∈ Cc as also illustrated in Figure 3.2. This representation has the property
that Cc and Co totally lie on concentric rings and each Pi totally lies on a spoke radiating
from the center.

We now associate each literal of the 3-Sat-instance with a segment in the scaffolding.
Specifically, the positive literal xi of variable xi ∈ V is associated with the segment Seg2i+1
and the negative literal ¬xi is associated with the segment Seg2i+2 (see again Figure 3.2).
This specifically leaves Seg0 without any associated literal. Why this segment is important
will be explained in Section 3.3.

3.2 Widgets With Predictable Labels
We introduce the four widgets E, R+, R−, and L that, when placed between vertices vi,j

and vi+1,j of the scaffolding, have predictable labels. Having predictable labels means that
for an arbitrary simple essential cycle traversing the widget from vi,j to vi+1,j , the widget
contains in every possible ortho-radial representation either only a label of zero (E-widget),
only non-negative labels (R+-widget), only non-positive labels (R−-widget), or can switch
between non-negative and non-positive labels (L-widget). First of all, the E-widget is
simply a single edge e, which when placed between two vertices vi,j and vi+1,j obviously
has label 0. We now define the R+- and R−-widgets as also seen in Figures 3.3a and 3.3b.

13
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(c) (d)(a) (b)

v1

v4 v1

v4v2

v3 v2

v3 v1 v2

v4 v3

vs

vt vs

vt

v1 v4

v2 v3

Figure 3.3: An R+-widget (a) and an R−-widget (b) as well as the two representations
of an L widget connected inside a segment. One L-widget is oriented down-
wards (a), while the other one is oriented upwards (b). A diagonal arrow is
placed inside each L-widget to better indicate its orientation. The blue arrows
indicate positive and negative labels in the respective representations.

Definition 3.2. Let R be the planar graph consisting of a 4-path v1v2v3v4 where both v2
and v3 get two extra degree-1-vertices attached making them have degree 4. Then the R−-
widget is defined as the plane graph (R, E−) with start-vertex v1 and end-vertex v4 where
the rotation scheme at v2 contains the sublist [v1, v3] and the rotation scheme at v3 contains
the sublist [v4v2], resulting in rot(v1v2, v2v3) = −1 and rot(v2v3, v3v4) = 1 for every
angle assignment of R−. The R+-widget is defined as the plane graph (R, E+) with start
vertex v1 and end vertex v4 where the rotation scheme at v2 contains the sublist [v3, v1]
and the rotation scheme at v3 contains the sublist [v2v4], resulting in rot(v1v2, v2v3) = 1
and rot(v2v3, v3v4) = −1 for every angle assignment of R+.

Observation 3.3. Consider an R+- or R−-widget connected inside a segment of a scaf-
folding by identifying vertices vi,j and vi+1,j with the start- and end-vertex of the widget.
The widget then has only one possible ortho-radial representation. In this representation, a
simple essential cycle, starting with label 0 when traversing an R+-widget from vi,j to vi+1,j,
contains a positively-labelled edge but no negatively-labelled ones. Conversely, if such a
simple essential cycle traverses an R−-widget, it contains a negatively-labelled edge but no
positively-labelled ones.

The R+- and R−-widgets will ensure the existence of an edge in every simple essential cycle
with either a positive or a negative label. The cycle then needs an edge with a label of the
opposite sign in some other widget for it to be valid. These widgets are called L-widgets
and represent the literals in the clauses. Similar to a literal, an L-widget has exactly two
possible states. The following definition formally introduces L-widgets, which are also
depicted in their two states in Figures 3.3c and 3.3d.

Definition 3.4. An L-widget is a plane graph consisting of a 4-cycle v1v2v3v4 with extra
degree-1 vertices vs and vt where vs is connected to v1 and vt is connected to v3. The
embedding is such that the rotation scheme at v1 is [v2, v4, vs] and the rotation scheme at v3
is [vt, v4, v2]. The start-vertex of L is set to vs and the end-vertex is set to vt.

Observation 3.5. Consider an L-widget connected inside a segment of a scaffolding by
identifying vertices vi,j and vi+1,j with the start- and end-vertex of the widget. This L-widget
has exactly two ortho-radial representations. In one representation, every simple essential
cycle, starting with label 0 when traversing the L-widget from vi,j to vi+1,j, contains only
zero- and positively-labelled edges. We then call the L-widget downwards-oriented (see
Figure 3.3c). In the other representation, such a simple essential cycle contains only
zero- and negatively-labelled edges and here we call the L-widget upwards-oriented (see
Figure 3.3d).
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x ¬x y ¬y z ¬z

R+

Figure 3.4: A clause-cycle representing the clause ¬x∨ y ∨ z. The cycle is valid since the L
widget in the y-segment is oriented upwards. The yellow bar helps in seeing
that the clause-cycle ends up where it started.

With an L-widget having exactly two possible representations, we map the boolean values
of a literal to orientations of the widget. An L-widget being upwards-oriented represents a
literal taking on the boolean value true and conversely, a downwards-oriented L-widget
represents a value of false for the literal.

3.3 Clause-Cycles
Multiple widgets are connected to form a so-called clause-cycle Cj around the center. A
clause cycle Cj contains 2n+ 1 widgets wi,j , i ∈ [0, 2n], where each wi,j is placed inside
the segment Segi by identifying vertices vi,j and vi+1,j with the start- and end-vertex of
the widget. See again Figure 3.2, where the positions of vertices v1,5 and v2,5 as well as the
widget w1,5 between them are highlighted. We set w0,j to either be an R+- or an R−-widget
and every other widget in the clause-cycle to either be an L- or an E-widget. A clause-cycle
is called normal when containing an R+-widget and inverted when containing an R− widget.
Figure 3.4 depicts an example of a normal clause-cycle. A clause-cycle always contains
multiple simple essential cycles, as there are two possible paths through each L-widget.
But since Observation 3.5 states that any cycle traversing an L-widget has the desired
property about labels, we will use the term clause-cycle as also meaning an arbitrary simple
essential cycle contained in it. The validity constraint of such a cycle now helps to form
the condition that a clause must be satisfied. In general, a simple essential cycle is valid if
it contains at least one positively- and one negatively-labelled edge or only zero-labelled
edges. As w0,j is either an R+- or an R−-widget, the case that the cycle only contains
zero-labelled edges never occurs, and we get the following result.

Lemma 3.6. Let G be a scaffolding S(n,m) containing 2n + m clause-cycles from C0
to C2n+m−1 and let T be an ortho-radial representation of G. Then every simple essential
cycle in a clause-cycle Cj is valid if and only if

1. either Cj is a normal clause-cycle and at least one L-widget in Cj is upwards-oriented

2. or Cj is an inverted clause-cycle and at least one L-widget in Cj is downwards-
oriented.

Proof. Every path of the scaffolding S(n,m) has 2n+m vertices between the central cycle Cc

and the outer-cycle Co and G has 2n+m clause cycles placed inside the scaffolding. This
fixes the rotations along every path of the scaffolding to all be 0 and Lemma 3.1 implies
that every ortho-radial representation of G has these paths totally lying on emanating
spokes of the ortho-radial grid. Every simple essential cycle contained inside a clause-cycles
then traverses a widget wi,j from vi,j to vi+1,j and has label 0 when entering the widget.

The proof is only given for normal clause-cycles, as the proof for inverted ones is analogous.
Let Cj be a normal clause-cycle and consider an arbitrary simple essential cycle in Cj .
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R+

x ¬x y ¬y z ¬z

R+

Figure 3.5: Two independent valid clause-cycles in a scaffolding. The two L-widgets inside
the ¬x-segment have opposing orientations while the L-widgets inside the z-
and ¬z-segments have the same orientation.

Observation 3.3 implies that a positively-labelled edge is present in the essential cycle
inside the R+-widget w0,j . The cycle is therefore valid if and only if a negatively-labelled
edge is present in some other part of the cycle. This may only be the case in an L-widget,
as E-widgets only contain edges with label 0. Observation 3.5 states that an L-widget
contains a negatively-labelled edge if and only if the L-widget is upwards-oriented implying
the statement.

The clause-cycle in Figure 3.4 is valid because the y-segment has an upwards-oriented L-
widget. If this widget would also be downwards-oriented, the cycle would not be valid
anymore.
Lemma 3.6 implies that clause-cycles can represent two types of clauses. Normal clause-
cycles can represent clauses as the ones used in 3-Sat, where literals are connected with
or-operators. Consequently, we also say that such a clause is normal. A normal clause is
satisfied if at least one literal has the value true. Inverted clause-cycles can represent clauses
of the form ¬(∧i∈[1,k] li) for k ∈ N. We call these inverted clauses and an inverted clause is
satisfied if at least one literal has the value false. We say that a clause-cycle Cj emulates a
clause c if the type of the clause (normal or inverted) matches the type of the clause-cycle
and the widget wi,j for i ∈ [1, 2n] is set to an L-widget if the corresponding literal of
the segment Segi is contained in c, and is set to an E-widget otherwise. Clause-cycles
emulating clauses in C are all normal. Inverted clause-cycles are only required for technical
reasons as will be seen in the next section.

3.4 Synchronizing L-Widgets
Lemma 3.6 and the definition of emulating clause-cycles can already model a single clause
of C in isolation. But since the orientation of one L-widget does not depend on the
orientation of another, every clause-cycle can trivially be made valid as long as it contains
at least one L-widget (see Figure 3.5). To handle this problem, L-widgets representing
the same variable are synchronized. This synchronization happens in two steps. First, we
ensure that all L-widgets in a single segment must share the same orientation, and second,
we ensure that the L-widgets contained in segments representing the normal and negated
literal of a variable are always oriented in opposing directions.
We start with the first problem of synchronizing all L widgets in a single segment. Observe
that switching between the two orientations of an L-widget in a sense rotates the central 4-
cycle of L by 90 degrees (see again Figures 3.3c and 3.3d). To synchronize all L-widgets,
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C1

C2

C1

C2

(a) (b)

v6

v5
v4

v1v3
v2

Figure 3.6: Two L widgets in one segment connected via a blue Sync widget. In (a) both L-
widgets are upwards-oriented and in (b) both are downwards-oriented.

C1

C2

C3

C4

Figure 3.7: Two L-widgets separated by a normal dark-green clause-cycle C2 and an inverted
dark-red clause-cycle C3. The Sync-widget between the two L-widgets creates
crossing edges in the embedding.
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a special Sync-widget transfers the rotation of one widget to the neighboring widgets,
which have to rotate in the same direction to still form an ortho-radial representation. The
following definition formally introduces Sync-widgets, which can also be seen in Figure 3.6,
where they are highlighted in blue.

Definition 3.7. A Sync-widget is the plane graph consisting of a 6-path v1v2v3v4v5v6 with
two degree-1 vertices attached to each of the two inner vertices v3 and v4 of the path. The
embedding of the Sync-widget is defined such that the rotation scheme for v3 contains the
sublist [v4, v2] and the rotation scheme for v4 contains the sublist [v3, v5]. This results in
the rotations rot(v2v3, v3v4) = 1 and rot(v3v4, v4v5) = −1 for every angle assignment of
the Sync-widget.

Two neighboring L-widgets wi,j and wi,j+1 are so-called synchronized by connecting both
to a Sync-widget. See Figure 3.6 for an example. The widgets are connected by identify
the vertex v2 of the Sync-widget with the vertex v2 of wi,j (see again Definition 3.4) and by
identifying the vertex v5 of the Sync-widget with the vertex v4 of wi,j+1. These connection
points are embedded such that the rotation scheme of v2 first contains v3 and v1 and then
the other two vertices of the L-widget, while the rotation scheme of v5 first contains v4
and v6 and then the other two vertices of the second L-widget.

Observation 3.8. Consider a segment Segi in a scaffolding S containing multiple syn-
chronized L-widgets. Then the segment only admits two ortho-radial representations. In
one representation, all the L-widgets are upwards-oriented, and in the other representation,
all are downwards-oriented.

Observation 3.8 however does not consider two L-widgets that are separated by other
clause-cycles not containing the corresponding literal. These other clause-cycles contain E-
instead of L-widgets in the segment as Figure 3.7 illustrates. In this case, the resulting
graph is no longer planar since edges of the Sync-widget cross with the E-widgets of the
separating clause-cycles. A simple planarization of this graph, by introducing vertices
the crossing points of two edges, can result in a situation, where either planarized Sync-
widgets can no longer rotate freely or the preconditions in Lemma 3.6 no longer hold. We
introduce a planarization method that takes both of these problems into account. The key
is to planarize crossings with normal clause-cycles differently to crossings with inverted
clause-cycles.
If an E-widget of a normal clause-cycle crosses a Sync-widget (see Figure 3.8a), the edge of
the E-widget gets subdivided into four edges and the central edge of the Sync-widget gets
subdivided into two. The newly created central vertices of both widgets are then identified
with each other to eliminate the crossing.
If an E-widget of an inverted clause-cycle crosses a Sync-widget (see Figure 3.8b), the
edge of the E-widget also gets subdivided into four edges, but more work has to be
done for the Sync-widget. Its central edge is replaced by a 5-path v1v2v3v4v5 where the
embedding is chosen similar to the one for a Sync widget such that rot(v1v2, v2v3) = −1
and rot(v3v4, v4v5) = 1. The central vertex v3 of the 5-path finally gets identified with the
central vertex of the subdivided E-widget.
The result of this planarization can be seen in a more complex example in Figures 3.7
and 3.9a. If we say that two L-widgets are synchronized, we from now on mean the pla-
narized version of the synchronization, and we say that a set of clause-cycles is synchronized
if, per segment, all L-widgets contained in this segment are synchronized. As mentioned
before, the planarization is designed such that the Sync- and connected L-widgets still have
two possible orientations and the paths through planarized E-widgets do not compromise
the correctness of Lemma 3.6. The following observation and lemma shows this in detail.
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(a) (b)

Figure 3.8: The planarization method for the case that a Sync-widget crosses an E-widget.
The planarization with a normal clause-cycle (a) is different to the one with an
inverted clause-cycle (b).

C1

C2

C3

C4

(a)

C1

C2

C3

C4

(b)

Figure 3.9: The planarized version of Figure 3.7. The synchronization still has exactly two
ortho-radial representations.

Observation 3.9. Consider a segment Segi of a scaffolding where wi,j and wi,j′ are
synchronized L-widgets with j′ > j + 1 and wi,k for k ∈ [j + 1, j′ − 1] are E-widgets, all
associated with either a normal or an inverted clause-cycle. Then the segment admits exactly
two ortho-radial representations (see Figures 3.9a and 3.9b) having the same properties as
in Observation 3.8. Moreover, in both orientations every simple essential cycle traversing
a planarized E-widget wi,k from vi,k to vi+1,k, starting with label 0 when entering the
widget, contains only non-negative labels in wi,k if the widget is contained in a normal
clause-cycle, and contains only non-positive labels in wi,k if the widget is contained in an
inverted clause-cycle.

Lemma 3.10. Let G be a scaffolding S(n,m) containing 2n+m synchronized clause-cycles
and let C be a clause-cycle that contains, due to the synchronization, some planarized E-
widgets. Then the equivalence of Lemma 3.6 still holds for C.

Proof. Let C be a normal clause-cycle (the proof for inverted cycles follows analogously).
The equivalence of Lemma 3.6 is based on the fact that E-widgets only contain zero-labelled
edges. In general, this is no longer the case for a planarized E-widget. Due to C being
a normal clause-cycle, Observation 3.9 implies that each planarized E-widget in C only
contains non-negative labels. As C is normal, it already contains a positive label in
its R+-widget and a possible positive label in a planarized E-widget does not change the
correctness of Lemma 3.6.

What is left is to ensure that the L-widgets contained in segments associated with the
normal and negated literal of a variable are always oriented in opposing directions. Stated
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Figure 3.10: The only two valid ortho-radial representations of the synchronized clause-
cycles Cy and C−

y in a scaffolding. In both representations, the y- and y-
segments contain L-widgets of different orientations. In one, all L-widgets in
the y-segment are upwards-oriented (a) and in the other, they are downwards-
oriented (b).

differently, we aim to exclude ortho-radial representations where these L-widgets are
either both upwards-oriented or both downwards-oriented. This can also be done via
clause-cycles. Let xi be a variable in V and to better indicate that the literal-segments
are independent of each other we call the negative literal xi for now. We define the two
variable-clauses cv

i = x ∨ x and cv−
i = ¬(xi ∧ xi) and represent them via the following

clause-cycles (see also Figure 3.10). The first variable-clause cv
i can be represented by

a normal clause-cycle and ensures that not both L-widgets of xi and xi are downwards-
oriented. The second variable-clause cv−

i can be represented by an inverted clause-cycle, as
the clause follows the form ¬(∧i∈[1,k] li). This clause-cycle ensures that not both L-widgets
are upwards-oriented. Due to them also being synchronized, there only exist two valid
ortho-radial representations of this graph representing the two values (true or false) of y.

3.5 Putting Things Together
Definition 3.11. Let I = (V, C) be a 3-Sat-instance. Then the graph GI consists of a
scaffolding S(n,m) and 2n + m synchronized clause-cycles such that for i ∈ [0,m − 1] Ci

emulates ci ∈ C as well as for i ∈ [0, n] Cm+2i emulates cv
i and Cm+2i+1 emulates cv−

i .

With the definition of the graph GI we now show the equivalence required for the reduction.

Lemma 3.12. Let I = (V, C) be a 3-Sat-instance and consider the graph GI . Then I is
satisfiable if and only if there exists a valid ortho-radial representation of GI .

Proof. We start with the ”⇐= ”-direction, so consider the case that a valid ortho-radial
representation T of GI exists. For every variable xi, the clause-cycles Cm+2i and Cm+2i+1
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emulating cv
i and cv−

i must be valid. Lemma 3.10 implies that one of the two L-widgets
in Cm+2i is upwards-oriented, and one of the two L-widgets in Cm+2i+1 is downwards-
oriented. Both clause-cycles only contain L-widgets in the segments Seg2i+1 and Seg2i+2,
and as all clause-cycles in GI are synchronized, Observation 3.9 implies that the L-widgets
in a single segment are oriented in the same direction. Therefore, the upwards-oriented L-
widget of Cm+2i can not be contained in the same segment as the downwards-oriented L-
widget of Cm+2i+1. This leaves only the scenario where all L-widgets in Seg2i+1 are oriented
in one direction and all L-widgets in Seg2i+2 are oriented in the opposite direction.

Then a variable-assignment A can be created where the variable xi has value true exactly
if all L-widgets in the segment Seg2i+1 are upwards-oriented and all L-widgets in the
segment Seg2i+2 are downwards-oriented. Let cj be an arbitrary clause in C. As the
clause-cycle Cj emulating cj is normal and valid, there must according to Lemma 3.10
exist a segment Segi containing an upwards-oriented L-widget in Cj . This implies that cj

contains the corresponding literal of Segi, and as the L-widget is upwards-oriented, the
literal evaluates to true in the variable-assignment A. Therefore, cj is satisfied by A. As cj

was arbitrary, A satisfies all clauses in I and I is satisfiable.

Now to the ” =⇒ ”-direction. Consider the case that I is satisfiable, which implies the
existence of a variable-assignment A satisfying all clauses in C. Let T be the ortho-
radial representation of GI obtained by Lemma 3.1 and Observations 3.3 and 3.5 such
that every L-widget represents the value of the literal in the variable-assignment A of
the segment it is placed in. Then all L-widgets in the same segment must be oriented
in the same direction. Observation 3.8 implies that every segment has an ortho-radial
representation and T is well-defined. Now let C be a simple essential cycle in GI . Then
there are four possible cases.

Case 1: C is either Cc or Co of the scaffolding S(n,m). Then Lemma 3.1 implies its validity.

Case 2: C is fully contained in a clause-cycle emulating some clause cj ∈ C. Then, due
to c being satisfied by A, there exists a literal l in c that has the value true. We know that
the segment representing l contains an L-widget in the clause-cycle and that the L-widget
is upwards-oriented. Lemma 3.10 then implies that C must be valid.

Case 3: C is fully contained in a clause-cycle emulating either the clause cv
i or cv−

i of
some variable xi ∈ V . Then this clause-cycle contains L-widgets for both literals xi and xi.
Again due to T respecting A we know that one of the two L-widgets is upwards- and the
other one is downwards-oriented. Lemma 3.10 again implies the validity of C, no matter
which of the two clauses is emulated.

Case 4: C is not fully contained in a clause-cycle and is also not the cycle Cc or Co

of S(n,m). As C is an essential cycle, it must cross every path in the scaffolding S at least
once. When traversing C, we record the index j of every path vertex vi,j that C traverses,
resulting in a cyclic list (b0, b1, . . . , bk, b0). We know that not all bi have the same value,
as otherwise we would be in some other case above. So with bmin being the minimum
value over all bi and bmax being the maximal value over all bi we know that bmin ̸= bmax.
Every clause-cycle Cj of GI is connected at path vertices vi,j for i ∈ [0, 2n] and the set of
clause-cycles therefore separates the ortho-radial grid into multiple layers similar to the
rings on the ortho-radial grid. The part of C from layer bmin to the higher layer bmax, then
must contain a negatively-labelled edge and the path from bmax back to bmin must contain
a positively-labelled edge. Hence, C is valid.

Theorem 3.13. The problem Bend-Free-Ortho-Radial is NP-complete for general
plane 4-graphs.
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Proof. It is well known that the 3-Sat-problem is NP-complete, and the 3-Sat can be
reduced to Bend-Free-Ortho-Radial by creating the graph GI for a given 3-Sat-
instance I. This reduction can be done in polynomial time and Lemma 3.12 implies
that I is satisfiable if and only if GI has a valid ortho-radial representation. Therefore,
Bend-Free-Ortho-Radial is NP-hard. As one can test in polynomial time if a given
representation is a valid ortho-radial one [BNRW21], it must also be NP-complete.

Figure 3.11 shows an example of a complete graph GI .
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Figure 3.11: A valid ortho-radial representation of the graph GI for the 3-Sat-instance I =
(V, C) with V = {w, x, y, z} and the four clauses c1 = w ∨ ¬x ∨ y, c2 =
w ∨ x∨ z, c3 = ¬w ∨¬y ∨¬z, and c4 = ¬x∨ y ∨¬z making up the set C. The
variable assignment shown in the representation is w = true, x = false, y =
false, z = true. Due to space problems, the Sync-widgets are not included in
the drawing, but are indicated at their connection points by dashed lines.
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4. Polynomial-Time Algorithm For
Series-Parallel 3-Graphs

Series-parallel graphs have the nice property that many NP-hard problems turn out to
have a polynomial-time solution on them. This section shows that also the problem of
finding bend-free or bend-minimum valid ortho-radial representations can be solved in
polynomial-time for series-parallel graphs, as long as we consider series-parallel 3-graphs.

Definition 4.1. Series-parallel graphs (SP-graphs) with terminals s and t are recursively
defined as follows.

1. A single edge {s, t} is an SP-graph

2. Given two SP-graphs G1 and G2 with terminals s1, t1 and s2, t2, then

• the graph G obtained by identifying t1 with s2 is an SP-graph. Such a composition
is called a series composition. The terminals of G are s1 and t2.

• the graph G obtained by identifying s1 with s2 and t1 with t2 is an SP-graph. Such
a composition is called a parallel composition. The terminals of G are s1 = s2
and t1 = t2.

Figure 4.1 illustrates these two possible compositions. We call a simple path from s
to t in an SP-graph an st-path and we use Pst(G) to denote the set of all st-path of
an SP-graph G. Because st-paths are simple, they for each parallel composition of an
SP-graph at most traverse one of its subgraphs. We now show that the Bend-Free-
Ortho-Radial-problem can be solved in polynomial time for series-parallel plane 3-graphs

G2

G1

t = t2

s1 = t2

s = s1

G1 G2

t = t1 = t2

s = s1 = s2

Figure 4.1: A series composition of two SP-graphs on the left and a parallel composition
on the right.
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s t tses et

u v

Figure 4.2: On the left, a 2-legged SP-graph with legs es and et and leg-vertices u, v. On
the right, an SP-graph that is not 2-legged as deg(s) ̸= 1.

by extending the basic idea of Zhou et al. [ZN05] and Didimo et al. [DKLO22] to the
ortho-radial case. We specifically only consider the situation where fo ̸= fc, as otherwise
finding a valid ortho-radial representation degenerates to finding a normal orthogonal
representation [HHT09].
In Section 4.1 we first consider the subset of 2-legged series-parallel plane 3-graph and
show that a bend-minimum valid ortho-radial representation can be computed in O(n)
time as long as one exists. Section 4.2 covers how this approach can be adapted to search
for ortho-radial representations with specific propeties. These are then used in Section 4.3
to formulate an algorithm for general series-parallel plane 3-graphs, where a bend-free valid
ortho-radial representation can, if one exists, be found in O(n2) time.

4.1 2-Legged Series-Parallel 3-Graphs
Definition 4.2. A series-parallel graph G with terminals s and t is called 2-legged
if deg(s) = deg(t) = 1. The edges incident to s and t are called legs and are named es

and et, respectively. The two vertices adjacent to s and t are called leg-vertices.

Figure 4.2 shows the difference between a general series-parallel 3-graph and a 2-legged one.
We intentionally diverge from the definition of a 2-legged SP-graph by Zhou et al. [ZN05],
as in their definition they also require the SP-graph to contain at least three vertices. This
would specifically exclude the graph consisting of a single edge from being 2-legged. As
that would break the possibility of a recursive decomposition of 2-legged SP-graphs, we
use the above slightly different definition.

4.1.1 Creating Decomposition Trees
Using the normal decomposition tree of a series-parallel graph for 2-legged series-parallel
3-graphs is not advisable. In such a tree there would exist series nodes that disconnect
the edges es and et from the inside of the graph and would eventually decompose it into
subgraphs that are not 2-legged anymore. With this, recursive algorithms would get
complicated. In the case of 2-legged series-parallel 3-graphs, a different deconstruction is
possible that preserves the 2-legged-property. Given a 2-legged series-parallel graph G,
the graph G− s− t obtained by deleting vertices s and t is a series-parallel graph having
the original leg-vertices as the terminals. We decompose G into two 2-legged sub-graphs
depending on whether G− s− t is a series or parallel composition similar to the work of
Zhou et al. [ZN05].

Lemma 4.3. Let G be a 2-legged series-parallel 3-graph where G − s − t is a series
composition of two subgraphs G′

1 and G′
2. Then G can be deconstructed into two subgraphs G1

and G2 that only share a single edge e and are both 2-legged series-parallel 3-graphs.

Proof. Let w be the single vertex connecting the subgraphs G′
1 and G′

2. Without loss
of generality, as deg(w) ≤ 3, G′

2 contains only a single edge e incident to w as seen in
Figure 4.3. Defining G1 := G′

1 ∪ {e} and G2 := G′
2 we get two 2-legged series-parallel

subgraphs.
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s tw

e

s w tw
G′

1 G′
2 G1 G2

e e

Figure 4.3: On the left, a 2-legged SP-graph consisting of two subgraphs G′
1 in blue and G′

2
in red as by the normal composition rules of SP-graphs. On the right, the
subgraphs G1 and G2 resulting from the decomposition into 2-legged SP-graphs.
For G1 to be 2-legged, it receives a copy of the edge e.

s t
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DP

P P

D D Q D

fc
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Figure 4.4: A 2-legged SP-graph and its decomposition tree. The order of the children in
the tree represents the embedding of the graph and the marked node indicates
the parallel composition where fc is formed.

In this decomposition, we require series nodes to have exactly two children. A series
connection of more than two subgraphs has to be represented by a sequence of series nodes.
Note that in a normal series composition, the two subgraphs share a single vertex, whereas
in the decomposition of Lemma 4.3, the resulting subgraphs share a single edge. When
connecting two 2-legged SP-graphs G1, G2 in series, et of G1 and es of G2 therefore get
merged into a single edge (see edge e in Figure 4.3).

Lemma 4.4. Let G be a 2-legged series-parallel 3-graph where G− s− t is a parallel com-
position of multiple subgraphs. Then G can be deconstructed into exactly two subgraphs G1
and G2 both of which are 2-legged series-parallel 3-graphs.

Proof. Let u, v be the two leg-vertices of G. As deg(u), deg(v) ≤ 3 and u, v already have
the incident edges es and et, there are exactly two children in the parallel composition.
Each child is connected to v and u with a single edge and is therefore 2-legged.

With this knowledge, a 2-legged series-parallel 3-graph G can be represented by a decom-
position tree similar to general SP-graphs. An S-node represents a series and P-node a
parallel composition of two 2-legged subgraphs, where both always have two subgraphs.
There also exist two types of leaf nodes. A Q-node, similar to normal decomposition trees,
represents a single edge and a D-node represents two connected series edges. Figure 4.4
shows an example of a decomposition tree. Note that the second type of leaf node is
required for these kinds of decomposition trees. This is because a D-node (two adjacent
edges) is not the result of a series composition of two Q-nodes as would be the case
for normal decomposition trees. A series composition of two 2-legged SP-graphs always
merges one leg of one subgraph with another leg of the other subgraph into a single edge.
Therefore, a series composition with a Q-node is in fact an identity operation. Connecting
two Q-nodes serially together would again simply result in another Q-node, so a D-node
is necessary. The creation of a decomposition tree for a 2-legged SP-graph is, per step,
based on the creation of a normal decomposition tree. Therefore, a linear-time algorithm
for constructing a 2-legged decomposition tree can be easily deduced from the literature.
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We now also restrict the set of embeddings we consider. Specifically, we require for the
given fixed embedding E that the terminals of G are incident to the outer face fo. We
say that E is an outer embedding of G if this is given. With E being an outer embedding,
the order of the children in the tree completely describe E as follows. If a vertex v has a
degree of 2 or lower, its rotation scheme is already fixed. If its degree is 3, it must be the
leg-vertex of some P-node ϕ. The fact that E is outer together with the ordering of the
child nodes implies an order of the incident edges of v and therefore a rotation scheme
of v. The embedding described in Figure 4.4 is outer and the order of the children in the
decomposition tree reflects the embedding of the graph.

A Q-node is marked if at the connection of its children the central face fc is formed (again
see Figure 4.4) and a node contains fc if it contains the marked node in its subtree. These
are exactly all nodes in the direct path from the marked Q-node to the root node. The
problem instance of (G, E , fo, fc) can now be completely represented by a decomposition
tree of G. From now on, unless specified otherwise, 2-legged SP-graphs always have a
maximum degree of 3, an embedding is always outer, and a decomposition tree of a 2-legged
SP-graph refers to the above-mentioned new type of decomposition tree. A node ϕ is
said to induce a 2-legged SP-graph G if G has a decomposition tree with ϕ as its root.
Moreover, if G is rectilinear-plane with the fixed embedding of ϕ, we also say that ϕ is
rectilinear-plane and if G is orthoradial-plane with the fixed embedding of ϕ, we say that ϕ
is orthoradial-plane.

4.1.2 Finding Bend-Free Ortho-Radial Representations

The general idea in this chapter is to traverse the decomposition tree of a 2-legged SP-
graph G in a bottom-up fashion while keeping track of which orthogonal or ortho-radial
representations are achievable at each node. As only some properties of these representations
are important for the recursion, only these are tracked. Before defining which properties
are needed, we define the notion of relative labels. A relative label is similar to the labelling
in an ortho-radial representation but with a variable reference edge. We will use relative
labels in the construction of our proofs rather than normal labels since the actual reference
edge in the to-be-found valid ortho-radial representation may not yet be present in some
steps of the recursion.

Lemma 4.5. Let (G, E) be a 2-legged series-parallel plane 3-graph, H an orthogonal
representation of G and e∗ an edge in G. Let e ∈ G be an edge for which there exists an
st-path P first traversing e∗ and then traversing e. Then rot(P [e∗, e]) is independent of the
choice of P .

Proof. Let P1 and P2 be two st-paths both first traversing e∗ and afterwards e. One has
to now show that rot(P1[e∗, e]) = rot(P2[e∗, e]). For this, let G′ be the subgraph P1[e∗, e] ∪
P2[e∗, e] ⊆ G consisting only of the two alternative paths between e∗ and e. As G′ is
a subgraph of G, it can be associated with the induced orthogonal representation of H.
Then P1[e∗, e] and P2[e∗, e] are both so-called spines of G′, and rot(P1[e∗, e]) = rot(P2[e∗, e])
follows from the literature [DBLV98, Lemma 4.1].

Definition 4.6. Let (G, E) be a 2-legged series-parallel plane 3-graph, H an orthogonal
representation of G and e∗ an edge in G. Let e ∈ G be an edge for which there exists an
st-path P first traversing e∗ and then traversing e. Then ℓe∗ (e) is called the label of e
relative to e∗ in H and is defined as

ℓe∗ (e) := rot(P [e∗, e]).

We further define ℓs (e) := ℓes (e).
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Unless specified otherwise, a relative label of some edge in a 2-legged SP-graph always
refers to the label relative to es. As relative labels are defined via rotations on paths, we
also know that if an st-path contains three edges e, f, g in this order, then

ℓe (g) = ℓe (f) + ℓf (g).

We now define the specific properties of nodes in the tree that have to be tracked. As will be
shown later, it is enough to only define properties for nodes not yet containing fc. For these
nodes, the definition of orthogonal representations and (valid) ortho-radial representations
are equivalent. First, we have to make sure that when connecting two subgraphs together,
there exist representations of the subgraphs that can be connected to form a representation
of the whole graph. To do this, the approach of Didimo et al. [DKLO22] is used. They
also find bend-minimum drawings of SP-graphs using decomposition trees but only in the
orthogonal case. They found that per node they only have to keep track of the spirality of
the induced subgraph to tell if and how many bends are required for the parent node to
admit an orthogonal representation as well.

The spirality σ(H) of an orthogonal representation H was first introduced by Di Battista et
al. [DBLV98]. They define it, at least in the case of 2-legged SP-graphs, as σ(H) = rot(P )
for an st-path P ∈ Pst(G). For general graphs, the definition is slightly more complicated.
Lemma 4.5 also implies that the spirality is indipendent of the concrete st-path. With
the definition of relative labels, the spirality of H could also be defined as σ(H) = ℓs (et).
Spirality essentially measures how much a graph is curled up in a given orthogonal
representation. The following lemma shows that for 2-legged series-parallel plane 3-graphs,
an orthogonal representation of the graph can, intuitively speaking, always be unraveled
such that it is less curled up.

Lemma 4.7. Let (G, E) be a 2-legged series-parallel plane 3-graph for which an orthogonal
representation H of G exists with σ(H) = x ̸= 0. Then for every y ∈ {0, . . . , x− 1}, if x is
positive, or y ∈ {x+ 1, . . . , 0}, if x is negative, there exists an orthogonal representation Hy

of G with σ(Hy) = y.

Proof. For positive x, this fact is proven by Di Battista et al. [DBLV98, Lemma 5.1,
Lemma 5.2] as G is a 3-graph. They later argue that the mirrored result for negative x
also holds.

Lemma 4.7 implies that the set of possible spirality values for a 2-legged SP-graph is an
interval. As also done by Didimo et al. [DKLO22], a node keeps track of the maximum and
minimum spirality values possible over all orthogonal representations of a graph. We call
the minimum possible spirality of the graph its left bend value and the maximum possible
spirality the right bend value.

Definition 4.8. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph. Then the
left bend value bl and the right bend value br of G are defined as

bl := −min{σ(H) | H ∈ Ω(G, E)} and
br := max{σ(H) | H ∈ Ω(G, E)}.

Intuitively, the value bl indicates how much the graph can curl up to the left relative to es,
and br indicates how much it can curl up to the right. Figure 4.5 shows two sample graphs
and their bend values.
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Figure 4.5: Two 2-legged SP-graphs and orthogonal representations corresponding to their
bend and step values. If some step value is 0, no matching orthogonal represen-
tation exists.

Lemma 4.9. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph and let bl

and br be its step values. We then know that bl ≥ 0 and that for every y ∈ {−bl, . . . , br}
there exists an orthogonal representation Hy of G with σ(Hy) = y.

Proof. Both statements directly follow from Definition 4.8 and Lemma 4.7.

Bend values would be enough in the orthogonal case, but to satisfy the labeling-constraint
of a valid ortho-radial representation more information about the internal structure of each
subgraph is required. At some P-nodes in the recursion essential cycles may be formed
by connecting two subgraphs in parallel We have to make sure that these do not become
invalid cycles. A cycle is valid if it contains a positively- and negatively-labelled edge or if
it only consists of edges with label 0. To ensure this, we are interested in a few subsets of
special orthogonal representations of each subgraph. Namely, those where in every st-path
there exists an edge with a negative (resp. positive) label relative to the starting terminal,
and those where an st-path exists consisting of only edges with a relative label of 0. We
define these special subsets for a 2-legged rectilinear-plane series-parallel 3-graph (G, E) as

Ω−(G, E) := {H ∈ Ω(G, E) | ∀P ∈ Pst(G) : ∃e ∈ P : ℓs (e) < 0}

for the subset of orthogonal representations containing an edge with a negative relative
label in every st-path and

Ω+(G, E) := {H ∈ Ω(G, E) | ∀P ∈ Pst(G) : ∃e ∈ P : ℓs (e) > 0}

for the subset of orthogonal representations containing an edge with a positive relative
label in every st-path. Finally, we use

Ωz(G, E) := {H ∈ Ω(G, E) | ∃P ∈ Pst(G) : ∀e ∈ P : ℓs (e) = 0}
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for the subset of orthogonal representations where an st-path exists consisting of only edges
with relative label 0. The correlation between relative labels and spirality implies that every
orthogonal representation in Ωz(G, E) has spirality 0. But the orthogonal representations
in the other two set are allowed to have different spirality values. Similar to bend values,
we need to know the range of spirality values achievable in these subsets. For this, we
introduce the notion of step values.

Definition 4.10. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph. We
define the following three step values.

1. The left step value sl is defined as

sl := max({0} ∪ {σ(H) + 1 | H ∈ Ω−(G, E)}).

2. The right step value sr is defined as

sr := max({0} ∪ {−σ(H) + 1 | H ∈ Ω+(G, E)}).

3. The zero step value sz ∈ {0, 1} is defined as

sz =
{

1 if Ωz(G, E) ̸= ∅,
0 otherwise.

.

Observe that we intentionally add 1 to the spirality in the definition of sl and sr. This is done
to differentiate between the case sl = 0, which implies that no orthogonal representation
in Ω−(G, E) exists with a spirality of 0 or greater, and the case sl > 0, where an orthogonal
representation H in Ω−(G, E) exists with σ(H) = sl − 1 ≥ 0. To get a feel for step values,
Figure 4.5 depicts two examples of 2-legged SP-graphs and their corresponding step values.
As seen in the figure, the left and right step values may differ. This is due to the fact that
we are given a fixed embedding. The benefits of step-values can be seen in the following
example. If sl = 1 for some subgraph G, we know that an orthogonal representation H
of G exists with σ(H) = 0 and an edge in every st-path with a negative relative label. If
an ortho-radial representation of the complete graph exists containing H and the leg es

of G is oriented to have label 0, every essential cycle traversing G must completely traverse
some st-path of G and therefore contains at least one negatively-labelled edge.

Now, for every tree node ϕ that does not yet contain the central face fc we keep track of
both bend and step values in a tuple [bl, br, sl, sr, sz] called the structure of ϕ. For tree
nodes that already contain the central face no further information is required. As a base
case for the recursion, we assign to every Q-node the structure

[bl, br, sl, sr, sz] = [0, 0, 0, 0, 1]

and to every D-node the structure

[bl, br, sl, sr, sz] = [1, 1, 0, 0, 1].

Before actually looking at the recursion itself, further insight into the properties of bend
and step values are required. Given some orthogonal representation H of a graph G we
know from Lemma 4.7 that br ≥ σ(H) and bl ≥ −σ(H). But sometimes further properties
of H are deducible that improve on these simple inequalities.

Lemma 4.11. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph and let H
be an orthogonal representation of G with x := σ(H). Then the following holds.
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Figure 4.6: On the left, an orthogonal representation that contain a positive rotation in
every st-path indicated by a blue angle. Next to it the result of Lemma 4.11,
where the spirality of the new representation was decreased by 1. On the right,
the same orthogonal representations with negative rotations in every st-path
indicated by red angles and similarly the resulting graph with now a higher
spirality.
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Figure 4.7: The three possibilities of an access from the face f1 on the left of the st-path P to
the face f2 on the right at the vertex v. For every case the rotation at v along P
is positive. Next to each drawing is the result of an elementary transformation
using the access v.

• If in every st-path P there exist adjacent vertices u, v, w such that rot(uv, vw) = 1,
then there exists another orthogonal representation H′ of G with σ(H′) = x− 1 and
therefore bl ≥ x+ 1.

• If in every st-path P there exist adjacent vertices u, v, w such that rot(uv, vw) = −1,
then there exists another orthogonal representation H′ of G with σ(H′) = x+ 1 and
therefore br ≥ x+ 1.

In both cases, H′ and H differ per st-path only in the rotation at exactly one vertex v having
the above requirements. All other rotations stay the same.

Proof. Only the proof for the first half is given, since the other half is simply the mirrored
result. Let H be an orthogonal representation of G with σ(H) = x,where every st-path
contains adjacent vertices u, v, w such that rot(uv, vw) = 1 (see Figure 4.6). The following
proof is an adaption to the one by Di Battista et al. [DBLV98, Lemma 5.2]. They show that
given an orthogonal representation with positive spirality y, an orthogonal representation
with spirality y−1 can be created by finding a correctly oriented elementary transformation
as defined by Tamassia et al. [TTV91]. They show this for general planar 3-graphs and
their notation is therefore slightly different. Instead of using st-paths they use the more
general notion of splines. In our case though, they are equivalent. Their proof depends on
the existence of a so-called access in every st-path of the graph, where the source face of
the access is locally to the left of the st-path and the target is to the right. An access is a
vertex a with source face f and target face g if one of the following two cases holds.

1. If vertex a has exactly two incident faces f1 and f2 and the rotation of face f1 at a is
not 1, then a is an access from f1 to f2.

2. If vertex a has three incident faces f1, f2, and f3 and the rotation of face f1 at a is
zero, then a is an access from f1 to both f2 and f3.
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Now let v be the vertex in an arbitrary st-path P with the requirements given in the
statement (see Figure 4.7). As rot(uv, vw) = 1, then only one incident face of v can lie
locally to the right of P . If also deg(v) = 2, then only two faces are incident to v and
the other incident face has a rotation of −1 at v. If deg(v) = 3, then exactly one of the
now two other incident faces has a rotation of 0 at v. In any case, v is in an access from
the left side of P to the right side. As P was arbitrary, every st-path contains a correctly
oriented access. Di Battista et al. [DBLV98] only require the orthogonal representation to
have a positive spirality in their lemma so they can later argue that every st-path must
contain a correctly oriented access. As this is already given in our case, we can, even with
having σ(H) = x ≤ 0, deduce that another orthogonal representation H′ of G must exist
with σ(H) = x− 1.

The elementary transformation used in the proof by Di Battista et al. [DBLV98] only
traverses one access per st-path. As only traversed vertices are changed, all other rotations
in H stay the same.

Lemma 4.12. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph having the
structure [bl, br, sl, sr, sz]. Then br ≥ sl and bl ≥ sr.

Proof. Let x = sl > 0. Then there exists an orthogonal representation H of G with σ(H) =
x− 1 and every st-path contains an edge e with ℓs (e) < 0. Let P be an arbitrary st-path.
For P to have a relative label of 0 at es and a negative label at the edge e with ℓs (e) < 0,
there must exist three adjacent vertices u, v, w in P between s and e with rot(uv, vw) = −1.
Lemma 4.11 then implies br ≥ x = sl. For sr this follows analogously.

Lemma 4.13. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph having the
structure [bl, br, sl, sr, sz]. Then sl = 0 if bl = 0, and sr = 0 if br = 0.

Proof. We make a proof by contraposition. Assume sl > 0. Then there exists an orthogonal
representation H of G with σ(T ) = 0 and an edge with a negative relative label in
every st-path of G. Let P be an arbitrary st-path and let e be an edge with a negative
relative label in P . Then for 0 = σ(T ) = ℓs (et) to hold, the labels on the path must
go from a negative relative label at e to a relative label of 0 at et. So there must exist
three adjacent vertices u, v, w between e and et with rot(uv, vw) = 1. Lemma 4.11 then
implies bl ≥ 0 + 1 > 0. For sr and br this follows analogously.

Lemma 4.14. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph and let H
be an orthogonal representation of G where every st-path contains an edge with a positive
and an edge with a negative relative label. If σ(H) ≤ 0, then bl ≥ 2. Similarly, if σ(H) ≥ 0,
then br ≥ 2.

Proof. As a start, consider the case σ(H) = 0 and let P be an arbitrary st-path in G.
Without loss of generality, P contains first an edge e with a negative and then an edge f
with a positive label. Then P has to contain adjacent vertices u, v, w between s and e
as well as u′, v′, w′ between f and e with v ̸= v′ and rot(uv, vw) = rot(u′v′, v′w′) = −1.
Moreover, P must also contain adjacent vertices x, y, z and x′, y′, z′ between e and f with y ̸=
y′ and rot(xy, yz) = rot(x′y′, y′z′) = 1. Looking at the vertex v in every path, Lemma 4.11
implies the existence of another orthogonal representation with spirality 1. As in the new
orthogonal representation only the rotations at each v may be different, rot(u′v′, v′w′) = −1
still holds. Therefore, Lemma 4.11 implies the existence of a third orthogonal representation,
now with spirality 2, and br ≥ 2 follows. The same argument with y and y′ implies bl ≥ 2.
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Figure 4.8: Two st-paths P and Q. Between e and f the paths are disjoint and after f the
paths coincide. The cycle C is formed by connecting the subpaths P [eP , fP ]
and Q[eQ, fQ].

Now if x = σ(H) ≥ 1, there must still exist adjacent vertices u, v, w in every path
with rot(uv, vw) = −1. It follows again with Lemma 4.11 that br ≥ x + 1 = 2. The
same applies if σ(H) ≤ 1, where there still exist adjacent vertices x, y, z in every path
with rot(xy, yz) = 1.

Lemma 4.15. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph. Then

Ω−(G, E) ∪ Ω+(G, E) ∪ Ωz(G, E) = Ω(G, E).

Proof. It is clear From the definition of each set that the ”⊆”-direction must hold. To prove
the ”⊇”-direction, we show that if an orthogonal representation H of G is neither contained
in Ω−(G, E) nor in Ω+(G, E), it must be contained in Ωz(G, E). Let H be an orthogonal
representation of G with H /∈ Ω−(G, E) ∪ Ω+(G, E). Then there exists an st-path P in G
where ℓs (e) ≥ 0 for all e ∈ P . There also exists an st-path Q in G where ℓs (e) ≤ 0 for
all e ∈ Q. Now as et is contained in both P and Q, it follows that 0 ≥ ℓs (et) ≥ 0 and
therefore σ(H) = ℓs (et) = 0. What is left is to prove the existence of an st-path having only
zero-labelled edges and in fact, we show that P = Q and this path has the desired property.
As et is contained in both paths and has relative label 0, we can define f to be the first
edge in P and Q at and after which both paths coincide. Just as for et we know that f
and every edge after f has relative label 0. Now if f = es, then both paths would coincide
in their whole length and the statement would already hold. So assume f ̸= es. Then the
following situation, as also seen in Figure 4.8, would arise. There exists a predecessor fP

of f in P and a predecessor fQ of f in Q with fQ ̸= fP . Let also e be the first edge
preceding fP in P and fQ in Q that is contained in both paths again, and let eP be the
successor of e in P and eQ be the successor of e in Q. Then P [eP , fP ] + P [eQ, fQ] forms
a simple cycle C. The orientation of the cycle implied by the two subpaths may be such
that its interior is not locally to the right, but to the left. By the definition of orthogonal
representations it follows that rot(C) is either 4 if the interior is to the right or −4 if it is
to the left. Regarding the part P [eP , fP ] it follows that

rot(P [eP , fP ]) = ℓs (eP ) + ℓeP (fP ) + ℓfP
(f)︸ ︷︷ ︸

= ℓs (f) = 0

− ℓs (eP )− ℓfP
(f)

= − ℓs (e)− rot(e, eP )− rot(fP , f).

Similarly, rot(P [eQ, fQ]) = ℓs (e) + rot(e, eQ) + rot(fQ, f) follows. As e, eP , and eQ share
the same incident vertex, it follows from the definition of an orthogonal representation
that rot(e, eP ) and rot(e, eQ) are not both 0 at the same time. The same is true for rot(fP , f)
and rot(fQ, f). Then it follows that

rot(C) = rot(P [eP , fP ]) + rot(P [eQ, fQ])
= rot(e, eQ)− rot(e, eP )︸ ︷︷ ︸

∈ {−2, −1}

+ rot(fQ, f)− rot(fP , f)︸ ︷︷ ︸
∈ {1, 2}

∈ [−1, 1].
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This contradicts rot(C) ∈ {−4, 4} and therefore e = es, which implies that P is equal to Q
and the paths only contain zero-labelled edges.

Lemma 4.16. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph having an
orthogonal representation H of G where there exists an st-path containing only edges with
relative label 0. Then every other st-path contains both an edge with a positive and an edge
with a negative relative label.

Proof. Let P be the st-path containing only edges with relative label 0 and let Q be an
arbitrary other st-path of G. Let v be the vertex where P and Q split up and let w be
the vertex where they meet again. These vertices are never the terminals and both paths
share a common edge e before v and a common edge f after w. Let also eP and eQ be the
edges after e in P and Q and let fP and fQ be the edges before e in P and Q. We then
know that ℓs (e) = ℓs (w) = 0. As the edges eP and fP also have relative label 0 we know
that ℓs (eQ) = 1 if eQ lies locally to the right of P and ℓs (eQ) = −1 if eQ lies locally to
the left. Similarly, we know ℓs (fQ) = −1 if fQ lies locally to the right and ℓs (fQ) = 1 if it
lies locally to the left. It is impossible that eQ and fQ lie locally on different sides of P ,
as then either s or t is not contained in fo. This would be a contradiction to E being an
outer embedding and therefore, Q always contains edges with positive and negative relative
labels.

Similar to the work of Didimo et al. [DKLO22], the structure of an inner node can be
described with respect to the structures of its children. We now often rely on the Iversion
bracket notation to formulate these relationships. When multiplying an Iversion bracket
with some other term, the boolean expression in the bracket essentially acts as a condition
for the term. If we for example have (sl + br) · [sl > 0] containing the left step and right
bend value we get the following equality.

(sl + br) · [sl > 0] =
{

(sl + br) if sl > 0,
0 otherwise

Lemma 4.17. Let ϕ be an S-node not containing fc, where its children ϕ1 and ϕ2 both
are rectilinear-plane. Also, let [bl

1, b
r
1, s

l
1, s

r
1, s

z
1] be the structure of ϕ1 and [bl

2, b
r
2, s

l
2, s

r
2, s

z
2]

be the structure of ϕ2. Then ϕ is also rectilinear-plane and the structure [bl, br, sl, sr, sz]
of ϕ satisfies the following.

bl = bl
1 + bl

2

br = br
1 + br

2

sl = max


sl

2, (4.1)
br

2 · [bl
1 > 0], (4.2)

(sl
1 + br

2) · [sl
1 > 0] (4.3)

sr = max


sr

2, (4.4)
bl

2 · [br
1 > 0], (4.5)

(sr
1 + bl

2) · [sr
1 > 0] (4.6)

sz = sz
1 · sz

2 (4.7)

35



4. Polynomial-Time Algorithm For Series-Parallel 3-Graphs

Proof. Let G be the induced graph of ϕ, G1 be the induced subgraph of ϕ1, and G2 the
induced subgraph of ϕ2. Also let s1, t1 be the terminals of G1 and s2, t2 the terminals
of G2 as well as es

1, e
s
2, e

t
1, e

t
2 be the legs of G1 and G2. The proof that ϕ is rectilinear and

the proof for the equations of bl and br follow from the work of Didimo et al. [DKLO22,
Lemma 5].

The equality for sz is easy to see since there exists an orthogonal representation H of G
with a zero-labelled path if and only if both subgraphs have orthogonal representations
with a zero-labelled path.

Regarding the other two step values, we only show equality for sl, as sr follows analogously.
First, we prove the ”≥”-direction where we here have to show that sl is greater than any
of the three Terms (4.1), (4.2), and (4.3) on the right-hand side. For Term (4.1), we know
with Lemma 4.9 that an orthogonal representation H1 of G1 with σ(H1) = 0 exists. Now
let H be an orthogonal representation of G containing H1. Then for every edge e in G2
we know that ℓs (e) = ℓs2 (e). From Definition 4.10 we see that the left step value of G
is at least the left step value of G2 for such an orthogonal representation H. In other
words sl ≥ sl

2 (Term (4.1)). This is represented in the leftmost drawing of Figure 4.9.

Next, assume bl
1 > 0 so that the Iversion bracket in Term (4.2) evaluates to 1 (see

Figure 4.9b). Then there exists an orthogonal representation H1 of G1 with σ(H1) = −1.
As an orthogonal representation H2 of G2 exists with spirality σ(H2) = br

2, it follows for
the orthogonal representation H of G created by combining H1 and H2 that

σ(H) = ℓs (et) = ℓs (es
2)︸ ︷︷ ︸

= −1

+ ℓs2 (et
2)︸ ︷︷ ︸

= σ(H2) = br
2

= br
2 − 1.

In summary, H contains a negatively-labelled edge, namely et
1 in every st-path and

has σ(H) = br
2 − 1. This implies sl ≥ br

2 · [bl
1 > 0] (Term (4.2)).

Finally, consider the case sl
1 > 0 so that the Iversion bracket in Term (4.3) evaluates to 1

(see Figure 4.9c). By Definition 4.10 there exists an orthogonal representation H1 of G1
with σ(H1) = ℓs1 (et

1) = sl
1 − 1 that contains an edge in every st-path with a negative

relative label. Now as an orthogonal representation H2 of G2 with σ(H2) = br
2 exists, we get

by concatenating H1 and H2 an orthogonal representation H of G, containing a negatively-
labelled edge in every st-path and σ(H) = sl

1+br
2−1. This implies that sl ≥ (sl

1+br
2)·[sl

1 > 0]
(Term (4.3)).

Now to the ”≤”-direction. Here we have to show that in every case sl is smaller or equal
to at least one Term on the left-hand side. As every such term is non-negative, the case
sl = 0 is trivial. So suppose sl = x > 0. Then there exists an orthogonal representation H
of G that contains a negatively-labelled edge in every st-path and has total spirality x− 1.
Now let e = et

1 = es
2 be the edge connecting the two components G1 and G2 and ℓs (e) be

the relative label of this edge. We distinguish between two cases. Case 1: ℓs (e) = y < 0.
Then this implies σ(H1) < 0 and therefore bl

1 > 0. As σ(H) = x− 1 we get for Term 4.1
that

br
2 · [bl

1 > 0] = br
2 ≥ σ(H2) = σ(H)− σ(H1) = x− 1− y ≥ x = sl.

Case 2: ℓs (e) = y ≥ 0. Then br
1 ≥ y and as the spirality of G is x − 1 it follows for G2

that br
2 ≥ max(0, x− y − 1). Now, since an edge with a negative relative label has to be

present in every st-path and ℓs (e) ≥ 0. This edge must be contained in one of the two
components. If it is contained in H1, then sl

1 ≥ y + 1 and Term (4.3) satisfies

(sl
1 + br

2) · [sl
1 > 0] ≥ y + 1 + max(0, x− y − 1) ≥ x = sl.
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(a) (b) (c)

G1

G2

s

t

G1

G2

s

t G2

G1

s

t

Figure 4.9: An abstract view of creating a non-zero left step value sl in a series composition
of two subgraphs G1 and G2.

If it is contained in H2, then the following situation arises. First, H1 makes at least y right
turns along each st-path to achieve ℓs (e) = y > 0, then H2 makes y + 1 left turns along
each st-path to the edge with the negative relative label and afterwards makes at least x
right turns again to achieve σ(H) = x−1. Lemma 4.11 can now be applied to the first y left
turns in H2. This results in an orthogonal representation H′

2 of G2 with an edge in every
st-path having relative label −1 and with the x right turns afterwards the representation
still has spirality x− 1. This implies sl

2 ≥ x and Term (4.3) satisfies sl
2 ≥ x = sl.

To formulate a similar result for a P-node, we first introduce more notation.

Definition 4.18. Let ϕ be a P-node, let G be its induced graph, and let G1,G2 be the
induced subgraphs of the child nodes ϕ1 and ϕ2. Let moreover es

1, e
t
1, e

s
2, e

t
2 be the legs of G1

and G2. For an angle assignment A of G we define the rotation values rs
1 = rot(es, es

1), rs
2 =

rot(es, es
2), rt

1 = rot(et
1, e

t), and rt
2 = rot(et

2, e
t). We call the tuple [rs

1, r
t
1, r

s
2, r

t
2] a rotation

combination.

For an orthogonal or ortho-radial representation we know that rs
1 and rt

1 are in the set {−1, 0}
and that rs

2 and rt
2 are in the set {0, 1}. Moreover, rs

1 and rs
2 can not be 0 at the same

time and this also holds for rt
1 and rt

2. Finally, the equations rot(et
1, e

t
2) = |rt

1 + rt
2| ∈ {0, 1}

and rot(es
2, e

s
1) = |rs

1 + rs
2| ∈ {0, 1} hold.

Lemma 4.19. Let ϕ be a P-node not containing fc, where its children ϕ1 and ϕ2 both are
rectilinear-plane. Also, let [bl

1, b
r
1, s

l
1, s

r
1, s

z
1] be the structure of ϕ1 as well as [bl

2, b
r
2, s

l
2, s

r
2, s

z
2]

be the structure of ϕ2. Then ϕ is rectilinear-plane if and only if

br
1 + bl

2 ≥ 2.

Moreover, in the case that ϕ is rectilinear-plane the structure [bl, br, sl, sr, sz] of ϕ satisfies
the following.

bl = min(bl
1 + 2, bl

2)
br = min(br

1, b
r
2 + 2)

sl = max
{

[br
1 > 0] · [bl

2 > 0], (4.8)
min(br

1, s
l
2 + 1) · [sl

2 > 0] · [br
1 ≥ 2] (4.9)

sr = max
{

[br
1 > 0] · [bl

2 > 0], (4.10)
min(bl

2, s
r
1 + 1) · [sr

1 > 0] · [bl
2 ≥ 2] (4.11)

sz = max{[br
1 ≥ 2] · sz

2, [bl
2 ≥ 2] · sz

1} (4.12)
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s
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(a) (b)
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(c)

s

t

G2G1

Figure 4.10: Examples of how a parallel connection of subgraphs G1 and G2 result in sl = 1
for the left step value (a), in sl = 2 for the left step value (b), and in sz = 1
for the zero step value (c).

Proof. Let G be the induced graph of ϕ, G1 the induced subgraph of ϕ1, and G2 the induced
subgraph of ϕ2. Also let s1, t1 be the terminals of G1 and s2, t2 the terminals of G2 as well
as es

1, e
s
2, e

t
1, e

t
2 be the legs of G1 and G2. The proof for having an orthogonal representation

as well as the values of bl and br follows from Didimo et al. [DKLO22, Lemma 7, Lemma
8] together with Lemma 4.9.

Regarding the two step values sl and sr, we only show the equality for sl, as sr follows
analogously, and start with the ”≥”-direction. We here have to show that sl is greater
than any of the three terms on the right-hand side.

As a start, consider Term (4.8). Unless both Iversion brackets in Term (4.8) result
in a value of 1, the total term is 0 and sl ≥ 0 trivially holds. Therefore, suppose
both br

1 > 0 and bl
2 > 0, which implies [br

1 > 0] · [bl
2 > 0] = 1. Then there exist orthogonal

representationsH1 of G1 with σ(H1) = 1 andH2 of G2 with σ(H2) = −1. Using the rotation
combination [rs

1, r
t
1, r

s
2, r

t
2] = [−1, 0, 0, 1] results in an orthogonal representation H of G as

also seen in Figure 4.10a. It then follows that ℓs (es
1) = ℓs (et

2) = −1 and therefore sl ≥ 1.

Now consider Term (4.9). Again, unless both conditions in the Iversion brackets are
true, sl ≥ 0 trivially holds. Therefore, suppose sl

2 > 0 and br
1 ≥ 2 and let b = min(br

1 −
2, sl

2 − 1). Then there exists an orthogonal representation H1 of G1 with σ(H1) = b+ 2,
and an orthogonal representation H2 of G2 with σ(H2) = b containing a negatively-
labelled edge in every st-path of G2. By connecting H1 and H2 using the rotation
combination [rs

1, r
t
1, r

s
2, r

t
2] = [−1, 0, 0, 1] we get an orthogonal representation H of G, as

the newly created face f has the rotation

rot(f) = rot(es
2, e

s
1) + σ(H1)− σ(H2) + rot(et

1, e
t
2) = 1 + b+ 2− b+ 1 = 4.

The case sl
2 = 1 and br

1 = 2 is shown in Figure 4.10b. Every st-path has to either traverse G1
or G2. Traversing G1, it contains the edge es

1 with ℓs (es
1) = rs

1 = −1. Traversing G2 it
contains with ℓs (es

2) = rs
2 = 0 a negatively-labelled edge as by construction. The orthogonal

representation H has spirality

σ(H) = ℓs (et) = rs
1 + σ(H1) + rt

1 = −1 + b+ 2 + 0 = b+ 1 = min(br
1 − 1, sl

2).

With Definition 4.10, this implies sl ≥ min(br
1, s

l
2 + 1) · [sl

2 > 0] · [br
1 ≥ 2].

Now to the ”≤”-direction. We here have to show that for every orthogonal representation
of G, sl is smaller or equal to at least one term inside the maximum on the left-hand side.
As every such term must be non-negative, the case sl = 0 is trivial. Therefore, suppose sl =
x > 0. Then there exists an orthogonal representation H of G with σ(H) = ℓs (et) = x− 1
and with an edge having a negative relative label in every st-path. Let H1 be the induced
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orthogonal representation of G1 and H2 be the induced orthogonal representation of G2.
The fact ℓs (et) = x− 1 implies the following.

σ(H1) = ℓs1 (et
1)

= rs
1 + ℓs1 (et

1) + rt
1︸ ︷︷ ︸

= ℓs (et) = x − 1

−rs
1 − rt

1︸ ︷︷ ︸
∈ {0, 2}

∈ {x− 1, x+ 1} (4.13)

σ(H2) = ℓs2 (et
2)

= rs
2 + ℓs2 (et

2) + rt
2︸ ︷︷ ︸

= ℓs (et) = x − 1

−rs
2 − rt

2︸ ︷︷ ︸
∈ {−2, 0}

∈ {x− 3, x− 1} (4.14)

The fact sl = x > 0 implies that in every st-path a negatively-labelled edge has to be
present, and particularly in every st-path traversing G2. The negatively-labelled edge can
not be in the set {es, et, es

2, e
t
2} because ℓs (es) = 0, ℓs (et) = x− 1 ≥ 0, ℓs (es

2) = rs
2 ≥ 0,

and

ℓs (et
2) = ℓs (et

2) + rt
2︸ ︷︷ ︸

= ℓs (et) = x − 1 > 0

−rt
2 ≥ 0. (4.15)

Therefore, a negatively-labelled edge must be present in every path from s2 to t2 inside H2.
We now make a case distinction.

Case 1: sl = x = 1. Here we show that Term (4.8) must also be 1. For a proof by
contradiction assume br

1 = 0 or bl
2 = 0, which would result in the Term (4.8) being 0 and

not 1. Having bl
2 = 0 implies σ(H2) ≥ 0 and combining this with Equation (4.14), σ(H2) = 0

follows. And as H2 contains a negatively-labelled edge in every path from s2 to t2 inside H2
we know that sl

2 > 0. But with Lemma 4.12 this would imply bl
2 > 0 and a contradiction is

formed. The same argumentation holds if br
1 = 0 in combination with Equation (4.13).

Case 2: sl = x ≥ 2. Not both rs
1 and rs

2 can be 0 at the same time. This implies
that either Equation (4.13) or Equation (4.14) has a stronger bound. More specifically,
either σ(H1) = x − 1 + 1 − rt

1 ≥ x > 0 or σ(H2) = x − 1 − 1 − rt
2 ≥ x − 2 ≥ 0 holds.

Using both equations we can, with the knowledge that G2 contains an edge with a negative
relative label, show for Term (4.8) that

sl = x ≤ min(σ(H1), σ(H2) + 2) ≤ min(br
1, s

l
2 + 1).

We now have shown that for an arbitrary orthogonal representation H of G the left step
value sl is always smaller than either Term (4.8) or Term (4.9) and equality follows for sl.

What is left is the equality proof for sz. For the ”≥”-direction, suppose that sz
1 = 1

and bl
2 ≥ 2. Then there exist an orthogonal representation H1 of G1 with an st-path P1

having only relative label 0 and an orthogonal representation H2 of G2 with σ(H2) = −2.
A rotation combination of [rs

1, r
t
1, r

s
2, r

t
2] = [0, 0, 1, 1] results in a combined orthogonal

representation H of G as also seen in Figure 4.10c. The path P = es
1 + P1 + et

1 contains
with rs

1 = rt
1 = 0 only edges with relative label 0 and sz = 1 follows. The same holds true

for the other case of Term (4.12) and the rotation combination [rs
1, r

t
1, r

s
2, r

t
2] = [−1,−1, 0, 0].

For the ”≤”-direction suppose sz = 1. Then there exists an orthogonal representation H
of G containing an st-path with only zero-labelled edges. This path has to traverse either G1
or G2. Without loss of generality, let G1 contain this path, which implies sz

1 = 1 as well
as rs

1 = rt
1 = 0. Then rs

2 = rt
2 = 1 must hold and using the same argumentation as in

Equation (4.14), σ(H2) = −2 and bl
2 ≥ 2 follows, which then implies for Term (4.12) that

max{[br
1 ≥ 2] · sz

2, [bl
2 ≥ 2] · sz

1} ≥ [bl
2 ≥ 2] · sz

1 = 1 = sz.
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s

t

s2s1

t1

t2

Figure 4.11: On the left, two 2-legged SP-graphs and on the right their parallel composi-
tion surrounding fc. The arrows indicating the direction of st-paths in the
orthogonal drawings point in different directions in the ortho-radial one.

Until now, we have only looked at tree nodes not containing the central face fc, and tried
to find ways to calculate step values. These step values are now used to create fc at the
marked parallel node in the decomposition tree. We start with restricting the possible
combinations of step values for a 2-legged SP-graph.

Lemma 4.20. There does not exist a 2-legged rectilinear-plane series-parallel 3-graph with

[sl, sr, sz] ∈ {[0, x, 0], [x, 0, 0]}

for any x ∈ N0.

Proof. Only the proof for [sl, sr, sz] ̸∈ [x, 0, 0] is given, since the other case follows analo-
gously. To form a contradiction, assume a 2-legged rectilinear-plane series-parallel 3-graph G
exists with step values [x, 0, 0], x ∈ N0. As both Q- and D-nodes have step values [0, 0, 1], G
has to be the result of some composition of two subgraphs G1 and G2. Let [bl

1, b
r
1, s

l
1, s

r
1, s

z
1]

be the structure of G1 and [bl
2, b

r
2, s

l
2, s

r
2, s

z
2] be the structure of G2. We now show that for

G to have the step values [x, 0, 0], at least one of the subgraphs must have the step values
[y, 0, 0] or [0, y, 0] for y ∈ N. This implies that G would have to be the result of an infinite
composition chain. Therefore, such a G does not exist.

Case 1: G is the result of a parallel composition of G1 and G2. As sr = 0, both Term (4.8)
and Term (4.9) in Lemma 4.19 have to be 0. With bl

2 ≥ sl
2 (Lemma 4.12) this implies

either br
1 = 0 or bl

2 = 0. But for G to be rectilinear-plane, Lemma 4.19 also states
that br

1 + bl
2 ≥ 2. Therefore, one of the two bend values must be 0 and the other one greater

or equal to 2. Without loss of generality, let br
1 ≥ 2 and bl

2 = 0. With the inequality bl
2 ≥ sl

2
we also get sl

2 = 0. Moreover, with br
1 ≥ 2 and sz = 0, Equation (4.12) implies that sz

2 = 0
as well. Therefore, the step values of G2 must be of the form [0, y, 0] for some y ∈ N0.

Case 2: G is the result of a series composition of G1 and G2. Then Lemma 4.17 restricts
the step values of the children such that

(sr
1 = 0 ∧ sr

2 = 0) Terms (4.4) and (4.6)
∧ (sz

1 = 0 ∨ sz
2 = 0) Equation (4.7)

This implies that for at least one child the step values must be of the form [y, 0, 0] for
some y ∈ N0.

The following lemma shows that for 2-legged series-parallel 3-graphs an edge always has
the same label, no matter in which essential cycle, as long as we consider an orientation of
the edge.
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e∗

−→ele
l∗

e∗

l∗

Ge
G∗

t

C

C ′

Figure 4.12: A representation of the cyclic chain of subgraphs including the cycles C and C ′

from Lemma 4.21. The cycles share a common edge e in the subgraph Ge

and enter it via the common leg le. The two possible locations of e∗ are both
represented here. It may either be contained in the subgraph G∗ contained
in the cyclic chain or be outside the chain (and therefore closer to fc) and
connected to it at a terminal t.

Lemma 4.21. Let (G, E) be a 2-legged series-parallel plane 3-graph that admits a (possibly
invalid) ortho-radial representation T with a reference edge e∗ and let C and C ′ be two
simple essential cycles sharing the same oriented edge e⃗. Then ℓC(e⃗) = ℓC′(e⃗).

Proof. Let G be the set of inclusion-wise maximal 2-legged series-parallel subgraphs of G,
where their induced representations are orthogonal. Both cycles C and C ′ can not be totally
contained in a single subgraph of G since they are essential cycles and can therefore only
be contained in an ortho-radial representation. As the union of the subgraphs in G is the
whole graph G, both cycles must traverse a cyclic chain of subgraphs in G instead. And as
both cycles must traverse the subgraph Ge ∈ G containing e, they must traverse the same
cyclic chain we call S. Otherwise, some subgraph in G is either not inclusion-wise maximal
or its induced representation would be an ortho-radial one. For the cycles to be simple and
both traverse the same oriented edge e⃗ ∈ Ge, they must traverse Ge, and therefore every
subgraph in S, also in the same direction. See Figure 4.12 for an illustration.

There are two cases based on the location of e∗. If e∗ is contained in a subgraph we
call G∗ ∈ S, then let l∗ be the leg of G∗ over which both cycles leave this subgraph. There
must exist a reference path from e∗ to l∗ such that this reference path respects both C
and C ′. This implies ℓC(l∗) = ℓ′C(l∗). If e∗ is not contained in a subgraph in S, there
exists some leg l∗ of a subgraph in S with a reference path from e∗ to l∗ only entering
the cyclic chain at l∗. Then this reference path respects C and C ′, and again it follows
that ℓC(l∗) = ℓC′(l∗).

Knowing that a single leg in the cyclic chain has the same label, it follows with Lemma 4.5
that every leg of every subgraph in S has the same label. Let le be the leg of Ge over
which C and C ′ enter Ge. Again Lemma 4.5 implies that rot(C[le, e]) = rot(C ′[le, e]) and
with ℓC(le) = ℓ′C(le) it follows that ℓC(e) = ℓC(le) + rot(C[le, e]) = ℓ′C(le) + rot(C ′[le, e]) =
ℓ′C(e).

With Lemma 4.21 we now write ℓ(e⃗) instead of ℓC(e) if the oriented edge e⃗ is contained
in C. We can even define a label for oriented edges that currently are not contained in
any essential cycle, as once they are, the labels would be equal. To make it clear in which
way an oriented edge is directed, we use the following notation. We use e⃗ to represent the
orientation of e as it occurs in an st-path of G, and we use ⃗e to represent the reversed
orientation of e⃗. We use the notation G for the reversed 2-legged SP-graph of G where the
terminals s and t are flipped. If e⃗ ∈ G, then ⃗e ∈ G.

We are now ready to create the central face at some P-node in the recursion. To get a
feeling for what this means, Figure 4.11 shows an example drawing of two children and their
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parallel composition around the center. As the embedding is fixed, the left subgraph G1
wraps clockwise while the right subgraph G2 wraps counterclockwise around the circle.
Therefore, a left bend in G1 and a right bend in G2 may both point radially outwards.

Definition 4.22. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph and let T
be a valid ortho-radial representation of G. Then T is called st-outwards if the legs of G
point radially outwards.

Lemma 4.23. Let ϕ be a marked P-node at which the face f0 should be created and
where its children ϕ1 and ϕ2 both are rectilinear-plane. If [bl

1, b
r
1, s

l
1, s

r
1, s

z
1] is the structure

of ϕ1 and [bl
2, b

r
2, s

l
2, s

r
2, s

z
2] is the structure of ϕ2, then there exists a valid ortho-radial

representation of ϕ if and only if any of the following equations hold.

sz
1 = sz

2 = 1 (4.16)
bl

1, s
r
2 ≥ 1 ∨ br

2, s
l
1 ≥ 1 (4.17)

bl
1 ≥ 2 ∨ br

2 ≥ 2 (4.18)

Moreover, if G admits any valid ortho-radial representation, then it also admits an st-
outwards one.

Proof. Let G be the induced graph of ϕ, G1 be the induced subgraph of ϕ1, and G2 be
the induced subgraph of ϕ2. Also let s1, t1 be the terminals of G1 and s2, t2 the terminals
of G2 as well as es

1, e
s
2, e

t
1, e

t
2 be the legs of G1 and G2.

First, we prove the equivalence for the existence of a valid ortho-radial representation and
then that there always exists one that is st-outwards. For the ”⇐= ”-direction we make a
case distinction.

Case 1: Equation (4.16) holds. We then know that sz
1 = sz

2 = 1. Therefore, orthogonal
representations H1 of G1 and H2 of G2 exist with σ(H1) = σ(H2) = 0 and both with
an st-path having only relative label 0. Now let T be the representation of G obtained
by combining H1 and H2 with rotation combination [rs

1, r
t
1, r

s
2, r

t
2] = [−1,−1, 1, 1]. See

Figure 4.13 for an example of how the complete ortho-radial representation gets connected.
For the new central and outer face it follows that

rot(fc) = rot(fo) = ℓs1 (et
1)︸ ︷︷ ︸

= σ(H1) = 0

+ rot(et
1, e

t
2)︸ ︷︷ ︸

= 0

− ℓs2 (et
2)︸ ︷︷ ︸

= σ(H2) = 0

+ rot(es
2, e

s
1)︸ ︷︷ ︸

= 0

= 0,

and T is an ortho-radial representation. Now use e⃗s
1 as the reference edge in T . We then

know that ℓC(e) = ℓ(e⃗) = ℓs1 (e) for an edge e ∈ G1. For an edge e ∈ G2, let P be a path
from es

2 to the starting vertex of e⃗. It then holds that

ℓC(e) = ℓ( ⃗e) = dir(e⃗s
1, P, ⃗e) = rot( ⃗es

1 + P ) = − rot(es
2, e

s
1)︸ ︷︷ ︸

= 0

+ ℓs2 (e) = ℓs2 (e).

Let C be an arbitrary simple essential cycle in T and let P1 be the traversed path in G1
and P2 the traversed path in G2. Then P2 is an st-path of the reverse graph G2. By
Definition 4.10 and Lemma 4.16 both P1 and P2 contain either only zero-labelled edges
relative to es

1 and es
2 or at least one path contains both a positively- and a negatively-labelled

edge relative to their starting leg. As these relative labels directly translate to labels of C,
it follows that C either only contains zero-labelled edges or at least one positively- and one
negatively-labelled edge.
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tG1 G2
s
e∗

Figure 4.13: Two subgraphs G1 and G2, both with sz = 1, forming a valid ortho-radial
representation based only on step values. The highlighted edge e∗ is the
reference edge.Both subgraphs have sz = 1.

t

G1

s

G2e∗

(a) Subgraph G1 has bl
1 > 0 and G2 has sr

2 > 0.

G1

s

G2

t
e∗

(b) Subgraph G1 has bl
2 ≥ 2.

Figure 4.14: Two subgraphs G1 and G2 forming a valid ortho-radial representation based
both on bend and step values. The highlighted edge e∗ is the reference edge.

Case 2: Equation (4.17) holds. Due to being analogous, we only discuss the first case
where bl

1 ≥ 1 and sr
2 > 0. There must exist an orthogonal representation H1 of G1

with σ(H1) = −1 and an orthogonal representation H2 of G2 with σ(H2) = 0 containing an
edge in every st-path with a positive relative label. Let T be the combined representation
ofH1 andH2 with rotation combination [rs

1, r
t
1, r

s
2, r

t
2] = [−1, 0, 1, 1] as shown in Figure 4.14a.

Then
rot(fc) = rot(fo) = ℓs1 (et

1)︸ ︷︷ ︸
= σ(H1) = −1

+ rot(et
1, e

t
2)︸ ︷︷ ︸

= 1

− ℓs2 (et
2)︸ ︷︷ ︸

= σ(H2) = 0

+ rot(es
2, e

s
1)︸ ︷︷ ︸

= 0

= 0.

Therefore, T is an ortho-radial representation. We again use e⃗s
1 as the reference edge in T

and the same connection between relative and normal labels as in Case 1 holds. Let C
be an arbitrary simple essential cycle in T , P1 the path through G1, and P2 the path
through G2. As et

1 is a leg of G1, we know that it must be part of P1 and ℓC(et
1) =

ℓs1 (et
1) = σ(H1) = −1. By the construction of H2 we also know that P2 contains an edge e2

with ℓC(e2) = ℓs2 (e2) > 0. So C is valid and therefore also T is valid.

Case 3: Equation (4.18) holds. We again only discuss the case bl
1 ≥ 2. Then there exists

an orthogonal representation H1 of G1 with σ(H1) = −2 as well as some orthogonal repre-
sentation H2 of G2 with σ(H2) = 0. Let T be the representation of G when combining H1
and H2 with the rotation combination [rs

1, r
t
1, r

s
2, r

t
2] = [0, 0, 1, 1] as shown in Figure 4.14b.

It follows that

rot(fc) = rot(fo) = ℓs1 (et
1)︸ ︷︷ ︸

= σ(H1) = −2

+ rot(et
1, e

t
2)︸ ︷︷ ︸

= 1

− ℓs2 (et
2)︸ ︷︷ ︸

= σ(H2) = 0

+ rot(es
2, e

s
1)︸ ︷︷ ︸

= 1

= 0.

Use ⃗es
2 as the reference edge. Let C be an arbitrary simple essential cycle in T and P1 be the

path taken through G1. From the used rotation combination we know that rot(es
2, e

s
1) = 1,

and this implies ℓC(es
1) = rot(es

2, e
s
1) = 1 and ℓC(et

1) = rot(es
2, e

s
1) + ℓs1 (et

1)︸ ︷︷ ︸
= −2

= −1. There-

fore, C already contains a positively- and negatively-labelled edge in its path through G1
and T must be valid.

Regarding the ” =⇒ ”-direction, we use a proof by contradiction. So assume all equations
do not hold, but there exists a valid ortho-radial representation H of G with reference
edge e∗. Let H1 be the induced orthogonal representation of G1 and H2 the induced
orthogonal representation of G2. Due to Equation (4.16) not being fulfilled, we know that
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sz = 0 for at least one subgraph. With Equation (4.17) not being fulfilled and Lemma 4.13,
the same holds for sl and sr. Using Lemma 4.20, there only exist two possible situations
where this is given. Either [sl

1, s
r
1, s

z
1] = [0, 0, 1] and [sl

2, s
r
2, s

z
2] = [x, y, 0], x, y ∈ N or the

inverse assignment. We only prove the case where [sl
1, s

r
1, s

z
1] = [0, 0, 1], since the other

case follows analogously. From sr
2 > 0 and Equation (4.17) not being fulfilled, it follows

that bl
1 = 0 and therefore σ(H1) ≥ 0. We can calculate the spirality of H2 based on the

spirality of H1 and rot(fc) = 0 to be

σ(H2)
=σ(H2) + rot(et

2, e
t
1)− σ(H1) + rot(es

1, e
s
2)︸ ︷︷ ︸

= − rot(fc) = 0

− rot(et
2, e

t
1)︸ ︷︷ ︸

∈ {−1, 0}

+σ(H1)︸ ︷︷ ︸
≥ 0

− rot(et
2, e

t
1)︸ ︷︷ ︸

∈ {−1, 0}

≥σ(H1). (4.19)

To form a contradiction, we differentiate between the concrete value of σ(H1) and show for
each case that br

2 ≥ 2 in Equation (4.18) would hold.

Case 1: σ(H1) ≥ 2. Then Equation (4.19) directly implies σ(H2) ≥ 2.

Case 2: σ(H1) = 0. As [sl
1, s

r
1, s

z
1] = [0, 0, 1] we know that H1 /∈ Ω+(G1, E1),Ω−(G1, E1)

with E1 being the induced embedding of G1. Therefore, Lemma 4.15 implies that H1 ∈
Ωz(G1, E1). So there exists an st-path P1 through G1 with only zero labels relative to es

1.
Therefore, in any simple essential cycle C containing P1 we know that all edges of P1
have the same, but maybe non-zero, normal label x. With rot(et

1, e
t
2) ≥ 0 we know

that ℓC(et
2) = x as well. No matter the value of x it follows with sz

2 = 0 that C must
contain a positively- and negatively-labelled edge inside the path taken through H2 for C
to be valid. As C was arbitrary, every st-path in H2 must contain a positive and negative
label. Equation (4.19) implies σ(H2) ≥ 0, and the same argumentation as in Lemma 4.14
(only swapping relative labels with normal labels) implies that br

2 ≥ 2.

Case 3: σ(H1) = 1. At first, we bound the relative labels in two special st-paths of G1.
As sl

1 = 0, there must exist an st-path through G1 without a negative relative label. We
call this special path S.

Now assume that in every st-path of G1 an edge e exists with ℓs (e) ≥ 2. Then be-
tween s and every such e there must exist adjacent vertices u, v, w in the current st-path
with rot(uv, vw) = 1. Lemma 4.11 then implies the existence of another orthogonal rep-
resentation H′

1 of G1 with σ(H′
1) = 1 − 1 = 0. But as every st-path only contains one

vertex with a different rotation in H′
1, the relative label of the edge e in each st-path is only

reduced by 1 and therefore still positive. By Definition 4.10, this would imply sr
1 > 0, which

stands in contradiction to [sl
1, s

r
1, s

z
1] = [0, 0, 1]. Therefore, there must exist an st-path

in G1, where every edge has at most a relative label of 1. We call this special st-path T .
With z := ℓ(e⃗s

1) it follows that

ℓ(e⃗) ≥ z, ∀e ∈ S
ℓ(e⃗) ≤ z + 1, ∀e ∈ T

Now given an arbitrary value z, observe that either S or T can not contain negatively- as
well as positively-labelled edges at the same time. Moreover, as σ(H1) = 1, both paths
can also not contain only zero-labelled edges. Using this knowledge, we show that every
st-path in the second graph G2 must contain both a positively- and a negatively-labelled
edge. With the same argumentation as in Lemma 4.14 (only swapping relative labels with
normal labels) this implies that br

2 ≥ 2 and the ” ⇐= ”-direction will be shown. This is
done separately for the following two cases.

Case 3a: z ≥ 0. Then both S and T contain positively-labelled edges, but S does not
contain a negatively-labelled edge. Let P2 be an arbitrary st-path in G2. Then S+P2 forms
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Figure 4.15: A series composition and a parallel composition of two subgraphs G1 and G2,
where G1 already contains the central face. G1 is st-outwards and G2 has no
specific properties.

a simple essential cycle and for this cycle to be valid, P2 must contain a negatively-labelled
edge. For the edge et

2 ∈ P2, we also know that

ℓC(et
2) = ℓC(et

1) + rot(et
1, e

t
2) ≥ ℓC(et

1) = ℓC(es
1)︸ ︷︷ ︸

= z ≥ 0

+ ℓes
1

(et
1)︸ ︷︷ ︸

= 1

≥ 1.

Therefore, P2 also contains the positively-labelled edge et
2. As P2 was arbitrary, every

st-path of G2 contains a positively- and a negatively-labelled edge.

Case 3b: z < 0. Then both S and T contain negatively-labelled edges, but T does not
contain a positively-labelled edge. Let P2 be an arbitrary st-path in G2. Then T +P2 forms
a simple essential cycle and for this cycle to be valid, P2 must contain a negatively-labelled
edge. For the edge es

2 ∈ P2 we also know that

ℓC(es
2) ≤ ℓC(es

1) = z < 0.

Therefore, P2 also contains the negative edge es
2 and as P2 was arbitrary every st-path

of G2 must contain a negatively- and a positively-labelled edge.

Finally, we would have to show that if a valid ortho-radial representation exists, then there
also exists one which is st-outwards. But if such a representation exists, the ” =⇒ ”-direction
implies that one of Equations (4.16) to (4.18) holds. And due to the ”⇐= ”-direction already
constructing an st-outwards representation in any case, this fact is already proven.

After creating the initial valid ortho-radial representation around the central face, extending
the representation is trivial as the following lemma shows.

Lemma 4.24. Let ϕ be an inner node where one of its children contains fc and is ortho-
linear plane while the other child-node is rectilinear-plane. Then a valid ortho-radial
representation of ϕ exists that is also st-outwards.

Proof. Let ϕ1 and ϕ2 be the child nodes of ϕ and without loss of generality let ϕ1 be
the node still containing fc. We make a proof by induction over the depth n of the
marked P-node in the subtree rooted at the child ϕ1. For the base case n = 1 we know
that ϕ1 is actually the marked P-node. We make a case distinction over the type of the
node ϕ.

Case 1: ϕ is an S-node. From Lemma 4.23 we know that an st-outwards valid ortho-radial
representation for ϕ1 exists. As an orthogonal representation with spirality 0 exists for the
other child node, the combination of these two representations still results in an st-outwards
valid ortho-radial representation. Figure 4.15 shows this in an abstract view.
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Case 2: ϕ is a P-node. From Lemma 4.23 we know that ϕ1 admits an st-outwards valid
ortho-radial representation. We also know that an orthogonal representation H2 of ϕ2 exists
with σ(H2) = 0. By using a rotation combination of [−1,−1, 0, 0] as shown in Figure 4.15,
one can combine both representations into one ortho-radial representation T of G as the
newly created face has rotation 4. Every newly created simple essential cycle C in T has
to pass through the outwards directed edges of G1, one of which has a positive label in C,
while the other one has a negative label. Therefore, T is valid. As the legs of ϕ also point
radially outwards, the representation is st-outwards.

The inductive case for n > 1 follows analogously to the base case, only here we use the
induction hypothesis instead of Lemma 4.23 to imply an st-outwards valid ortho-radial
representation of the child ϕ1.

Combining the individual results about constructing a valid ortho-radial representation for
2-legged SP-graphs yields the following result.

Theorem 4.25. Given a 2-legged series-parallel plane 3-graph (G, E), a fixed outer face fo,
and a fixed inner face fc, a valid ortho-radial representation of G, if one exists, can be
found in O(n) time.

Proof. The creation of a decomposition tree of G is possible in linear time and let ϕ be
the node where fc is formed. Applying, based on the type of node, either Lemma 4.17
or Lemma 4.19 at each sub-node of ϕ results in either a structure for every sub-node
or in one parallel-node not fulfilling the condition in Lemma 4.19. If this condition is
not fulfilled, it is immediately clear that no ortho-radial representation for the graph G
can exist. Conversely, if every parallel node fulfills the condition, Lemma 4.23 states the
requirements for a valid ortho-radial representation of ϕ. If these are also met, then there
exists a valid ortho-radial representation for ϕ and Lemma 4.24 implies that then also
a valid ortho-radial representation for G exists. As the size of the decomposition tree is
linear to the size of G and each node only takes constant time to compute the structure
and check the conditions, the tree can be traversed in linear time.

The valid ortho-radial representation can then be computed via a second top-down recursion
over the decomposition tree, where each aforementioned result states how an orthogonal or
valid ortho-radial representation with the required properties can be constructed and, in
turn, what properties the representations of their child-nodes require to do so.

4.1.3 Finding Bend-Minimum Ortho-Radial Representations

Theorem 4.25 states that a valid ortho-radial representation for a given 2-legged SP-graph G
can be computed in linear time, provided one exists. In the case that no valid ortho-radial
representation exists, we now find the minimum number of bends that have to be added
to G to allow a valid ortho-radial representation. Bends are added by adding special
bend-vertices to edges in G. These allow an edge to artificially bend, while the results
of the previous section can still be used. Figure 4.16 shows an example of a graph that
only admits a valid ortho-radial representation if a bend-vertex is added. The modified
decomposition tree includes the bend-vertex via a new S-node.

Lemma 4.26. Let (G, E) be a 2-legged series-parallel plane 3-graph, let T be a decomposition
tree of G, and let H be a graph obtained by adding a single bend-vertex at an arbitrary edge e
in G. Then there exists a decomposition tree TH of H obtained by adding a series-connection
with a new D-node at a specific point in the decomposition tree T .
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Figure 4.16: On the left, a 2-legged SP-graph without a valid ortho-radial representation,
as the left-most face is a triangle, and the decomposition tree of the graph.
Adding the blue bend-vertex to the red edge makes the graph admit the valid
representation shown on the right. The second decomposition tree includes
an S-node and a D-node representing the bend-vertex.
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Figure 4.17: On the left, a 2-legged SP-graph where the conditions in Lemma 4.23 are not
fulfilled. When adding the blue bend-vertex to the red edge, the graph admits
the valid ortho-radial representation shown on the right.

Proof. Let ϕ be the node furthest down in T that still contains the edge e in its induced
subgraph Gϕ. Then e must be a leg of Gϕ. The additional bend vertex in H can be
represented by a series-composition of ϕ with a new D-node. The order of this series
composition depends on whether e is incident to the starting or end terminal. Let ψ be
a S-node representing this series-composition. By replacing ϕ with ψ the resulting tree is a
decomposition tree of H.

There are two places in the construction where extra bend-vertices may be required. First
in Lemma 4.19, where the condition for a P-node forming an orthogonal representation
may not be met (see Figure 4.16), and second in Lemma 4.23, where the central face is
formed and a condition ensures that created essential cycles are valid.
Regarding Lemma 4.23, Figure 4.17 shows an example of a graph not fulfilling the condition
of the lemma and how the addition of a bend-vertex makes the graph admit a valid ortho-
radial representation. The following lemma states that in this case a single bend-vertex is
always enough so that the node admits a valid ortho-radial representation.

Lemma 4.27. Let ϕ be a P-node at which the face fc should be created and where its
children ϕ1 and ϕ2 both are rectilinear-plane. If all the conditions in Lemma 4.23 do
not hold and therefore no valid ortho-radial representation exists, the addition of a single
bend-vertex is enough so that ϕ admits a valid ortho-radial representation.

Proof. Let G1 and G2 be the induced subgraphs of ϕ1 and ϕ2, respectively. Due to the
conditions in Lemma 4.23 not being met, we know that one subgraph has the step val-
ues [sl

a, s
r
a, s

z
a] = [0, 0, 1] and the other subgraph has the values [sl

b, s
r
b , s

z
b ] = [x, y, 0], x, y ∈ N.
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Figure 4.18: On the left, a 2-legged SP-graph where the condition in Lemma 4.19 is not
fulfilled and a bend-vertex must be added. On the right, two orthogonal
representations with a bend-vertex on the edges v or u. The zero and left step
values depends on where the bend-vertex is placed.

Without loss of generality, let a = 1 and b = 2. As ϕ admits no valid ortho-radial represen-
tation, we also know with Equation (4.17) that bl

1 = 0. The addition of a bend-vertex at
one of the legs of ϕ1 increases bl

1 to 1. This is enough to fulfill the condition bl
1 ≥ 0∧ sr

2 > 0
in Equation (4.17) and the existence of a valid ortho-radial representation follows.

Regarding Lemma 4.19, assume we encounter a P-node ϕ not containing fc for which the
condition br

1 + bl
2 ≥ 2 does not hold. Then the addition of 2− br

1 − bl
2 bend vertices along

some edges would be the minimum required amount such that an orthogonal representation
for ϕ exists. But one has to decide where to put these bend vertices. In general, meaning
series-parallel 4-graphs, this is not trivial to decide [DKLO22]. As both children are
2-legged though, there always exist the legs of each child, which can be selected for bending.
The problem however is that the distribution of bend-vertices could influence the step
values of ϕ, which at a later recursion step may be important. For example, the optimal
left step value may only be achievable if the bend-vertex is added at one specific edge,
possibly somewhere inside the graph. In general, these placements also differ per value and
one would have to move the bend-vertices to the optimal place according to the desired
properties of the representation. Figure 4.18 shows a situation where a zero step value of 1
is only achievable when placing the bend-vertex on the edge v while a left step value of 1 is
only achievable when placing the bend-vertex on the edge u. We now show that one does
not have to check every edge in the graph when adding bend-vertices. Rather, it is enough
to only consider the four legs of the children of ϕ.

First up, we show that placing bend-vertices on the legs of a graph results in the highest
possible bend and step values. Afterwards, we use this knowledge to calculate the structure
of a P-node including bend-vertices.

Lemma 4.28. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph and let H
be the graph obtained by adding a single bend-vertex at an arbitrary edge e in G. Then
there exists a graph F which is obtained by instead adding the bend-vertex at a leg of G so
that the bend values as well as the left and right step values of H are smaller or equal to
those of F .

Proof. Let T be the decomposition tree of G and let TH be the decomposition tree of H
from Lemma 4.26. The newly added D-node has the structure [bl, br, sl, sr, sz] = [1, 1, 0, 0, 1]
where its bend values are both 1 and the left and right step values are both 0. The linearity
of the equations in Lemma 4.17 and Lemma 4.19 imply that the bend and step values of
the root of TH, and therefore of H, are at most by 1 greater than the ones of G.
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What is left to show is that the addition of a bend-vertex at one of the legs of G increases
these values by at least 1. We again represent this bend-vertex by a series-composition
of G with a D-node. No matter on which leg the bend-vertex is placed, we know due
to Lemma 4.17 that the bend values of this new graph always increase by 1. To get the
same result for the left and right step values, one has to pick a specific leg for bending.
Let sl

G, b
r
G, and bl

G be the left step as well as the bend values of G. We distinguish between
two cases.

Case 1: bl
G > 0. Then Equation (4.3) in Lemma 4.17 implies that the addition of a bend

vertex at the leg et results in a graph F with left step value sl
F ≥ sl

G + 1.

Case 2: br
G ≥ 0. We can assume that bl

G = 0 and due to Lemma 4.13, sl
G = 0 follows.

Then Equation (4.2) in Lemma 4.17 implies that the addition of a bend vertex at the leg es

results in a graph F with left step value sl
F ≥ br

G ≥ sl
G + 1.

Proving the same fact for the right step value of F works analogous.

Lemma 4.29. Let ϕ be an inner P-node not containing fc for which

br
1 + bl

2 < 2.

Then 2 − br
1 − bl

2 bend-vertices have to be added to realize an orthogonal representation
for ϕ. To calculate the structure for ϕ including these bend-vertices, it is enough to look at
all distributions of the bend-vertices on es

1, e
t
1, e

s
2, e

t
2 and take per bend and step value the

highest one over all distributions.

Proof. According to Lemma 4.28, the addition of a bend-vertex on one of the leg of a
child-graph always increases its bend values by one. Then 2 − br

1 − bl
2 bend-vertices are

enough to fulfill the condition br
1 + bl

2 ≥ 2.

Regarding the calculation of the structure of ϕ, Lemma 4.28 shows that for the child nodes
all values in the structure except sz assume their highest value if the bend-vertices are
placed at their legs. Therefore, only the distribution of bend-vertices to es

1, e
t
1, e

s
2, e

t
2 have

to be considered. Note that the exclusion of sz in Lemma 4.28 is not a problem as even
if a bend-vertex would increase the zero step value of a child, then only an orthogonal
representation of the child with spirality 0 would benefit from this increase. But these
bend-vertices are explicitly added to increase the spirality of the child nodes representation
so that an orthogonal representation of the parallel composition exists in the first place.
Therefore, an orthogonal representation of the child with spirality 0 can never be used in
the construction.

We know that the number of edges to add is at most two, and so there are at most 16
different distributions to check. Per distribution, the step values can be computed via
Lemma 4.17 by combining each child serially with a D-node per bend-vertex. In total, we
form the following result.

Theorem 4.30. Given a 2-legged series-parallel plane 3-graph (G, E), a fixed outer face fo,
and a fixed inner face fc, a bend-minimum valid ortho-radial representation of G if one
exists, can be found in O(n) time.

Proof. The same approach as described in Theorem 4.25 can be used. The difference is that
if a node in the recursion does not fulfill the conditions, one has to add bend-vertices as
described in Lemma 4.29 and Lemma 4.27. In both situations, the addition of bend-vertices
and the calculation of the structure of these nodes only take constant time.
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What is left to prove is that the resulting ortho-radial representation is actually bend-
minimum. For this, we define for a given node ϕ in the decomposition tree B(ϕ) to be the
number of bend-vertices added by Lemmas 4.27 and 4.29 in the recursion up to ϕ. Moreover,
for an arbitrary valid ortho-radial representation T with bend-vertices we define b(T ) to be
the number of bend-vertices specifically added in T . Let ϕ be a node in the decomposition
tree of G. We now prove by induction over the depth of the subtree n rooted at ϕ
that B(ϕ) = b(T min

ϕ ), where T min
ϕ is a bend-minimum valid ortho-radial representation of

the induced subgraph of ϕ. This implies that once the recursion has reached the root τ ,
the budget B(τ) equals the minimum number of bends required for a valid ortho-radial
representation of the whole graph G.

Base case: If n = 1, then ϕ is a leaf node and B(ϕ) = 0 = b(T min
ϕ ), so the statement is

trivial.

Inductive case: Let n > 1 and assume that the statement holds for all k < n. Then ϕ is
a node of T that is not a leaf and denote by ϕ1 and ϕ2 the children of ϕ. The subtrees
of the two children have depth at most n − 1, so the induction hypothesis implies that
both B(ϕ1) = b(T min

ϕ1
) and B(ϕ2) = b(T min

ϕ2
). We also know that B(ϕ) = B(ϕ1) +B(ϕ2) + bϕ

where bϕ are the number of bends in the construction that are used at the node ϕ to
realize a valid ortho-radial representation. Let T min

ϕ be a bend-minimum valid ortho-radial
representation of ϕ and let T1 as well as T2 be the induced valid ortho-radial representation
of ϕ1 and ϕ2.

From the inductive hypothesis we know that b(T1) ≥ B(ϕ1) and b(T2) ≥ B(ϕ2). In actuality,
as T1 and T2 are the induced representations of the whole representation T , they may
have more bend-vertices than would be necessary for each subgraph on its own. So
let 0 ≤ m1 = b(T1) − B(ϕ1) and 0 ≤ m2 = b(T2) − B(ϕ2). We now show bϕ ≤ m1 + m2
since this then implies that

B(ϕ) = B(ϕ1) + B(ϕ2) + bϕ ≤ b(T1) + b(T2) = b(T min
ϕ ).

If, according to the construction, no bend-vertices have to be added at ϕ, we have bϕ = 0
and the inequality trivially holds. In the case where bϕ > 0, Lemma 4.27 and Lemma 4.29
show that if fewer than bϕ bend-vertices are added to the already existing bend-vertices
in ϕ1 and ϕ2, no valid ortho-radial representation of ϕ exists. This would be a contradiction
to the existence of T min

ϕ . This proves B(ϕ) ≤ b(T min
ϕ ), and as B(ϕ) ≥ b(T min

ϕ ) holds by
definition, equality follows.

4.2 Non-st-Outwards Ortho-Radial Representations
In Section 4.3 it will be necessary to also find ortho-radial representations for 2-legged
series-parallel 3-graphs that are not st-outwards, but have their legs pointing in other
directions. To create such representations, Lemmas 4.23 and 4.24 have to be adapted.
The first step is to generalize the notion of step values for orthogonal representations,
because in non-st-outwards ortho-radial representations more properties are required of
their subgraphs.

4.2.1 General Step Values

Section 4.1 introduces the notion of step values, which are used to ensure the existence of
edges with desired labels. For this, the left and right step value sl and sr measures how
much a representation of the graph can bend in one direction, while having at least one
edge per st-path that is bent into the opposite direction. The zero step value sz indicates
if an orthogonal representation exists with an st-path that only has relative label 0. We
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Figure 4.19: A 2-legged SP-graph and examples of orthogonal representations implying the
step value expressions below each representation.

now generalize the left and right step values into a combined step value s, and also add a
new step value slr.

The step values sl and sr only ensure that an edge e in every st-path exists with relative
label ℓs (e) < 0 or ℓs (e) > 0, but gives no indication of what the actual relative label of e
may be. The new step value includes a parameter indicating the required relative label
for e.

Definition 4.31. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph. We
define the bend step value s : Z→ 2Z as a function for which the following holds.

x ∈ s(y) ⇐⇒ ∃ H ∈ Ω(G, E) : σ(H) = x, ∀ P ∈ Pst(G) : ∃ e ∈ P : ℓs (e) = y

The expression x ∈ s(y) is called a step value expression.

If x ∈ s(y) for some x, y ∈ Z then there exists an orthogonal representation, where every
st-path first contains an edge with relative label y before resulting in a total spirality of x.
See Figure 4.19 for some examples of step value expressions and matching representations.
The following lemma shows how some step value expressions imply others. For better
clarity, we use the definition of signed intervals [x, y]s.

Lemma 4.32. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph with bend
step value s. Then the following statements hold.

x ∈ s(y) =⇒ x ∈ s(y′) ∀ y′ ∈ [0, y]s (4.20)
x ∈ s(y) =⇒ x ∈ s(y′) ∀ y′ ∈ [0, x]s (4.21)
x ∈ s(y) =⇒ x′ ∈ s(y) ∀ x′ ∈ [x, y]s (4.22)
x ∈ s(y) =⇒ x− z ∈ s(y − z) ∀ z ∈ [0, y]s (4.23)

Proof. For Equation (4.20), the step value expression x ∈ s(y) implies the existence of an
orthogonal representation H with ℓs (e) = y for some edge in every st-path. Along such an
st-path there must exist edges between es and e having any relative label between 0 and y.
This directly implies x ∈ s(y′) for y′ ∈ [0, y]s.

Regarding Equation (4.21), the step value expression x ∈ s(y) implies an orthogonal
representation H with ℓs (et) = σ(H) = x. Along every st-path there must exist edges with
all values between 0 and x. This directly implies x ∈ s(y′) for y′ ∈ [0, x]s.

For Equation (4.22), let, without loss of generality, x < y. We show this fact for x′ = x+ 1
and the statement follows from iteration. Because x ∈ s(y) holds, there exists an orthogonal
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Figure 4.20: A graph with two pairs of orthogonal representations. The existence of the
left representation in each pair implies the existence of the right. The blue
vertex v changes its rotation in the path between the representations.

representationH ofG with σ(H) = x such that every st-path contains an edge e with ℓs (e) =
y > x. So there must exist vertices u, v, w along every st-path between every such edge e
and et with rot(uv, vw) = −1. See Figure 4.20a for an example. Lemma 4.11 then implies
the existence of another orthogonal representation H′ with σ(H′) = σ(H) + 1 = x+ 1 = x′.
Moreover, H′ and H only differ in its rotation at each vertex v and for every edge e it still
holds that ℓs (e) = y. The existence of H′ then implies z ∈ s(y).
For Equation (4.23), let, without loss of generality, y < 0. We show this fact for z =
−1 and the statement follows from iteration. Because x ∈ s(y) holds, there exists an
orthogonal representation H of G with σ(H) = x such that every st-path contains an edge e
with ℓs (e) = y < 0. So there must exist vertices u, v, w along every st-path between es and e
with rot(uv, vw) = −1. See Figure 4.20b for an example. Lemma 4.11 then implies the
existence of another orthogonal representation H′ with σ(H′) = σ(H) + 1 = x+ 1 = x− z.
Moreover, H′ and H only differ in its rotation at each vertex v, and for every edge e it holds
that ℓs (e) = ℓs (e)+1 = y+1 = y−z. The existence of H′ then implies x−z ∈ s(y−z).

Lemma 4.32 directly implies that s(y) is an interval for every y ∈ Z as well as x ≤ sl ∀ x ∈
s(−1) and x ≥ −sr ∀ x ∈ s(1). It also holds that s(0) = [−bl, br]. The bend step value
therefore also represents the old bend values bl, br. We will from now on use x ∈ s(0)
instead of x ≤ br, bl.
The old step values sl and sr as well as the new bend step value s only imply the existence
of one edge with a given relative label. The condition for a valid ortho-radial representation
requires an edge with a positive and with a negative relative label, though. Oftentimes,
the spirality x implied by the step value expression x ∈ s(y) is enough to also imply an
edge of the opposite sign, but if x = 0, this may not always work. We therefore introduce a
new step value which indicates that both a positive and a negative relative label is present,
while the representation has spirality 0.

Definition 4.33. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph. We
define the left-right step value slr as

slr =
{

1 if ∃ H ∈ Ω(G, E) : σ(H) = 0, ∀P ∈ Pst(G) : ∃ e, e′ ∈ P : ℓs (e) < 0, ℓs (e′) > 0
0 otherwise.

The following lemma shows how a left-right step value slr = 1 implies other step value
expressions.
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Figure 4.21: Two series-compositions resulting in the step value expression 2 ∈ s(−2), but
with different properties of the subgraphs G1 and G2.

Lemma 4.34. Let (G, E) be a 2-legged rectilinear-plane series-parallel 3-graph with slr = 1.
Then 0 ∈ s(1), 0 ∈ s(−1), as well as 2,−2 ∈ s(0) follows.

Proof. If slr = 1, then there exists an orthogonal representation H of G with σ(H) = 0
and edges with a positive as well as a negative relative label in every st-path. These edges
have at least relative label 1 and −1, respectively. 0 ∈ s(−1) and 0 ∈ s(1) then follows
directly from Definition 4.31. 2,−2 ∈ s(0) follows from Lemma 4.14.

Having both new step values defined, we now adapt the structure of an orthogonal repre-
sentation to be simply [s, sz, slr] instead of [bl, br, sl, sr, sz] . Each Q-node has the struc-
ture [sQ, 1, 0] with sQ(0) = {0} and each D-node has the structure [sD, 1, 0] with sD(0) =
{0, 1}. We now show analogous to Section 4.1 how the bend step value and left-right step
value of inner nodes are dependent on the ones of their child nodes. To more easily describe
this correlation, we use the + operator between sets to mean A+B := {a+b | a ∈ A, b ∈ B}.

Lemma 4.35. Let ϕ be an S-node not containing fc where its children ϕ1 and ϕ2 both are
rectilinear-plane. Also, let [s1, s

z
1, s

lr
1 ] be the structure of ϕ1 and [s2, s

z
2, s

lr
2 ] be the structure

of ϕ2. Then the bend step value s and the left-right step value slr of ϕ satisfy the following.

s(y) =
( ⋃

i∈[0,y)s

(s1(0) ∩ {i}) + s2(y − i)
)
∪ s1(y) + s2(0) (4.24)

slr = 1 ⇐⇒
∨


slr

1 = 1, slr
2 = 1,

0 ∈ s1(−i) ∧ 0 ∈ s2(i) for i ∈ {−1, 1},
i ∈ s1(0) ∧ −i ∈ s2(−2i) for i ∈ {−1, 1},
i ∈ s1(−i) ∧ −i ∈ s2(0) for i ∈ {−1, 1}

(4.25)

Proof. Let G be the induced graph of ϕ, G1 be the induced subgraph of ϕ1, and G2 the
induced subgraph of ϕ2. Also let s1, t1 be the terminals of G1, s2, t2 be the terminals of G2,
and es

1, e
s
2, e

t
1, e

t
2 be the legs of G1 and G2.

We start with Equation (4.24) and first show the ”⊇”-direction. Let y ∈ Z and first
let i ∈ [0, y)s such that z ∈ (s1(0) ∩ {i}) + s2(y − i). For s1(0) ∩ {i} to not be the
empty set, i ∈ s1(0) must hold and for z to be in the whole set it follows that z − i ∈
s2(y − i). Then there exists an orthogonal representation H1 of G1 with σ(H1) = i and
an orthogonal representation H2 of G2 with σ(H1) = z − i where in every st-path an
edge e exists with ℓs2 (e) = y − i. Let H be the orthogonal representation of G obtained
by combining H1 and H2. Figure 4.21a shows this for i = −1 and 3 ∈ s2(−1) resulting
in the step value expression 2 ∈ s(−2). Then every edge e from above now has relative
label ℓs (e) = σ(H1) + ℓs2 (e) = i + y − i = y and H has spirality σ(H) = i + z − i = z.
This implies z ∈ s(y). Second, assume z ∈ s1(y) + s2(0). Then there exists an orthogonal
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Figure 4.22: Ways of creating a left-right step value slr = 1 in a series composition of two
subgraphs G1 and G2.

representation H1 of G1 with σ(H1) = x and an edge e in every st-path with ℓs1 (e) = y,
as well as an orthogonal representation H2 of G2 with σ(H2) = z − x. The combined
representation has spirality z, and the relative labels of edges e from above stay the same.
This also implies z ∈ s(y). This situation is depicted in Figure 4.21b, where −1 ∈ s1(−2)
and 3 ∈ s2(0) results in 2 ∈ s(−2).

Now to the ”⊆”-direction of Equation (4.24). Without loss of generality, let y ≤ 0 and
let z ∈ s(y). Then there exists an orthogonal representation H of G with σ(H) = z and
an edge e in every st-path with ℓs (e) = y. Let H1 and H2 be the induced orthogonal
representations of G1 and G2, and let i := σ(H1) and therefore σ(H2) = z − i. There are
two possible cases.

Case 1: Every st-path in G1 already contains an edge with y = ℓs (e) = ℓs1 (e). This
implies i ∈ s1(y). The existence ofH2 also implies z−i ∈ s2(0) and therefore z ∈ s1(y)+s2(0)
follows.

Case 2: There exists an st-path P1 in G1, such that y < ℓs (e) = ℓs1 (e) for all e ∈ P1.
This also implies i ∈ [0, y)s. Now assume that z − i /∈ s2(y − i) would hold. Then there
exists a path P2 through G2 such that y− i < ℓs2 (e) for all e ∈ P2. The path P = P1 + P2
then is an st-path of G, and it holds for all e ∈ P that

ℓs (e) =
{
ℓs1 (e) > y if e ∈ G1,

σ(H1) + ℓs2 (e) > i+ y − i = y otherwise.

This is a contradiction to z ∈ s(y). So z− i ∈ s2(y − i) must hold. As σ(H1) = i, it follows
that z ∈ (s1(0) ∩ {i}) + s2(y − i).

Now to Equation (4.25) where we start with the ”⇐= ”-direction. If slr
1 = 1 or slr

2 = 1, it
is obvious that also slr = 1 since there always exists an orthogonal representation of the
other subgraph with spirality 0 as for example in Figure 4.22a. Without loss of generality,
let i = 1 and let H1 and H2 be such that one of the other conditions hold, and let H be
the combined orthogonal representation of G.

If 0 ∈ s1(i) and 0 ∈ s2(−i), then there exist edges e in every st-path of G1 with ℓs (e) =
ℓs1 (e) = i and there exist edges e′ in every st-path of G2 with ℓs (e′) = σ(H1)+ℓs2 (e′) = −i.
So in H every st-path has a positive relative label in G1 and a negative relative label in G2
as seen in Figure 4.22b. Finally, σ(H) = 0 + 0 = 0 implies slr = 1.

If i ∈ s1(0), then ℓs (et) = σ(H1) = i and with −i ∈ s2(−2i) there exists an edge in every
st-path of G2 with ℓs (e) = σ(H1) + ℓs2 (e) = i− 2i = −1. See Figure 4.22c for an example.
Due to σ(H) = i− i = 0, slr = 1 follows.
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Figure 4.23: On the left, two orthogonal representations of the graphs G1 and G2 rep-
resenting the shown step value expressions. On the right, an orthogonal
representation of the parallel-composition of G1 and G2 and its implying step
value expression using the representations on the left.

Finally, if i ∈ s1(−i) holds (see Figure 4.22d), then ℓs (et) = σ(H1) = 1 and there exists an
edge e every st-path of G1 with ℓs (e) = ℓs1 (e) = −1. With −i ∈ s2(0), also σ(H) = i−i = 0
holds and slr = 1 follows.

For the ” =⇒ ”-direction, assume slr = 1. Then there exists an orthogonal representation
of G having spirality 0 with a positive and a negative relative label in every path. When
looking at which of these labels are contained in which subgraph, the situation never arises
where two st-paths P and P ′ exist, such that P only has negative relative labels in G1
and P ′ only has negative relative labels in G2. Because then there exists a third st-path
created by the parts of P and P ′ not containing a negative relative label, which now in
total would not contain a negative relative label as well. This is a contradiction to slr = 1
and the same argumentation holds for positive instead of negative relative labels. Due
to this, at least G1 or G2 must have a positive or negative relative label in every of its
st-paths and depending on which subgraph contains which relative label, we deduce one of
the four conditions. We now make a case distinction.

Case 1: σ(H1) = 0. Then σ(H2) = 0 so that H has the spirality 0. If now G1 also contains
both a positive and negative relative label in every st-path, slr

1 = 1 follows, while if G2
contains both a positive and a negative relative label in every st-path, slr

2 = 1.

If G1 contains relative labels of one sign in every st-path but not of the other, then 0 ∈ s1(i)
holds with i ∈ {1,−1}, depending on which sign is present. To still have slr = 1, G2 must
contain relative labels of the opposite sign in every st-path, which implies 0 ∈ s2(−i).

Case 2: σ(H1) = x < 0. Then σ(H2) = −x for H to have spirality 0. If now G1 also
contains a positive relative label in every st-path, then x ∈ s1(1), which with Lemma 4.32
also implies −1 ∈ s1(1). Due to σ(H2) = −x, we also know from Lemma 4.32 that at
least 1 ∈ s2(0). With i = −1 we now have i ∈ s1(−i) and −i ∈ s2(0).

If G2 contains a positive relative label in every st-path then for every edge e in G2
with ℓs (e) = 1 we know ℓs2 (e) = −σ(H1) + ℓs (e) = −x+ 1. This implies −x ∈ s2(−x+ 1)
and 1 ∈ s2(2) follows from Equation (4.23) with z = −x− 1. Due to σ(H1) = x, we also
know from Lemma 4.32 that at least −1 ∈ s1(0) and with i = −1 we now have i ∈ s1(0)
and −i ∈ s2(−2i).

Case 3: σ(H1) > 0, the same argumentation as in Case 2 implies with i = 1 that i ∈ s1(−i)
and −i ∈ s2(0), as well as i ∈ s1(0) and −i ∈ s2(−2i).
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Lemma 4.36. Let ϕ be a rectilinear-plane P-node not containing fc with its two children ϕ1
and ϕ2 having structures [s1, s

z
1, s

lr
1 ] and [s2, s

z
2, s

lr
2 ], respectively. Then the bend step value s

and the left-right step value slr of ϕ satisfy the following.

s(0) =
[
min

(
(s1(0)− 2) ∩ s2(0)

)
,max

(
s1(0) ∩ (s2(0) + 2)

)]

x ∈ (y) ⇐⇒


x ∈ s(0) if y ∈ [0, x]s, (4.26)
x ∈ (s1(y + 1)− 1) ∩ (s2(y) + 1) if y /∈ [0, x]s ∧ y < 0, (4.27)
x ∈ (s1(y)− 1) ∩ (s2(y − 1) + 1) if y /∈ [0, x]s ∧ y > 0 (4.28)

slr = 1 ⇐⇒ 2 ∈ s1(0) ∧ −2 ∈ s2(0)

Proof. Let G be the induced graph of ϕ, G1 be the induced subgraph of ϕ1, and G2 the
induced subgraph of ϕ2. Also let s1, t1 be the terminals of G1 and s2, t2 the terminals of G2
as well as es

1, e
s
2, e

t
1, e

t
2 be the legs of G1 and G2.

We start with the bend step value s and let y ∈ Z. Equality for y = 0 is a direct
implication of Lemma 4.19 and Term (4.26) follows from Equation (4.21). We show both
directions for Term (4.27) separately, and we start with the ”⊇”-direction. So let y < 0
and let x ∈ (s1(y + 1)− 1)∩ (s2(y) + 1). Then there exists an orthogonal representation H1
of G1 with σ(H1) = x+ 1 and an edge in every st-path with ℓs1 (e) = y + 1, as well as an
orthogonal representation H2 of G2 with σ(H2) = x − 1 and an edge e in every st-path
with ℓs2 (e) = y. Figure 4.23 depicts the orthogonal representations of G1 and G2 for the
case 2 ∈ s(−2). Using a rotation combination of [rs

1, r
s
2, r

t
1, r

t
2] = [−1, 0, 0, 1] results in a

combined orthogonal representation H of G, as the rotation of the newly created face f
between G1 and G2 is

rot(f) = rot(es
2, e

s
1)︸ ︷︷ ︸

= 1

+σ(H1)− σ(H2) + rot(et
1, e

t
2)︸ ︷︷ ︸

= 1

= 1 + x+ 1− (x− 1) + 1 = 4.

The spirality of H is then σ(H) = rs
1 +σ(H1)+rt

1 = −1+x+1+0 = x. Moreover, for every
edge e in G1 with ℓs1 (e) = y + 1 it now follows that ℓs (e) = rs

1 + ℓs1 (e) = −1 + y + 1 = y
and for every edge e in G2 with ℓs2 (e) = y it follows that ℓs (e) = rs

2 + ℓs2 (e) = y. In total,
this implies x ∈ s(y). The proof of the ”⊇”-direction for Term (4.28) follows analogously,
only here the rotation combination [rs

1, r
s
2, r

t
1, r

t
2] = [0, 1,−1, 0] is used.

For the ”⊆”-direction of Term (4.27), let x ∈ s(y) and again let y < 0. Then there
exists an orthogonal representation H of G with σ(H) = x and an edge e in every st-path
having ℓs (e) = y with y /∈ [0, x]s. This implies x > y. As ℓs (es) = 0 and ℓs (et) = x,
the edges with relative label y must be present in G1 and G2. Relative to es

1 and es
2

these edges have the labels ℓs1 (e) = ℓs (e) − rs
1 = y − rs

1 and ℓs2 (e) = ℓs (e) − rs
2 =

y − rs
2. With H1 and H2 being the induced orthogonal representations of G1 and G2, we

know x−rs
1−rt

1 = σ(H1) ∈ s1(y − rs
1). Equations (4.20) and (4.23) with rs

1, r
t
1 ∈ {−1, 0} first

imply x−rt
1 +1 ∈ s1(y + 1) and finally x+1 ∈ s1(y + 1). Similarly, x−rs

2−rt
2 ∈ s2(y − rs

2)
implies with Equations (4.22) and (4.23) as well as rs

2, r
t
2 ∈ {0, 1} that x− 1 ∈ s2(y). In

total, x ∈ (s1(y + 1)−1)∩(s2(y)+1) follows. The proof for Term (4.28) follows analogously.

Now on to the equivalence proof for slr = 1. For the ” ⇐= ”-direction, let H1 be an
orthogonal representation of G1 with σ(H1) = 2 and let H2 be an orthogonal representation
of G2 with σ(H2) = −2. Using rotation combination rs

1 = rt
1 = −1 and rs

2 = rt
2 = 1 results

in an orthogonal representation H of G, as the rotation of the new face f is rot(f) =
σ(H1)− σ(H2) + 0 = 2− 2 = 4. Moreover, σ(H) = −1 + σ(H1)− 1 = 0 and every st-path
in G has to either traverse es

1 and et
1 or es

2 and et
2 for which ℓs (es

1) = rs
1 = −1, ℓs (et

1) =
−rt

1 = 1, ℓs (es
2) = rs

2 = 1, and ℓs (et
2) = −rt

2 = −1 hold. The existence of H implies slr = 1.
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P1

Q1

es
P3

Q3

et

P2

Q2

RP

RC

RQ

rP

rQ

rcC ′

Figure 4.24: A series-parallel 3-graph with two st-paths P and Q surrounding the central
face. The simple cycle C ′ is formed by the subpaths P2 and ⃗Q2. The three
rotations RP , RQ, RC as well as rP , rQ, rC form a total rotation of −2.

For the ” =⇒ ”-direction, let slr = 1 and let H be an orthogonal representation of G
with spirality 0 containing both a positive and a negative relative label in every st-path.
As ℓs (es

1) = 0 and ℓs (et
1) = σ(H) = 0, these labels must be present in G1 and G2. If rs

1 is 0,
then these edges also have the same labels relative to es

1, and Lemma 4.14 implies br
1 ≥ 2

and therefore 2 ∈ s1(0). If rs
1 is −1, then σ(H1) ≥ 1 and every edge e with ℓs (e) ≥ 1

now has ℓs1 (e) = ℓs (e) − rs
1 ≥ 2. So 1 ∈ s1(2), which implies 2 ∈ s1(0). With the same

argumentation using G2, also −2 ∈ s2(0) follows.

Different to Section 4.1, the structure of a graph now not only contains simple bounds, but
the more complex bend step value s. This changes the runtime of computing a structure.

Lemma 4.37. Given a 2-legged series-parallel rectilinear-plane 3-graph G, a struc-
ture [s, sz, slr] of G can be computed in O(n2) time.

Proof. A decomposition tree of G can be computed in linear time with O(n) nodes. Per
inner node ϕ, the calculation of [sϕ, s

z
ϕ, s

lr
ϕ ] takes constant time for the zero step value sz

and the left-right step value slr. The time taken for calculating the bend step value s
can be bounded by the number of sets in the codomain of s not being the empty set. As
the in absolute terms highest relative label is proportional to the number of vertices n at
which the label may change, s can be represented by at most 2n sets that according to
Lemma 4.32 are intervals. By only calculating the bounds of each interval in Lemmas 4.35
and 4.36, the bend step value s can be calculated in O(n) time. In total, the structure
of G can then be computed in O(n2) time.

4.2.2 Creating Ortho-Radial Representations

Based on the generalized step values from Section 4.2.1, we now create and extend non-st-
outwards ortho-radial representations. This requires a structure also for nodes containing fc.
The definition of step values for orthogonal representation can be simply used for ortho-
radial representations though. As a start, the notions of relative labels and spirality are
no longer well-defined for ortho-radial representations since different st-paths may have
different rotational values. For example, the ortho-radial representation in Figure 4.11 has
a rotation of −2 for all st-paths traversing G1 but a rotation of 2 for st-paths traversing G2.
The following lemma shows an important connection between the rotations of such two
paths.

Lemma 4.38. Let (G, E) be a 2-legged series-parallel plane 3-graph that admits a (not
necessarily valid) ortho-radial representation T of G. If there exist two st-paths P and Q
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with rot(P ) ̸= rot(Q), then P + Q forms an essential cycle C, which is not necessarily
oriented clockwise, and

rot(P )− rot(Q) =
{
−4 if C goes clockwise around fc,
4 otherwise.

Proof. Assume C is not an essential cycle. Then P ∪Q forms a 2-legged subgraph G′ of G.
The induced ortho-radial representation T ′ of G′ is simply an orthogonal representation,
as it does not contain essential cycles. Then P and Q would be two st-paths with different
rotations in an orthogonal representation, which stands in contradiction to Lemma 4.5.
Therefore, C must be an essential cycle. The cycle C is not simple since it contains at least
the two legs es, et twice; once in P and once, in the other direction, inQ. We split up P andQ
into six sections P1, P2, P3 as well as Q1, Q2, Q3 such that C = P1 +P2 +P3 +Q1 +Q2 +Q3
and C ′ := P2 +Q2 forms a simple essential sub-cycle of C. See Figure 4.24 for an illustration.
As G is a 3-graph and C ′ is simple, we know that P1 and Q1 share their last edge and P3
and Q3 share their first edge. To calculate the rotation of paths correctly, we also have to
take into account the rotations at the two join points. We call RP the rotation from P1
to P2, RQ the rotation from ⃗Q2 to ⃗Q1, and RC the rotation from ⃗P2 to Q2. Similarly, we
call rP the rotation from P2 to P3, rQ the rotation from ⃗Q3 to ⃗Q2, and rC the rotation
from Q2 to ⃗P2. See again Figure 4.24 for an illustration. From the definition of ortho-radial
representations we know RP + RQ + RC = −2 = rP + rq + rC as well as 0 = rot(C ′).
The subgraph P1 ∪ Q1 is a 2-legged series-parallel 3-graph, which does not include the
central face, and therefore rot(P1) = rot(Q2) and similarly rot(P3) = rot(Q3). Now suppose
that C, and therefore also C ′, goes clockwise around fc. It then follows that

rot(P )− rot(Q)
= rot(P1) +RP + rot(P2) + rP + rot(P3)− (rot(Q1)−RQ + rot(Q2)− rQ + rot(Q3))
= rot(P1)− rot(Q1)︸ ︷︷ ︸

= 0

+ rot(P3)− rot(Q3)︸ ︷︷ ︸
= 0

+ rot(P2)− rot(Q2) +RP +RQ + rP + rQ

= rot(P2)− rot(Q2) +RP +RQ +RC −RC + rP + rQ + rC − rC

= rot(P2)− rC − rot(Q2)−RC︸ ︷︷ ︸
= rot(C′) = 0

+RP +RQ +RC︸ ︷︷ ︸
= −2

+ rP + rQ + rC︸ ︷︷ ︸
= −2

=− 4.

On the other hand, if C goes anticlockwise around fc, the signs of the rotational values at
the connection points switch, and we get rot(P )− rot(Q) = 4.

Definition 4.39. Let (G, E) be a 2-legged series-parallel plane 3-graph. We call an st-path P
a clockwise st-path if for all other st-paths Q ∈ Pst(G) where P +Q forms an essential
cycle, this cycle goes clockwise around fc. If these cycles go anticlockwise around fc, then
we call P an anticlockwise st-path.

With P being a clockwise st-path and Q being an anticlockwise st-path, Lemma 4.38 imply
that rot(P )− rot(Q) = 4. Using clockwise and anticlockwise st-paths, we again define a
notion of spirality.

Definition 4.40. Let (G, E) be a 2-legged series-parallel plane 3-graph that admits a (not
necessarily valid) ortho-radial representation T of G. Given a clockwise st-path P , the
spirality of T σ : Θ(G, E)→ Z is defined as

σ(T ) = rot(P ).
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G2
G2

s
G1 G1

t s

t
e∗ e∗

Figure 4.25: Two parallel connections both with σ(G1) = −2. On the left, the leg vertices
of G1 point radially outwards and on the right they both point anticlockwise.
Using the dashed reference paths, the oriented spiralities are (1,−1) for the
left graph and (0,−2) for the right graph.

The well-definedness of Definition 4.40 is a direct implication of Lemma 4.38. Also, the
above definition of spirality is a natural extension to the one for orthogonal representations.
If a given ortho-radial representation would be simply an orthogonal one, meaning fc = fo,
then every st-path is clockwise (as well as anticlockwise), and the spirality as defined in
Definition 4.40 is again simply the rotation of any st-path in the graph. In an ortho-radial
representation T , Lemma 4.38 implies for an anticlockwise st-path Q that σ(T ) = rot(Q)−4.

The definition of spirality alone is not descriptive enough. See for example Figure 4.25. In
both case the spirality of G1 is −2. But the left ortho-radial representation has its legs
pointing radially outwards, while the right ortho-radial representation has legs pointing
anticlockwise. This difference has a direct effect on the conditions to form the ortho-radial
representation of G1 as well as on the parallel connection with G2. We formally define the
difference between the two representations via the label of the edges e⃗s and e⃗t.

Definition 4.41. Let (G, E) be a 2-legged series-parallel plane 3-graph that admits a
(possibly invalid) ortho-radial representation T of G with reference edge e∗. We define the
oriented spirality (σs, σt) ∈ Z× Z to be

(σs, σt) = (ℓ(e⃗s), ℓ(e⃗t)).

The oriented spirality represents the label of es when entering G as well as the label of et

when exiting G. So if Ps is a reference path from e∗ to es and if Pt is a reference path
from e∗ to et, then (σs, σt) = (dir(e∗, Ps, e⃗s),dir(e∗, Pt, e⃗t)). See again Figure 4.25, where
the left graph has an oriented spirality of (1,−1). The red path makes one right turn and
with the fourth case in the definition of combinatorial directions we know σs = 1. Similarly,
the green path makes one left turn and with the first case in the definition of combinatorial
directions σt = −1 follows. In the right graph the oriented spirality is (0,−2) because the
red path to es has rotation 0 and again the fourth case implies ℓ(e⃗s) = 0. The green path
has also rotation 0, but here the third case in the definition of combinatorial embeddings
applies, and we get ℓ(e⃗t) = −2.

The same reference paths for defining the oriented spirality can be used to calculate the
label for ⃗es and ⃗et, and it follows that ℓ( ⃗es) = σs − 2 and ℓ( ⃗et) = σt + 2. Oriented
spirality and normal spirality stand in close connection to each other as the following
lemma shows.

Lemma 4.42. Let (G, E) be a 2-legged series-parallel plane 3-graph that admits a (not
necessarily valid) ortho-radial representation T of G with reference edge e∗ and oriented
spirality (σs, σt). Then σ(T ) = σt − σs.
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s

t
s t

G1

G2

G1

G2

e∗

e∗

Figure 4.26: On the left, an ortho-radial representation with oriented spirality (−1, 2)
consisting of two subgraphs G1 and G2 and on the right a depiction of an
incomplete ortho-radial representation of the same graph with oriented spiral-
ity (2,−1), with a missing red edge. Both representations have spirality −3
indicates by the gray arrow.

Proof. Let P be an st-path of G traversing e∗. If P is a clockwise st-path, then

σ(T ) = rot(P ) = rot(P [es, e∗]) + rot(P [e∗, et])
= −dir(e⃗∗, P (es, e∗), e⃗s) + dir(e⃗∗, P (e∗, et), e⃗t) = σt − σs,

and if P is an anticlockwise st-path, then

σ(T ) = rot(P )− 4 = rot(P [es, e∗]) + rot(P [e∗, et])− 4

= −dir( ⃗e∗, P (es, e∗), e⃗s)− 2 + dir( ⃗e∗, P (e∗, et), e⃗t)− 2 = σt − σs.

Figure 4.26 depicts another example to further see the importance of oriented spirality
and its connection to normal spirality. On the left is a valid ortho-radial representation
with spirality −3 and oriented spirality (−1, 2). At least for this graph, every clockwise
st-path traverses G1 and every anticlockwise st-path traverses G2. A clockwise st-path
has rotation −3, while an anticlockwise st-path has rotation 1. On the right, the same
graph with the same spirality of −3 is shown, but with oriented spirality (−2, 1). The
representation is not an ortho-radial representation indicated by the red gap, where the
two subgraphs are not joined together. In fact, there is no valid ortho-radial representation
of this graph having oriented spirality (−2, 1). This further confirms that the notion of
oriented spirality conveys information that is required to form a correct recursive algorithm.
Next, we connect relative labels to normal labels depending on the oriented spirality of the
representation.

Lemma 4.43. Let ϕ be a P-node containing fc, let G be its induced graph, G1,G2 be the
induced graphs of the children of ϕ such that G admits a (not necessarily valid) ortho-radial
representation T with oriented spirality (σs, σt) and reference edge e∗. If G1 does not
contain fc, then it follows for every edge e⃗ of G1 that

ℓs1 (e) = ℓ(e⃗)− σs − rs
1.

If G2 does not contain fc, then it follows for every edge ⃗e in G2 that

ℓs2 (e) = ℓ( ⃗e)− σs + 2− rs
2.
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Proof. First, suppose that G1 does not contain fc and let e⃗ be an edge in G1. Then ℓs1 (e) =
dir(e⃗s

1, P, e⃗) for a reference path P in G1 and

dir(e⃗s
1, P, e⃗) = rs

1 + dir(e⃗s
1, P, e⃗)︸ ︷︷ ︸

= dir(e⃗s, es
1 + P, e⃗) = ℓ(e⃗) − σs

−rs
1 = ℓ(e⃗)− σs − rs

1.

Now suppose that the induced representation of G2 is an orthogonal representation and
let e⃗ be an edge in an st-path of G2. Then ℓs2 (e) = dir(e⃗s

2, P, ⃗e) + 2 for a reference path P
in G2 and

dir(e⃗s
2, P, ⃗e) = rs

2 + dir(e⃗s
2, P, ⃗e)︸ ︷︷ ︸

= dir(e⃗s, es
2 + P, ⃗e) = ℓ( ⃗e) − σs

−rs
2 = ℓ( ⃗e)− σs − rs

2.

We now start with the marked P-node where fc is created and describe which structures
the child nodes require to form a valid ortho-radial representation.

Lemma 4.44. Let ϕ be a marked P-node where fc is created and let G be its induced
subgraph such that G admits a (not necessarily valid) ortho-radial representation T of G
with oriented spirality (σs, σt) and spirality σ(T ). Let H1 and H2 be the induced orthogonal
representations of the child nodes of ϕ. Then the following holds.

σ(H1) = σ(T )− rs
1 − rt

1

σ(H2) = 4 + σ(T )− rs
2 − rt

2

Proof. Let P be an st-path of G traversing G1. Then P [es
1, e

t
1] is an st-path of G1. It then

holds that

σ(H1) = rot(P [es
1, e

t
1]) = rot(P [es

1, e
t
1]) + rs

1 + rt
1︸ ︷︷ ︸

= rot(P ) = σ(T )

−rt
1 − rs

1 = σ(T )− rs
1 − rt

1.

Now let Q be an st-path of G traversing G2. Then Q[es
2, e

t
2] is an st-path of G2 and

Lemma 4.38 implies rot(Q) = 4 + σ(H). It now holds that

σ(H2) = rot(P [es
2, e

t
2]) = rot(P [es

2, e
t
2]) + rs

2 + rt
2︸ ︷︷ ︸

= rot(Q) = 4 + σ(H)

−rs
2 − rt

2.

Definition 4.45. Let (G, E) be a 2-legged series-parallel plane 3-graph with terminals s
and t admitting a (possibly invalid) ortho-radial representation. We define the clockwise
subgraphs −→G to be the subgraph described by the union of all clockwise st-paths having
terminals s and t. −→

G =
⋃
{P ∈ Pst(G) | P clockwise}

We define the anticlockwise subgraphs ←−G to be the reverse of the subgraph described by the
union of all anticlockwise st-paths having flipped terminals t and s.

←−
G =

(⋃
{P ∈ Pst(G) | P anticlockwise}

)
Moreover, we define the strict clockwise and strict anticlockwise subgraphs −→G− and ←−G− to
be their non-strict counterparts excluding the two legs es and et of G.
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G1

−→
G1

←−
G1
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Figure 4.27: Two 2-legged series-parallel plane 3-graphs together with their clockwise
subgraphs −→G and their anticlockwise subgraphs ←−G .

See Figure 4.27 for an example of a graph and its clockwise and anticlockwise subgraphs. It
is clear to see that −→G and ←−G are both 2-legged series-parallel plane 3-graph and that −→G−

and←−G− are in general only series-parallel plane 3-graphs. As both −→G and←−G do not contain
the central face, their induced representations are always simple orthogonal representations.
If G is a parallel composition, then −→G− and ←−G− are both 2-legged and disjoint. If G
is the induced graph of a marked P-node with subgraphs G1 and G2, then −→G− = G1
and ←−G− = G2, and a simple essential cycle always traverses −→G− and ←−G− in their correct
orientation.

Lemma 4.46. Let ϕ be a P-node containing fc and let G be its induced subgraph such
that it admits a (not necessarily valid) ortho-radial representation T of G with oriented
spirality (σs, σt), spirality σ(T ), and reference edge e∗. Let G1 and G2 be the induced
subgraphs of the children of ϕ.

If G1 does not contain fc and has the structure [s1, s
z
1, s

lr
1 ], then every st-path of −→G− = G1

contains a positively-labelled edge / a negatively-labelled edge if and only if one of the
matching conditions hold.

a positive label a negative label
σs + rs

1 > 0, σs + rs
1 < 0,

σt − rt
1 > 0, σt − rt

1 < 0,
σ(H1) ∈ s1(−(σs + rs

1) + 1) σ(H1) ∈ s1(−(σs + rs
1)− 1)

Moreover, every st-path of −→G− contains both a positively- and a negatively-labelled edge if
and only if one of the following conditions hold.

σs + rs
1 > 0 ∧ (σt − rt

1 < 0 ∨ σ(H1) ∈ s1(−(σs + rs
1)− 1))

σs + rs
1 < 0 ∧ (σt − rt

1 > 0 ∨ σ(H1) ∈ s1(−(σs + rs
1) + 1))

(σs + rs
1 = σt − rt

1 = 0) ∧ slr
1 = 1
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If G2 does not contain fc and has the structure [s2, s
z
2, s

lr
2 ], then every st-path of ←−G− = G2

contains a positively-labelled edge / a negatively-labelled edge if and only if one of the
matching conditions hold.

a positive label a negative label
σs − 2 + rs

2 > 0, σs − 2 + rs
2 < 0,

σt + 2− rt
2 > 0, σt + 2− rt

1 < 0,
σ(H2) ∈ s2(−(σs − 2 + rs

2) + 1) σ(H2) ∈ s2(−(σs − 2 + rs
2)− 1)

Moreover, every st-path of ←−G− contains both a positively- and a negatively-labelled edge if
and only if one of the following conditions hold.

σs − 2 + rs
2 > 0 ∧ (σt + 2− rt

2 < 0 ∨ σ(H2) ∈ s2(−(σs − 2 + rs
2)− 1))

σs − 2 + rs
2 < 0 ∧ (σt + 2− rt

2 > 0 ∨ σ(H2) ∈ s2(−(σs − 2 + rs
2) + 1))

(σs − 2 + rs
2 = σt + 2− rt

2 = 0) ∧ slr
2 = 1

Proof. First, suppose G1 does not contain fc and let P be an arbitrary st-path of −→G− = G1.
Then P must traverse the two oriented legs e⃗s

1 and e⃗t
1. The label of e⃗s

1 and e⃗t
1 computed

relative to the label of e⃗s and e⃗t are

ℓ(e⃗s
1) = ℓ(e⃗s) + rs

1 = σs + rs
1 ℓ(e⃗t

1) = ℓ(e⃗t)− rt
1 = σt − rt

1.

On the one hand, suppose that P contains at least one positively-labelled edge. If either ℓ(e⃗s
1)

or ℓ(e⃗t
1) is positive, then the respective inequality in the condition holds. If neither of

these edges have a positive label, then there must exist another edge e⃗ inside G1 having a
positive label. Lemma 4.43 implies that ℓs1 (e) = ℓ(e⃗)− σs − rs

1 ≥ −(σs + rs
1) + 1. As P

was arbitrary, it follows that σ(H1) ∈ s1(−(σs + rs
1)− 1) and the third condition holds.

On the other hand, suppose that a condition for a positive label is fulfilled. It is easy to
see that either ℓ(e⃗s

1) > 0 or ℓ(e⃗t
1) > 0, or due to σ(H1) ∈ s1(−(σs + rs

1)− 1) there exists an
edge e⃗ in P with a positive label.

The equality proof for having a negative label in the path through G1 follows analogously,
only here the inequality signs flip and for an edge e⃗ in P with a negative label we instead
have ℓs1 (e) = ℓ(e⃗)− σs − rs

1 ≤ −(σs + rs
1)− 1. The proof for paths taken through ←−G− also

follows analogously with ←−G− = G2 when using the labels for ⃗es
2 and ⃗et

2 as well as the
connection between relative and normal labels of edges inside G2 from Lemma 4.43.

Now to the proof for having both a negatively- and a positively-labelled edge in the path
through G1 or G2. We only consider the case where the edges are present in G1 since the
other case again follows analogously. We make a case distinction.

Case 1: ℓ(e⃗s
1) = ℓ(e⃗t

1) = 0. This is equivalent to σs + rs
1 = σt − rt

1 = 0. Lemma 4.43 also
implies ℓs1 (et

1) = 0 and therefore σ(H1) = 0. Having both a positively-labelled and a
negatively-labelled edge is then equivalent to slr

1 = 1, again using Lemma 4.43.

Case 2: ℓ(e⃗s
1) ̸= 0 or ℓ(e⃗t

1) ̸= 0. Without loss of generality, let ℓ(e⃗s
1) > 0. Then every

traversed path already has a positively-labelled edge as shown above. If now ℓ(e⃗s
1) < 0,

then G1 already has both a positively- and a negatively-labelled edge. Otherwise, the step
value condition has to hold as shown above.
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Lemma 4.47. Let ϕ be a marked P-node creating the central face where its two child
nodes ϕ1, ϕ2 are both rectilinear-plane and have the structures [s1, s

z
1, s

lr
1 ] and [s2, s

z
2, s

lr
2 ],

respectively. Then the induced graph G of ϕ has a valid ortho-radial representation T
with oriented spirality (σs, σt) and normal spirality σ(T ) = x if and only if the matching
conditions hold.
σs\σt ≤ −3 −2 −1 0 ≥ 1

≥ 3 x+ 2 ∈ s1(0),
x+ 4 ∈ s2(0)

−σs ∈ s1(0),
− σs + 2 ∈ s2(0)

−σs ∈ s1(0),
− σs + 2 ∈ s2(0)
or
− σs + 1 ∈ s1(−σs),
− σs + 3 ∈ s2(0)
or
− σs + 1 ∈ s1(0),
− σs + 2 ∈ s2(−σs + 1)

See Table 4.1 See Table 4.1

2 σt ∈ s1(0),
σt + 2 ∈ s2(0) −2 ∈ s1(0)

−1 ∈ s1(0),
0 ∈ s2(−1)
or
− 2 ∈ s1(0)

−1 ∈ s1(−2)
or
1 ∈ s2(−1)

See Table 4.1

1

σt ∈ s1(0),
σt + 2 ∈ s2(0)
or
σt + 1 ∈ s1(1),
σt + 3 ∈ s2(0)
or
σt + 1 ∈ s1(0),
σt + 2 ∈ s2(1)

−1 ∈ s1(0),
0ins1(1)
or
− 2 ∈ s1(0)

Lemma 4.23

1 ∈ s2(0),
0 ∈ s1(−1)
or
2 ∈ s2(0)

σt + 2 ∈ s2(0),
σt ∈ s1(0)
or
σt +1 ∈ s2(−1),
σt − 1 ∈ s1(0)
or
σt + 1 ∈ s2(0),
σt ∈ s1(−1)

0 See Table 4.2
1 ∈ s2(2)
or
− 1 ∈ s1(1)

1 ∈ s2(0),
0 ∈ s1(1)
or
2 ∈ s2(0)

2 ∈ s2(0) σt + 2 ∈ s2(0),
σt ∈ s1(0)

≤ −1 See Table 4.2 See Table 4.2

−σs + 2 ∈ s2(0),
− σs ∈ s1(0)
or
−σs +1 ∈ s2(−σs + 2),
− σs − 1 ∈ s1(0)
or
− σs + 1 ∈ s2(0),
− σs ∈ s1(−σs + 1)

−σs +2 ∈ s2(0),
− σs ∈ s1(0)

x+ 2 ∈ s2(0),
x ∈ s1(0)

Table 4.1: Conditions for the case σs ≥ 2 and σt ≥ 0.
x Condition

x ≤ −4 x+ 1 ∈ s1(−σs), x+ 3 ∈ s2(0) or x+ 2 ∈ s1(−σs), x+ 4 ∈ s2(0)
or x+ 2 ∈ s1(0), x+ 3 ∈ s2(−σs + 1)

x = −3 −2 ∈ s1(−σs) or 0 ∈ s2(−σs + 1),−1 ∈ s1(0)
x = −2 −1 ∈ s1(−σs) or 1 ∈ s2(−σs + 1)
x = −1 2 ∈ s2(−σs + 1) or 0 ∈ s1(−σs), 1 ∈ s2(0)

x ≥ 0 x+ 1 ∈ s1(−σs), x+ 2 ∈ s2(0) or x+ 1 ∈ s1(0), x+ 3 ∈ s2(−σs + 1)
or x ∈ s1(0), x+ 2 ∈ s2(−σs)

Proof. We will use Lemmas 4.44 and 4.46 with the set of all possible rotation combina-
tions [rs

1, r
t
1, r

s
2, r

t
2] to proof each condition. Again, some rotation combinations never result

in an ortho-radial representation. It is impossible to have rs
1 = rs

2 = 0, as this will create
an illegal angle assignment around the leg-vertex of s. The same is true for the leg-vertex
of t, where rt

1 = rt
2 = 0 is invalid. So values where rs

1 and rt
1 are −1 give total freedom to

the choice of rs
2 and rt

2. Any other value restricts this choice.
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Table 4.2: Conditions for the case σs ≤ 0 and σt ≤ −2.
x Condition

x ≥ 0 x+ 3 ∈ s2(−σs + 2), x+ 1 ∈ s1(0) or x+ 2 ∈ s2(−σs + 2), x ∈ s1(0)
or x+ 2 ∈ s2(0), x+ 1 ∈ s1(−σs + 1)

x = −1 2 ∈ s2(−σs + 2) or 0 ∈ s1(−σs + 1), 1 ∈ s2(0)
x = −2 1 ∈ s2(−σs + 2) or −1 ∈ s1(−σs + 1)
x = −3 −2 ∈ s1(−σs + 1) or 0 ∈ s2(−σs + 2),−1 ∈ s1(0)

x ≤ −4 x+ 3 ∈ s2(−σs + 2), x+ 2 ∈ s1(0) or x+ 3 ∈ s2(0), x+ 1 ∈ s1(−σs + 1)
or x+ 4 ∈ s2(0), x+ 2 ∈ s1(−σs + 2)

Lemma 4.44 connects the spirality of the ortho-radial representation to the spiralities of H1
and H2 and therefore imply the necessary spirality of G1 and G2. To ensure the validity of
the ortho-radial representation we use Lemma 4.46. Here we can exclude the case where
one simple essential cycle only contains zero-labelled edges. The oriented spirality must
have the value (1,−1) for this to happen and this case is already covered in Lemma 4.23. So
from now on we assume (σs, σt) ̸= (1,−1). For a formed representation to be valid, every
simple essential cycle must now always contain a positively- as well as a negatively-labelled
edge. Due to ϕ being the marked node, we know −→G− = G1 and←−G− = G2, and Lemma 4.46
applies for both subgraphs. If the correct conditions hold such that Lemma 4.46 implies
that every simple essential cycle contains in one subgraph a positively-labelled edge and in
either the same or the other subgraph a negatively-labelled edge, then the representation is
valid. The inverse of this statement is not obviously true. There may exist a simple essential
cycle C having only non-negative edges in G1 and only non-positive edges in G2 as well as a
simple essential cycle C ′ having only non-positive edges in G1 and only non-negative edges
in G2. This case is not covered by Lemma 4.46. But would these two simple essential cycles
exist, then there would also exist two other simple essential cycles, obtained by combining
the parts of C and C ′ that only have non-negative or non-positive labels. These new
cycles are then invalid and would be a contradiction to the validity of the representation.
Therefore, Lemma 4.46 also implies the conditions given a valid ortho-radial representation.

The proof will now work as follows. Given a fixed oriented spirality (σs, σt), the process of
finding conditions for G1 and G2 that are equivalent to G admitting a valid ortho-radial
representation is now to test all possible and valid rotation combinations. Per combination,
one in general also has to check all possible distributions of positive and negative labels
over the two subgraphs as explained above. Lemmas 4.44 and 4.46 then give the required
conditions. Over all these, one has to pick the set of the least strict conditions for G1
and G2. These conditions combined are then equivalent to G admitting a valid ortho-radial
representation with a specific oriented spirality. To find these least strict conditions, we
have to minimize per subgraph either the spirality conditions |σ(H1)| and |σ(H2)| from
Lemma 4.44 or, if in a specific circumstance one of the step value conditions in Lemma 4.46
have to be used, we have to minimize this step value expression instead of the spirality
condition. According to Lemma 4.32, a step value expression z ∈ s(y) is least strict if |y| as
well as |y−z| assume their minimum values. We deliberately ignore the case in Lemma 4.46
where a subgraph has both a positive and a negative label in every st-path if the left-right
step value slr is non-zero for this subgraph. As we will see later, this possibility always
results in a stricter condition compared to the ones not using slr. In summary, the terms
that may have to be minimized are the following.

1. The spirality condition for G1:

|σ(H1)| = σ(T )− rs
1 − rt

1| = |x− rs
1 − rt

1| (4.29)
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(a) (b) (c) (d)
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Figure 4.28: Parallel connections around fc with different oriented spiralities, where the
subgraphs are implied by the bent lines between the leg vertices. The oriented
spiralities are (2,−2) for (a) and (3,−1) for (b), (c), and (d).

2. The step value condition σ(H1) ∈ s1(−(σs + rs
1) + 1) for a positive label in G1:

| − (σs + rs
1) + 1| = |1− σs − rs

1| (4.30)
| − (σs + rs

1) + 1− (σt − σs − rs
1 − rt

1)| = |1− σt + rt
1| (4.31)

3. The step value condition σ(H1) ∈ s1(−(σs + rs
1)− 1) for a negative label in G1:

| − (σs + rs
1)− 1| = |1 + σs + rs

1| (4.32)
| − (σs + rs

1)− 1− (σt − σs − rs
1 − rt

1)| = |1 + σt − rt
1| (4.33)

4. The spirality condition for G2:

|σ(H2)| = |4 + σ(T )− rs
2 − rt

2| = |4 + x− rs
2 − rt

2| (4.34)

5. The step value condition σ(H2) ∈ s2(−(σs − 2 + rs
2) + 1) for a positive label in G2:

| − (σs − 2 + rs
2) + 1| = |3− σs − rs

2| (4.35)
| − (σs − 2 + rs

2) + 1− (4 + σt − σs − rs
2 − rt

2)| = |1 + σt − rt
2| (4.36)

6. The step value condition σ(H2) ∈ s2(−(σs − 2 + rs
2)− 1) for a negative label in G2:

| − (σs − 2 + rs
2)− 1| = |1− σs − rs

2| (4.37)
| − (σs − 2 + rs

2)− 1− (4 + σt − σs − rs
2 − rt

2)| = |3 + σt − rt
2| (4.38)

If no single rotation combination minimizes all the terms for a given oriented spirality,
then there exist multiple independent optimal conditions (for example the ones for the
case (3,−2)). We will now reduce the number of oriented spiralities that have to be checked
manually to a finite amount via a case distinction based on the oriented spiralities.

Case 1: σs ≥ 2 and σt ≤ −2. See Figure 4.28a for an example with σs = 2 and σt = −2.
Then no matter which rotation combination is chosen, the inequalities σs + rs

1 > 0 and
σt − rt

1 < 0 hold. Lemma 4.46 then implies that G1 always contains both a positive and a
negative label in every st-path no matter the rotation combination and the only conditions
to minimize are the spirality conditions. The values rs

1 = rt
1 = −1 and rs

2 = rt
2 = 0 minimize

these in Equations (4.29) and (4.34) to |σ(H1)| = |x + 2| and |σ(H2)| = |x + 4|. The
existence of a valid ortho-radial representation is therefore equivalent to x + 2 ∈ s1(0)
and x+ 4 ∈ s2(0).

Case 2: σs ≥ 3 and σt = −1. Then no matter which rotation combination is chosen, σs +
rs

1 > 0 and Lemma 4.46 implies that G1 always contains a positive label in every st-path.
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(a) (b) (c)
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Figure 4.29: Parallel connections around fc with different oriented spiralities, where the
subgraphs are implied by the bent lines between the leg vertices. The spiralities
are (4, 0) for (a), (b), and (c) as well as (2, 0) for (d) and (e).

Using rs
1 = −1 minimizes Equations (4.29) and (4.32) while leaving a choice for the value

of rs
2. Negative labels may now occur in G1 or G2.

Suppose the negative labels also occur in G1. Then there are two possibilities for this to
happen. First, rt

1 = 0 (see Figure 4.28b), which implies σt − rt
1 = −1 < 0 in Lemma 4.46.

Here, the spirality for G1 is σ(H1) = −1− σs − rs
1 − rt

1 = −σs, which implies −σs ∈ s1(0).
Regarding the spirality condition for G2, rt

2 = 0 would be invalid and the values rs
2 =

0, rt
2 = 1 now minimize Equation (4.34) to 4 + σt − σs − 1 = 2 − σs. Second, rt

1 = −1
(see Figure 4.28c), which implies σt − rt

1 = 0 and according to Lemma 4.46 the step
value condition for negative labels in G1 must hold. This implies −σs + 1 = σ(H1) ∈
s1(−(σs + rs

1)− 1) = s1(−σs). Regarding the spirality conditions for G2, the optimal
values rs

2 = rt
2 = 0 minimize the required spirality of G2 to 4 + σt − σs = 3− σs. In total,

we get the conditions −σs ∈ s1(0), 2− σs ∈ s2(0) or −σs + 1 ∈ s1(−σs),−σs + 3 ∈ s2(0).

Now suppose the negative labels occur in G2 as seen in Figure 4.28d. As the conditions for
this case do not depend on rt

1, the value of rt
1 = −1 can be chosen to minimize Equation (4.29)

and −σs + 1 ∈ s1(0) follows. Because σs− 2 + rs
2 ≥ 1 + rs

2 ≥ 0 and σt + 2− rt
2 = 1− rt

2 ≥ 0,
Lemma 4.46 implies that the only possibility for G2 to have negative labels is the step value
condition. Choosing rs

2 = 0 and rt
2 = 1 minimizes Equations (4.37) and (4.38) to σs − 1

and 1, respectively. In total, we get the conditions −σs +1 ∈ s1(0) and 2−σs ∈ s2(−σs + 1).

Case 3: σs ≥ 2 and σt ≥ 0. Again, no matter which rotation combination is chosen, σs +
rs

1 > 0 and Lemma 4.46 implies that G1 always contains a positive label in every st-path.
But due to σt − rt

1 ≥ 0, σs − 2 + rs
2 = rs

2 ≥ 0, and σt + 2 − rt
2 ≥ 1, Lemma 4.46 implies

that a negative label in every st-path is only achievable with a step value condition. If
the condition for G1 is used, then values rs

1 = −1 and rt
1 = 0 minimize Equations (4.32)

and (4.33). If the condition for G2 is used, then values rs
2 = 0 and rt

2 = 1 minimize
Equations (4.37) and (4.38). To find optimal values for the spirality condition, we have to
make a further case distinction.

Case 3a: x = σt − σs ≤ −4. Then Equations (4.29) and (4.34) assume their minimum
values with rs

1 = rt
1 = −1 and rs

2 = rt
2 = 0, respectively. The optimal rotation values for the

spirality conditions are now partly incompatible with the optimal values for the step value
conditions. Based on which step value condition is used and based on the theoretically
optimal rotation values for each separate condition we get the following minimal conditions.

1. G1 contains the negative edges. Then the combination rs
1 = −1, rt

1 = 0, rs
2 =

0, rt
2 = 1 implies the conditions x+ 1 ∈ s1(−σs) and x+ 3 ∈ s2(0) (see Figure 4.29a
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with σs = 3, σt = 0) while the combination rs
1 = rt

1 = −1, rs
2 = rt

2 = 0 implies the
conditions x+ 2 ∈ s1(−σs) and x+ 4 ∈ s2(0) (see Figure 4.29b).

2. G2 contains the negative edges (see Figure 4.29c). Then the combination rs
1 = rt

1 =
−1, rs

2 = 0, rt
2 = 1 implies the optimal conditions x+2 ∈ s1(0) and x+3 ∈ s2(−σs + 1).

Case 3b: x = σt−σs ≥ 0. Then Equations (4.29) and (4.34) assume their minimum values
with rs

1 = rt
1 = 0 and rs

2 = rt
2 = 1. The optimal rotations for the spirality conditions are

again partly incompatible with the optimal values for the step value conditions. Based on
which step value condition is used and based on the theoretically optimal rotation values
for each separate condition we get the following minimal conditions.

1. G1 contains the negative edges. The combination rs
1 = −1, rt

1 = 0, rs
2 = rt

2 = 1
implies the optimal condition x+ 1 ∈ s1(−σs) and x+ 2 ∈ s2(0)

2. G2 contains the negative edges. The combination rs
1 = −1, rt

1 = 0, rs
2 = 0, rt

2 = 1
implies the condition x+1 ∈ s1(0) and x+3 ∈ s2(−σs + 1) while the combination rs

1 =
rt

1 = 0, rs
2 = rt

2 = 1 implies the condition x ∈ s1(0) and x+ 2 ∈ s2(−σs).

Case 3c: x = σt − σs ∈ [−3,−1]. Based on the actual value of x, different rotational
values may be more optimal. If x = −3, then Equation (4.29) becomes | − 3 − rs

1 − rt
1|

and is minimal with rs
1 = rt

1 = −1 while Equation (4.34) becomes |4 − 3 − rs
2 − rt

2| and
is minimal with rs

2 = 0, rt
2 = 1 or rs

2 = 1, rt
2 = 0. If x = −2, then Equation (4.29)

becomes | − 2 − rs
1 − rt

1| and is minimal with rs
1 = rt

1 = −1 while Equation (4.34)
becomes |4 − 2 − rs

2 − rt
2| and is minimal with rs

2 = rt
2 = 1. Finally, if x = −1, then

Equation (4.29) becomes |−1−rs
1−rt

1| and is minimal with rs
1 = −1, rt

1 = 0 or rs
1 = 0, rt

1 = −1
while Equation (4.34) becomes |4 − 1 − rs

2 − rt
2| and is minimal with rs

2 = rt
2 = 1. The

following shows the optimal conditions based on x and where the negative labels are
contained. Figures 4.29d and 4.29e shows the case x = −2 with σt = 2 and σs = 0.

• If x = −3 and G1 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1, 0, 0, 1) implies the optimal condition −2 ∈ s1(−σs) (and σ(H2) = 0).

• If x = −3 and G2 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1,−1, 0, 1) implies the optimal condition −1 ∈ s1(0) and 0 ∈ s2(−σs + 1).

• If x = −2 and G1 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1, 0, 1, 1) implies the optimal condition −1 ∈ s1(−σs) (and σ(H2) = 0).

• If x = −2 and G2 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1,−1, 0, 1) implies the optimal condition 1 ∈ s2(−σs + 1) (and σ(H1) = 0).

• If x = −1 and G1 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1, 0, 1, 1) implies the optimal condition 0 ∈ s1(−σs) and 1 ∈ s2(0).

• If x = −1 and G2 contains the negative labels, then the combination (rs
1, r

t
1, r

s
2, r

t
2) =

(−1, 0, 0, 1) implies the optimal condition 2 ∈ s2(−σs + 1) (and σ(H1) = 0).

Case 4: σs = 1 and σt ≤ −3. Then no matter which rotation combination is used, σt−rt
1 <

0 and Lemma 4.46 implies that G1 contains a negative label in every st-path.

If also the positively-labelled edges are present in G1, then there are two possible optimal
rotation combinations to check. The first case is rs

1 = 0, which implies σs + rs
1 > 0 in

Lemma 4.46. The minimal conditions for G1 and G2, namely Equations (4.29) and (4.34),
are then met with rs

1 = 0, rt
1 = −1, rs

2 = 1, rt
2 = 0, and it follows that σt ∈ s1(0)

and σt +2 ∈ s2(0). The second case is rs
1 = −1 (see Figure 4.30a), which implies σs +rs

1 ≤ 0
and the step value condition must hold for G1. Then the equations Equations (4.30), (4.31)
and (4.34) are minimized with the combination rs

1 = rt
1 = −1, rs

2 = rt
2 = 0, and it follows

that σt + 1 ∈ s1(1) as well as σt + 3 ∈ s2(0).
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Figure 4.30: Parallel connections around fc with different oriented spiralities. The sub-
graphs are implied by the bent lines between the leg vertices. The oriented
spiralities are (1,−3) for (a) and (b), (1,−2) for (c) and (d), as well as (2,−1)
for (e) and (f).

If the positively-labelled edges are present in G2, then due to σs − 2 + rs
2 = rs

2 − 1 ≤ 0
and σt + 2− rt

2 ≤ −1− rt
2 < 0, Lemma 4.46 implies that the step value condition must hold.

Equations (4.29), (4.37) and (4.38) are minimized by rs
1 = rt

1 = −1, rs
2 = 1, rt

2 = 0, and it
follows that x+2 ∈ s1(0) and x+3 ∈ s2(1). Figure 4.30b shows this case for σs = 1, σt = −3.

Case 5: (σs, σt) ∈ {(2,−1), (1,−2)}. By simple minimization over all possible rotation
combinations, the optimal conditions

• for (σs, σt) = (2,−1) are −1 ∈ s1(0) and 0 ∈ s2(−1) with rs
1 = rt

1 = −1, rs
2 = 0, rt

2 = 1
as well as −2 ∈ s2(0) (and σ(H2) = 0) with rs

1 = −1, rt
1 = 0, rs

2 = 0, rt
2 = 1 (see

Figures 4.30e and 4.30f).

• for (σs, σt) = (1,−2) are −1 ∈ s1(0) and 0 ∈ s2(1) with rs
1 = rt

1 = −1, rs
2 = 1, rt

2 = 0
as well as −2 ∈ s2(0) (and σ(H2) = 0) with rs

1 = 0, rt
1 = −1, rs

2 = −1, rt
2 = 0 (see

Figures 4.30c and 4.30d).

Case 6: All other oriented spirality values are simply the mirrored results of some oriented
spirality covered in a previous case. This is due to the conditions in Lemmas 4.44 and 4.46
being point symmetric around the oriented spirality (1,−1). The mirroring swaps the
conditions for G1 and G2, changes the sign of constants, and transforms σt into σt + 2 as
well as σs into σs − 2.

The last open point is to show that choosing the slr condition in Lemma 4.46 always results
in a stricter condition compared to every other option. The total condition for G1 having
both a positive and a negative label in every st-path using the slr step value is

(σs + rs
1 = σt − rt

1 = 0) ∧ slr
1 = 1.

There are only the oriented spiralities (σs, σt) ∈ {(1, 0), (0,−1), (0, 0)}, where G1 may satisfy
this condition. The oriented spirality (1,−1) would also fall under this case, but again
this case is already covered in Lemma 4.23. Lemma 4.34 shows that slr

1 implies 0 ∈ s1(−1)
and 0 ∈ s1(1) as well as −2 ∈ s1(0) and 2 ∈ s1(0). These inequalities can be used in every
of the three cases above to reduce the condition back to an already covered one and the
same applies for G2.

Lemma 4.47 states the required properties to form a valid ortho-radial representation
around fc with a desired oriented spirality. In Section 4.1 all further recursion steps
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Figure 4.31: A parallel-connection where the child Ga still contains fc and Ga is either
the left child (a) or the right child (b). The blue and red cycles indicate new
essential cycles at the parallel composition. The red cycle traverses −→Ga and
the blue cycle traverses ←−Ga.

after this point where trivial according to Lemma 4.24. This fact relies on the ortho-
radial representation being st-upwards, but since this is no longer the case in the current
situation, handling later P-nodes in the recursion is more complicated. If an ortho-radial
representation is extended at a P-node with subgraphs Ga and Gb such that the subgraph Ga

still contains fc, then Ga either is the right or the left child as shown in Figure 4.31. If Ga

is the left child, then new essential cycles are formed with an st-path of −→Ga and an st-path
of Gb. Conversely, if Ga is the right child, new essential cycles are formed with an st-path
of ←−Ga and an st-path of Gb. To ensure that every essential cycle is valid we have to
know which labels are present in these paths. Different to orthogonal representations,
we now define step values over a specific ortho-radial representation instead of over the
general graph. Moreover, as the reference edge e∗ already exists, the step values are simply
markings indicating the existence of edges with positive, negative, or 0 labels. For this, we
define the step set S = {0,−,+,±} and the following definition shows how a step value
gets assigned.

Definition 4.48. Let T be a (not necessarily valid) ortho-radial representation of a 2-
legged series-parallel plane 3-graph G and let H be an oriented (not necessarily 2-legged)
series-parallel subgraph of G not containing fc. We then define the step value ∫(H) of the
subgraph H as

∫(H) =


0 if ∃P ∈ Pst(H) : ∀e ∈ P : ℓ(e⃗) = 0,
− if ∀P ∈ Pst(H) : ∃e ∈ P : ℓ(e⃗) < 0 ∧ ∃P ∈ Pst(H) : ∀e ∈ P : ℓ(e⃗) ≤ 0,
+ if ∀P ∈ Pst(H) : ∃e ∈ P : ℓ(e⃗) > 0 ∧ ∃P ∈ Pst(H) : ∀e ∈ P : ℓ(e⃗) ≥ 0,
± if ∀P ∈ Pst(H) : ∃e, e′ ∈ P : ℓ(e⃗) < 0, ℓ(e⃗′) > 0

The ortho-radial representation T then has the clockwise step value sc = ∫(−→G) and the
anticlockwise step value sa = ∫(←−G). The pair (sc, sa) is called the step value pair of T .

The ∫(·) function is well-defined because on the one hand, at most one case may apply at a
time and on the other hand, if neither the −,+, nor ±-case applies, the 0-case must hold.

Considering the situation in Figure 4.31b, if Gc has a step value sa = −, every simple
essential cycle needs a positively-labelled edge in its path taken through Gb for the cycle
to be valid. The following lemma shows that either sc or sa must have the ± step value
and that therefore only one side may create invalid essential cycles.
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es et

P

Q

C e

0 −1

0
0

0

v

Figure 4.32: An st-path P of −→G and an st-path Q of ←−G . The essential cycle C only has
label 0 and the edge e in P therefore has label −1.

Lemma 4.49. Let (G, E) be a 2-legged orthoradial-plane series-parallel 3-graph and let T
be a valid ortho-radial representation of G with step value pair (sc, sa). Then either sc = ±
or sa = ±.

Proof. For sc and sa to both not be ± there are a few cases to check. Assume sc = +
and sa = −. Due to sc = + and e⃗t being contained in every st-path of −→G , Defini-
tion 4.48 implies ℓ(e⃗t) ≥ 0. Similarly, sa = − and ⃗et being contained in every st-path of ←−G
implies ℓ(e⃗t) + 2 = ℓ( ⃗et) ≤ 0. This forms the contradiction 0 ≤ ℓ(e⃗t) ≤ −2. If sc = −
and sa = + is assumed, then a similar contradiction can be formed with e⃗s. Now As-
sume sc = sa = +. Then −→G as well as ←−G do not contain edges with a negative label.
Let C be a simple essential cycle in G. Then C consists of a subpath of an st-path P

of −→G and a subpath of an st-path Q of ←−G and as both do not contain negative labels, C
also does not contain negative labels. The only option for C to still be valid is to only
contain edge with label 0. Let v be the vertex in C connected with a path to et and let e
be the first edge of this path. See Figure 4.32 for an illustration. Both P and Q must
traverse e lying outside C. As all edges have label 0 in C, the only option for the label
of e⃗ is ℓ(e⃗) = −1, which is a contradiction to sc = +. A similar contradiction, only at the
meeting vertex close to es and with flipped signs, follows if sc = sa = − is assumed. Finally,
if sc = 0, then ℓ(e⃗s) = ℓ(e⃗t) = 0. This implies ℓ( ⃗es) = −2 and ℓ( ⃗et) = 2 and sa = ±
follows. Similarly, if sa = 0, sc = ± follows.

When expanding an ortho-radial representations at a S and P-nodes, the step value pairs
of the new representation are dependent on the step value pairs of the representations
of the child nodes. For this, we consider the step value set S to be a lattice with the
partial order {0 < −, 0 < +,+ < ±,− < ±} as shown in Figure 4.33. A lattice has
two operations. The join operation (s ⊔ s′), representing the least upper bound of two
elements and the meet operation (s ⊓ s′), representing the greatest lower bound of two
elements. The next definition provides tables exactly showing what each operator does
and specifically limits the domain of the meet operator. This is done to better represent
what these operators mean in the context of step values, which then the lemma afterwards
will explain in detail. It turns out that the join operator indicates the step value of a
non-2-legged series-composition in relation to the step values of its children, and the meet
operator indicates the same for a non-2-legged parallel-composition. For such a parallel
composition, the excluded step value combinations never occur.
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±

− +

0

Figure 4.33: The lattice structure of the step value set S.

Definition 4.50. The operators ⊓ : S2\{(+,−), (−,+), (0,+), (0,−), (−, 0), (+, 0)} → S
and ⊔ : S2 → S are defined as

⊓ 0 − + ±
0 0 0
− − −
+ + +
± 0 − + ±

⊔ 0 − + ±
0 0 − + ±
− − − ± ±
+ + ± + ±
± ± ± ± ±

Lemma 4.51. Let T be a (not necessarily valid) ortho-radial representation of a 2-legged
series-parallel plane 3-graph G with reference edge e∗. Let H be an oriented (not necessarily
2-legged) series-parallel subgraph of G not containing fc. If H is a non-2-legged series
connection of subgraphs H1 and H2, then

∫(H) = ∫(H1) ⊔ ∫(H2).

If H is a non-2-legged parallel connection of subgraphs H1 and H2, then

∫(H) = ∫(H1) ⊓ ∫(H2).

Proof. Let P be an st-path of H. If H is a series connection, then P = P1 + P2, where P1
and P2 are st-paths of H1 and H2. Definition 4.48 then implies the equality. If H is a
parallel connection, then H1 and H2 are even 2-legged series-parallel plane 3-graphs, as H
is a subgraph of G. One first has to proof that the usage of the ⊓-operator is justified,
as its definition range does not include every step value combination. Let es

1, e
t
1, e

s
2, e

t
2 be

the legs of H1 and H2. We show this by contradiction and first assume that ∫(H1) = −
and ∫(H2) = +. This implies ℓ(e⃗t

2) ≥ 0 and ℓ(e⃗t
1) ≤ 0. The label of e⃗t

1 can also be calculated
relative to ℓ(e⃗t

2) to be

ℓ(e⃗t
1) = ℓ(e⃗t

2) + dir(e⃗t
2, ∅, e⃗t

1) = ℓ(e⃗t
2)︸ ︷︷ ︸

≥ 0

+ rot(et
2, e

t
1)︸ ︷︷ ︸

∈ {0, −1}

+2 > 0.

This forms the contradiction 0 < ℓ(e⃗t
1) ≤ 0. If ∫(H1) = + and ∫(H2) = − is assumed,

then a contradiction can be similarly formed with the labels of es
1 and es

2. Now assume
that ∫(H1) = 0. Then ℓ(e⃗s

1) = ℓ(e⃗t
1) = 0. With the same argumentation over combinatorial

directions above, we can follow for the labels e⃗s
2 and e⃗t

2 that ℓ(e⃗s
2) > 0 and ℓ(e⃗t

2) < 0. This
implies ∫(H2) = ±. Similarly, if ∫(H2) = 0, then ∫(H1) = ± follows. Therefore, ∫(H1) ⊓
∫(H2) is well-defined. Equality is then implied with Pst(H) = Pst(H1) ∪ Pst(H2) and
Definition 4.48.

See Figure 4.34a for an example of how Lemma 4.51 can be applied. Here, the parallel
composition of the two components with step values 0 and ± have in total a step value
of 0 ⊓ ± = 0. The following series-composition with the edge having step value − results
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−

±

+

(a)

0

±

−

(b)

Figure 4.34: Two 2-legged subgraphs of a bigger ortho-radial representation. The step
value of a component of a subgraph is indicated inside the component.

in a total step value of 0 ⊔ − = − for the whole subgraph. Similarly, in the example
of Figure 4.34b, the parallel composition with step values − and ± has a step value
of − ⊓± = − and in combination with the serially-composed third component the total
step value is − ⊔+ = ±.

Similar to orthogonal representations, we keep track of the oriented spiralities and the
step values possible for a given tree node ϕ. We define the structure of a tree node ϕ
containing fc as a set S with ((σs, σt), (sc, sa)) ∈ S if and only if G admits a valid ortho-
radial representation with oriented spirality (σs, σt) and step value pair (sc, sa). Some step
value pairs in combination with an oriented spirality make no sense. If for example σs > 0,
then −→G always contains the positively-labelled edge e⃗s. For this, we say that x ∈ S
allows y ∈ S, if there exists a z ∈ S with x ⊔ z = y. In other words either x = y, x = 0,
or y = ± holds. We then call a theoretical structure-entry ((σs, σt), (sc, sa)) feasible
if (∫(e⃗s)⊔∫(e⃗t)) allows sc and (∫( ⃗es)⊔∫( ⃗et)) allows sa. The following lemma shows which
structure is possible at the marked node creating fc.

Lemma 4.52. Let ϕ be a marked orthoradial-plane P-node creating the central face with
structure S where its two child nodes ϕ1, ϕ2 have the structure [s1, s

z
1, s

lr
1 ] and [s2, s

z
2, s

lr
2 ],

respectively. If the induced graph G of ϕ admits a valid ortho-radial representation with
oriented spirality (σs, σt) and normal spirality x, then ((σs, σt), (sc, sa)) ∈ S if and only if
the matching condition holds.

(σs, σt) (sc, sa) Condition
(≥ 3,≤ −3) (±,±) Always

(≥ 3,−2) (±,+) If the (±,±) condition does not hold

(±,±)
−σs + 2 ∈ s2(−σs + 1)
or
−σs − 1 ∈ s1(0), −σs + 1 ∈ s2(0)

(2,≤ −3) (±,−) If the (±,±) condition does not hold

(±,±)
σt + 2 ∈ s2(1)
or
σt − 1 ∈ s1(0), σt + 1 ∈ s2(0)

(≥ 3,−1) (±,+) If the (±,±) condition does not hold
(±,±) −σs + 1 ∈ s1(0), −σs + 2 ∈ s2(−σs + 1)

(1,≤ −3) (±,−) If the (±,±) condition does not hold
(±,±) σt + 1 ∈ s1(0), σt + 2 ∈ s2(1)

(≥ 2,≥ 0)
(±,+) See Table 4.4 and if (±,±) condition does not hold(+,±)
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(±,±) x+ 1 ∈ s1(−σs), x+ 3 ∈ s2(−σs + 1)

(2,−2)

(±,+) −1 ∈ s2(0)
(±,−) −1 ∈ s2(0)
(±,±) −2 ∈ s2(0)
(±, 0) sz

2 = 1

(2,−1) (±,−) If the (±,±) condition does not hold
(±,±) 0 ∈ s2(−1)

(1,−2) (±,−) If the (±,±) condition does not hold
(±,±) 0 ∈ s2(1)

(−1,−1) (±,±) Always

(1, 0) (+,±) If the (±,±) condition does not hold
(±,±) 0 ∈ s1(−1)

(0,−1) (+,±) If the (±,±) condition does not hold
(±,±) 0 ∈ s1(1)

(0, 0)

(±,+) 1 ∈ s1(0)
(±,−) 1 ∈ s1(0)
(±,±) 2 ∈ s1(0)
(±, 0) sz

1 = 1

(≤ 0,≤ −2)
(−,±) See Table 4.5 and if (±,±) condition does not hold(±,−)
(±,±) x+ 3 ∈ s2(−σs + 2), x+ 1 ∈ s1(−σs + 1)

(1,≥ 1) (+,±) If the (±,±) condition does not hold
(±,±) σt + 1 ∈ s2(0), σt ∈ s1(−1)

(≤ −1,−1) (−,±) If the (±,±) condition does not hold
(±,±) −σs + 1 ∈ s2(0), −σs ∈ s1(−σs + 1)

(0,≥ 1) (+,±) If the (±,±) condition does not hold

(±,±)
σt ∈ s1(−1)
or
σt + 3 ∈ s2(0), σt + 1 ∈ s1(0)

(≤ −1, 0) (−,±) If the (±,±) condition does not hold

(±,±)
−σs ∈ s1(−σs + 1)
or
−σs + 3 ∈ s2(0), −σs + 1 ∈ s1(0)

(≤ −1,≥ 1) (±,±) Always

Proof. As G admits a valid ortho-radial representation with oriented spirality (σs, σt), the
corresponding conditions in Lemma 4.47 hold. The proof is now to again go over every
oriented spirality value and either show that a subcondition of Lemma 4.47 implies the
given step value or show which additional optimal conditions are required. The approach
is similar to Lemma 4.47, where the optimal conditions are the least strict conditions over
all possible rotation combinations. We again make a case distinction over only half of the
oriented spirality and use the symmetry of ortho-radial representations to imply the other
half.
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Table 4.4: Conditions for the case (≥ 2,≥ 0).
x Step value pair (+,±) Step value pair (±,+)

x ≤ −4 x+ 2 ∈ s1(0), x+ 3 ∈ s2(−σs + 1) x+ 1 ∈ s1(−σs), x+ 3 ∈ s2(0)
or x+ 2 ∈ s1(−σs), x+ 4 ∈ s2(0)

x = −3 −1 ∈ s1(0), 0 ∈ s2(−σs + 1) −2 ∈ s1(−σs)
x = −2 1 ∈ s2(−σs + 1) −1 ∈ s1(−σs)
x = −1 2 ∈ s2(−σs + 1) 0 ∈ s1(−σs), 1 ∈ s2(0)

x ≥ 0 x+ 1 ∈ s1(0), x+ 3 ∈ s2(−σ + 1)
x+ 1 ∈ s1(−σs), x+ 2 ∈ s2(0)or x ∈ s1(0), x+ 2 ∈ s2(−σs)

Table 4.5: Conditions for the case (≤ 0,≤ −2).
x Step value pair (±,−) Step value pair (−,±)

x ≥ 0 x+ 2 ∈ s2(0), x+ 1 ∈ s1(−σs + 1) x+ 3 ∈ s2(−σs + 2), x+ 1 ∈ s1(0)
or x+ 2 ∈ s2(−σs + 2), x ∈ s1(0)

x = −1 1 ∈ s2(0), 0 ∈ s1(−σs + 1) 2 ∈ s2(−σs + 2)
x = −2 −1 ∈ s1(−σs + 1) 1 ∈ s2(−σs + 2)
x = −3 −2 ∈ s1(−σs + 1) 0 ∈ s2(−σs + 2),−1 ∈ s1(0)

x =≤ −4 x+ 3 ∈ s2(0), x+ 1 ∈ s1(−σ + 1)
x+ 3 ∈ s2(−σs − 2), x+ 2 ∈ s1(0)or x+ 4 ∈ s2(0), x+ 2 ∈ s1(−σs + 2)

Case 1: (1,−1). Then ℓ(e⃗s) = 1, ℓ( ⃗es) = −1, ℓ(e⃗t) = −1, and ℓ( ⃗et) = 1. So −→G as well
as ←−G always contain both a positive and a negative label in every of their st-paths.

Case 2: (≥ 3,≤ −3). Then ℓ(e⃗s) ≥ 3, ℓ( ⃗es) ≥ 1, ℓ(e⃗t) ≤ −3, and ℓ( ⃗et) ≤ −1. So −→G as
well as ←−G always contain both a positive and a negative label in every of their st-paths.

Case 3: (≥ 3,−2). Then ℓ(e⃗s) ≥ 3, ℓ( ⃗es) ≥ 1, and ℓ(e⃗t) = −2, but ℓ( ⃗et) = 0. So −→G
always has both a positive and negative label, while ←−G always has a positive label. If none
of the conditions for other step value pairs hold, the step value pair (±,+) applies. For ←−G
to also have a negative label and in turn G having the step value pair (±,±), there are
now two optimal conditions. Either using a rotation combination of (−1,−1, 0, 0) as in
Lemma 4.47 and a step value condition for a negative label in ←−G . This results in the extra
condition −σs+2 ∈ s2(−σs + 1). Or using rt

2 = 1, which implies σt+2−rt
2 = σt+2−1 = −1

and←−G contains the negatively-labelled edge ⃗et
2 in every st-path. Equations (4.29) and (4.34)

are then minimal with a rotation combination of (−1, 0, 0, 1), and the optimal conditions
are −σs − 1 ∈ s1(0) and −σs + 1 ∈ s2(0).

Case 4: (2,≤ −3). Then ℓ(e⃗s) = 2, ℓ( ⃗es) = 0, and ℓ(e⃗t) ≤ −3, but ℓ( ⃗et) ≤ −1. So −→G
always has both a positive and negative label while ←−G always has a negative label. If none
of the conditions for other step value pairs hold, the step value pair (±,−) applies. For←−G to
also have a positive label and in turn G having the step value pair (±,±), there are now two
optimal conditions. Using a rotation combination of (−1,−1, 0, 0) as in Lemma 4.47 and a
step value condition for a positive label in ←−G results in the extra condition σt + 2 ∈ s2(1).
Using rs

2 = 1 implies σs − 2 + rs
2 = 1. So ←−G contains the positively-labelled edge ⃗es in

every st-path. Equations (4.29) and (4.34) are then minimal with a rotation combination
of (−1, 0, 0, 1) and the optimal conditions are σt − 1 ∈ s1(0) and σt + 1 ∈ s2(0).

Case 5: (≥ 3,−1). Then ℓ(e⃗s) ≥ 3, ℓ( ⃗es) ≥ 1, ℓ(e⃗t) = −1, and ℓ( ⃗et) = 1. Similar to Case
3, −→G always has both a positive and negative label and ←−G always has a positive label. If
none of the conditions for other step value pairs hold, the step value pair (±,+) applies.
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For ←−G to also have a negative label and in turn G having the step value pair (±,±), there
is now only the step value condition left, as σs − 2 + rs

2 ≥ 1 + rs
2 ≥ 1 and σt + 2 − rt

2 =
1− rt

2 ≥ 0. Lemma 4.47 implies that the optimal condition for ←−G having a negative label
is −σs + 1 ∈ s1(0) ∧ −σs + 2 ∈ s2(−σs + 1).

Case 6: (1,≤ −3). Then ℓ(e⃗s) = 1, ℓ( ⃗es) − 1, ℓ(e⃗t) ≤ −3, and ℓ( ⃗et) ≤ −1. Then −→G
always has both a positive and negative label and ←−G always has a negative label. If none
of the conditions for other step value pairs hold, the step value pair (±,−) applies. For ←−G
to also have a positive label and in turn G having the step value pair (±,±), there is only
the step value condition left, as σs − 2 + rs

2 = −1 + rs
2 ≤ 0 and σt + 2− rt

2 ≤ −1− rt
2 ≤ −1.

Lemma 4.47 implies that the optimal condition for ←−G having a positive label is σt + 1 ∈
s1(0) ∧ σt + 2 ∈ s2(1).

Case 7: (≥ 2,≥ 0). Then ℓ(e⃗s) ≥ 2, ℓ( ⃗es) ≥ 0, but ℓ(e⃗t) ≥ 0 and ℓ( ⃗et) ≥ 2. So −→G
and ←−G always have a positive label. As Lemma 4.49 implies that at least one part of the
step value pair must be ±, there are now the three possible step value pairs (±,+), (+,±)
and (±,±) to check. For any step value pair one of the subgraphs must have a negative
label as shown in Lemma 4.47 and a step value condition has to hold for this. We now
make a case distinction over the concrete step values.

Case 7a: (±,+) or (+,±). Lemma 4.47 give the optimal conditions where either −→G or ←−G
contains a negatively-labelled edge. Given that the case (±,±) does not apply, then exactly
these special conditions must hold for the given step value pair.

Case 7b: (±,±). Here, both −→G and ←−G must use the step value condition. As shown in
Lemma 4.47, the separate optimal rotations are rs

1 = −1 and rt
1 = 0 for a negative label

in −→G and rs
2 = 0 and rt

2 = 1 for a negative label in ←−G . As these values are also compatible,
the single optimal rotation combination is [rs

1, r
t
1, r

s
2, r

t
2] = [−1, 0, 0, 1], which results in the

conditions x+ 1 ∈ s1(−σs) and x+ 3 ∈ s2(−σs + 1).

Case 8: (2,−2). Then ℓ(e⃗s) = 2, ℓ( ⃗es) = 0, ℓ(e⃗t) = −2, and ℓ( ⃗et) = 0, so −→G always
contains both a positive and a negative label, but the labels in ←−G are totally dependent
on the labels in ←−G−. Trying for every step value pair all rotation combinations and
computing the required conditions, we get the optimal condition −1 ∈ s2(0) for the step
value pairs (±,+) and (±,−), and the condition −2 ∈ s2(0) for the step value pair (±,±).
Note again that with rs

2 = rt
2 = 0 and slr

2 = 1, the step value pair (±,±) is also achievable
(see Lemma 4.47), but again slr

2 = 1 implies −2 ∈ s2(0) due to Lemma 4.34.

Case 9: (1,−2). Then ℓ(e⃗s) = 1, ℓ( ⃗es) = −1, ℓ(e⃗t) = −2, and ℓ( ⃗et) = 0, so −→G always
contains both a positive and a negative label and ←−G always contains a negative label. The
last step value pair (±,±) now also requires a positive label in ←−G . Trying, for every step
value pair, all rotation combinations and computing the required conditions we get the
optimal condition 0 ∈ s2(1).

Case 10: (2,−1). Similar to Case 7, −→G contains both a positive and a negative label,
while ←−G always contains a positive label. The condition for the step value pair (±,±),
which requires a negative label also in ←−G , can be computed to be 0 ∈ s2(−1).

The next lemma discusses an S-node ϕ containing fc with induced graph G and the
connection between the structure of G and the structures of its children Ga and Gb.
Intuitively, if Ga is the subgraph still containing fc, then an ortho-radial representation
of Ga is extended by the representation of Gb at one of the legs of Ga. Therefore, Gb can
either change σs or σt of Ga. But as ←−G as well as −→G traverses Gb, both step values may
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be changed no matter at which leg Gb is connected. In any case, each step value of an
ortho-radial representation of G must be allowed by the corresponding step value of the
representation of its induced subgraph Ga.

Lemma 4.53. Let ϕ be an S-node containing fc where the child ϕa still contains fc and is
ortholinear-plane while the other child ϕb is rectilinear-plane. Also, let Sa be the structure
of ϕa and let [sb, s

z
b , s

lr
b ] be the structure of ϕb. Then ϕ is ortholinear-plane with structure S,

and a feasible ((σs, σt), (sc, sa)) ∈ S if and only if ((σs
a, σ

t
a), (sc

a, s
a
a)) ∈ Sa and with

(d, i) =
{

(a,−1) if sc
a = ±,

(c, 1) if sa
a = ±,

1. either a = 1, σs = σs
a, (sc

a, s
a
a) allows (sc, sa), and with y := σt − σt

a the matching
condition holds

• If (sd
a, s

d) ∈ {(+,±), (0,−)}, then y ∈ sb(−σt
a − 2 + i).

• If (sd
a, s

d) ∈ {(−,±), (0,+)}, then y ∈ sb(−σt
a + i).

• If (sd
a, s

d) = (0, 0), then σt = σt
a and sz

b = 1.

• If (sd
a, s

d) = (0,±), then either σt = σt
a and slr

b = 1 or y ∈ sb(− sign(y)).

• In any other case y ∈ sb(0).

2. or a = 2 as well as σt = σt
a, (sc

a, s
a
a) allows (sc, sa), and with y := σs

a−σs the matching
condition holds.

• If (sd
a, s

d) ∈ {(+,±), (0,−)}, then y ∈ sb(−σs − i).

• If (sd
a, s

d) ∈ {(−,±), (0,+)}, then y ∈ sb(−σs + 2− i).

• If (sd
a, s

d) = (0, 0), then σs = σs
a and sz

b = 1.

• If (sd
a, s

d) = (0,±), then either σt = σs
a and slr

b = 1 or y ∈ sb(y + sign(y)).

• If in any other case y ∈ sb(0).

Proof. Let T be a valid ortho-radial representation of G and let Ta be the induced valid
ortho-radial representation of Ga. Then −→Ga and ←−Ga are 2-legged series-parallel subgraphs
of −→G and ←−G , respectively. Moreover, we know that −→G is the series composition of −→Ga

and Gb, while ←−G is the series composition of ←−Ga and Gb.

We start with the case a = 1 and show the ” ⇐= ”-direction. Let ((σs, σt), (sc, sa)) be
a feasible structure entry such that ((σs

a, σ
t
a), (sc

a, s
a
a)) ∈ Sa with σs = σs

a and (sc
a, s

a
a)

allows (sc, sa). Let moreover y = σt − σt
a. Then there exists a valid ortho-radial represen-

tation Ta of Ga with oriented spirality (σs, σt
a) and step value pair (sc

a, s
a
a). Combining Ta

with an arbitrary orthogonal representation Hb of Gb results in a valid ortho-radial represen-
tation T of G, because no new faces or simple essential cycles are formed. Let P ∈ Pst(

−→
G)

be a clockwise st-path of T . Then P = Pa +Pb with Pa ∈ Pst(
−→
Ga) and Pb being an st-path

of Gb. If Hb has the spirality y = σt − σt
a, then it is clear to see that

σ(T ) = rot(P ) = rot(Pa) + rot(Pb) = σt
a − σs + σt − σt

a = σt − σs.

As σs = σs
a, we know that T must have the oriented spirality (σs, σt). The existence of an

orthogonal representation of Gb having the spirality y is equivalent to y ∈ sb(0). We now
make a case distinction over the step value pair (sc

a, s
a
a) and (sc, sa) and change this condition

based on the further properties required by the step value pair. Lemma 4.49 implies that
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Ga

sa

ts

Gb

(d)

Ga

sa

t

Gb

s

(c)

(b)

Ga

Gb

ts

ta

(a)

Ga

Gb

s

t

ta

Figure 4.35: Four examples of a series-connection containing fc, whereGb is either connected
at ta (a, b) or connected at sa (c, d). The representation of Gb is always chosen
such that either sc, in case of the red paths, or sa, in case of the blue paths, is
improved to ±.

one of the values in each step value pair must be ±. Because (sc
a, s

a
a) allows (sc, sa), the

value being ± must be the same and by the definition of d, we know that sd as well as sd
a

indicate the part of the step value pair that is not fixed to ±.
Case 1: sd

a = + and sd = ± or sd
a = 0 and sd = −. With y ∈ sb(−σt

a − 2 + i), there exists
an orthogonal representation Hb of Gb fulfilling this step value expression. Let T be the
combined valid ortho-radial representation of Ta and Hb.

First, suppose (d, i) = (c, 1) and let P be an st-path in −→G . See Figure 4.35a for an example,
where the arbitrary st-path P is indicated by the red-dotted line. Then there exists an
edge e⃗ ∈ Gb contained in P with ℓsb

(e) = −σt
a − 2 + i = −σt

a − 1. As ℓ(e⃗t
a) = σt

a, we know
that ℓ(e⃗) = σt

a − σt
a − 1 = −1.

Second, suppose (d, i) = (a,−1) and let P be an st-path in ←−G . See Figure 4.35b for an
example, where the arbitrary st-path P is indicated by the blue-dotted line. Then there
exists an edge ⃗e ∈ Gb contained in P with ℓsb

(e) = −σt
a−2+i = −σt

a−3. As ℓ( ⃗et
a) = σt

a+2,
we know that

ℓ( ⃗e) = ℓ( ⃗et
a) + dir( ⃗et

a, P (et
a, e), ⃗e) = σt

a + 2 + ℓsb
(e) = σt

a + 2− σt
a − 3 = 2− 3 = −1.

No matter the value of d, there is a negative label in the respective path P while it
traverses Gb. Together with sd

a being + or 0, the step value sd of T is ± or −, respectively.
Case 2: sd

a = − and sd = ± or sd
a = 0 and sd = +. Then y ∈ sb(−σt

a − i) holds and there
exists an orthogonal representation Hb of Gb fulfilling this step value expression. Let T be
the combined valid ortho-radial representation of Ta and Hb.

First, suppose (d, i) = (c, 1) and let P be an st-path in −→G . Then there exists an edge e⃗ ∈ Gb

contained in P for which ℓsb
(e) = −σt

a + i = −σt
a + 1 holds. With ℓ(e⃗t

a) = σt
a, we know

that ℓ(e⃗) = σt
a − σt

a + 1 = 1.
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(a)

Ga

tas

t
Gb

(b)

Ga

tas

Gb

t

Figure 4.36: Examples of a series-connection containing fc, where only the st-paths of ←−Gb

contain non-zero labels. Both situations result in a step value of sa = ±.

Second, suppose (d, i) = (a,−1) and let P be an st-path in ←−G . Then there exists an
edge ⃗e ∈ Gb contained in P for which ℓsb

(e) = −σt
a+i = −σt

a−1 holds. With ℓ( ⃗et
a) = σt

a+2,
we know that

ℓ( ⃗e) = ℓ( ⃗et
a) + ℓsb

(e) = σt
a + 2− σt

a − 1 = 2− 1 = 1.

No matter the value of d, there is a positive label in the respective path P while it
traverses Gb. Together with sd

a being − or 0, the step value sd of T is ± or +, respectively.

Case 3: sd = 0 and sd
a = 0. Due to sd

a = 0, there exists an st-path Pa of −→Ga or ←−Ga,
depending on the concrete value of d that only contains zero-labelled edges. With sz

b = 1
and σt = σt

a there also exists an orthogonal representation Hb of Gb with σ(Hb) = 0 = y
and an st-path Pb containing only edges with relative label 0. So the combined valid
ortho-radial representation of Ta and Hb has the matching st-path Pa + Pb containing only
zero-labelled edges. It also has the desired oriented spirality (σs, σt).

Case 4: sd = ± and sd
a = 0. Due to sd

a = 0, we know that (σs
a, σ

t
a) ∈ {(2,−2), (0, 0)}. For T

to have the step value sd = ±, while sd
a = 0, both the positively- and the negatively-labelled

edges must be present in G2.

First, suppose σt = σt
a and slr

b = 1. See Figure 4.36a for an example. Then there exists
an orthogonal representation Hb of Gb with σ(Hb) = 0 = y and an edge e with a positive
as well as an edge e′ with a negative relative label in every st-path. If (σs

a, σ
t
a) = (2,−2),

then ℓ( ⃗et) = 0 and the only way that sd
a = 0 holds is if d = a. For the case (σs

a, σ
t
a) = (0, 0)

we similarly know ℓ(e⃗t) = 0 and d = c. In any case, the labels of the oriented edges e
and e′ are equal to their relative labels in Gb. Therefore, the combined valid ortho-radial
representation T has the step value sd = ± as well as the correct oriented spirality.

Second, suppose σt ̸= σt
a, which implies y ̸= 0, and y ∈ sb(− sign(y)). See Figure 4.36b for

an example where σt
a = −2 and σt = −3. If (σs

a, σ
t
a) = (0, 0), it again follows that ℓ(e⃗t

a) = 0
and d = c. Let P be an st-path in −→G . Then there exists an edge e⃗ ∈ Gb contained in P
for which ℓ(e⃗) = ℓ(e⃗t

a) + ℓsb
(e) = − sign(y) holds. With ℓ(e⃗t) = ℓ(e⃗t

a) + y = y, the path P
contains the edges e and et, which combined must have a negative and a positive label.
The same holds true for (σs

a, σ
t
a) = (2,−2), only with an st-path in ←−G .

Case 5: If none of the above cases apply, then sd = sd
a and all the labels for the step value are

already contained in Ta. With y ∈ sb(0), there exists an orthogonal representation Hb of Gb

such that the combined valid ortho-radial representation has the oriented spirality (σs, σt).

We now come to the case a = 2, where only a rough outline is given on how to adapt the
proof for a = 1. Let (σs, σt) be an oriented spirality and (sc, sa) be a step value pair and
let ((σs

a, σ
t
a), (sc

a, s
a
a)) ∈ Sa such that σt = σt

a, y = σs
a − σs and (sc

a, s
a
a) allows (sc, sa). Like

for a = 1, a valid ortho-radial representation Ta of Ga following the above structure and an
orthogonal representationHb with σ(Hb) = y results in a valid ortho-radial representation T
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of G with oriented spirality (σs, σt). To calculate a label of an internal edge in Gb we now
calculate it relative from the label of es instead of et

a. This again results in the desired
labels of 1 or −1. See Figure 4.35c for an example where (d, i) = (c, 1) and Ta only has step
value sc = +, while T has step value sc = ±. Figure 4.35d depicts the case (d, i) = (a,−1).

Finally, the ” =⇒ ”-direction mostly follows from the fact that in the ”⇐= ”-direction the
step value conditions of Gb for having a positive or negative label in a path was minimal,
meaning the step value conditions only implied a label of 1 or −1 for these edges. The
existence of an ortho-radial representation of T with a specific step value pair implies
with Lemma 4.51 that the induced representation Ta has a step value pair that allows the
parent’s step value pair. A different step value then implies that edges with at least label 1
or −1, depending on the concrete step values, must exist in Gb, which in turn implies the
step value conditions. The ” =⇒ ”-direction for the case sd = 0 is a direct implication of
the definition of the zero step value since it requires the whole path to have a label of 0.

The last situation to cover is a P-node containing fc that is not marked, meaning one if its
child nodes still contains fc. Here, the step value pairs are actually required to imply the
existence of a valid ortho-radial representation.

Lemma 4.54. Let ϕ be a P-node containing fc with children ϕa and ϕb where ϕa still
contains fc and is orthoradial-plane with structure Sa and ϕb is ortholinear-plane with
structure [sb, s

z
b , s

lr
b ]. Let G be the induced graph of ϕ as well as Ga and Gb be the

induced graphs of ϕa and ϕb. Then G admits a valid ortho-radial representation T
with oriented spirality (σs, σt) having the rotation combination [rs

1, r
t
1, r

s
2, r

t
2] if and only

if ((σs
a, σ

t
a), (sc

a, s
a
a)) ∈ Sa with σs

a = σs + rs
a, σt

a = σt − rt
a and the following holds.

• If a = 1, then |rs
1+rs

2|+|rt
1+rt

2|+σt
a−σs

a ∈ sb(0) and sc
a⊔∫(Gb) ∈ {0,±}. Moreover, T

has the step value pair

(∫(e⃗s) ⊔ sc
a ⊔ ∫(e⃗t), ∫( ⃗es) ⊔ (sa

a ⊓ ∫(Gb)) ⊔ ∫( ⃗et)).

• If a = 2, then −|rs
1 + rs

2| − |rt
1 + rt

2|+ σt
a − σs

a + 4 ∈ sb(0) and sa
a ⊔ ∫(Gb) ∈ {0,±}.

Moreover, T has the step value pair

(∫(e⃗s) ⊔ (sc
a ⊓ ∫(Gb)) ⊔ ∫(e⃗t), ∫( ⃗es) ⊔ sa

a ⊔ ∫( ⃗et)).

Proof. For the” ⇐= ”-direction, let (σs, σt) be an oriented spirality, let rs
1, r

s
2, r

t
1, r

t
2 be a

rotation combination, let ((σs
a, σ

t
a), (sc

a, s
a
a)) ∈ S, such that σs

a = σs + rs
a and σt

a = σt − rt
a,

and let Ta be a valid ortho-radial representation having the structure-entry above. We
make a case distinction over the value a.

Case 1:a = 1. We know that an orthogonal representation Hb of Gb exists with σ(Hb) =
|rs

1 + rs
2|+ |rt

1 + rt
2|+ σt

a − σs
a. Let T be the combined representation of Ta and Hb. See

Figure 4.37a for an example. Then the new face f is created by an anticlockwise st-path
of Ga and an st-path of Gb. So T is an ortho-radial representation because the rotation
of f is

rot(f) = rot(es
2, e

s
1) + σ(Ta) + 4 + rot(et

1, e
t
2)− σ(Hb)

= |rs
1 + rs

2|+ σt
a − σs

a + |rt
1 + rt

2|+ 4− σ(Hb) = 4.

The oriented spirality of T is also (σs
a − rs

1, σ
t
a + rt

1) = (σs, σt). For T to be valid, every
simple essential cycle in G must be valid. A simple essential cycle contained in Ga is
already valid, as Ta is valid. Any new simple essential cycle C is a concatenation of an
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(a) (b)

Gb

Ga

s

t

f

f

s

t

Ga

Gb

Figure 4.37: Two parallel compositions of the subgraphs Ga and Gb, where Ga contains fc,
but with a different ordering. On the left, the subgraph containing fc is G1
and on the right it is G2. The gray arrow indicates the rotation of the
newly created face f . As sc = ± for G1 on the left, the second subgraph G2
only requires −1 ∈ s(0). As sa = + for G2 on the right, the subgraph G1
requires 0 ∈ s(−1).

st-path Pa ∈
−→
G− = −→Ga and an st-path Pb ∈

←−
G− = Gb. Now the step value sc

a ⊔ ∫(Gb)
indicates the step value of the series composition of −→G and Gb. If it is the ± step value (as in
Figure 4.37a), then any combination of st-paths Pa and Pb forming a simple essential cycle
have somewhere in its path a positively- and a negatively-labelled edge by Definition 4.48.
If it is the 0 step value, then either both Pa and Pb have only zero-labelled edges or
Lemma 4.16, only using normal instead of relative labels, implies that at least one of the
two paths contains both a positively- and a negatively-labelled edge. In any case, every
simple essential cycle formed in this way is valid and T is therefore valid.

Finally, the step value pair of T is (sc, sa) = (∫(−→G), ∫(←−G)) and as ϕ is a P-node, −→G is the
(non-2-legged) series-composition of es,

−→
Ga, and et. Lemma 4.51 then implies that

∫(−→G) = ∫(e⃗s) ⊔ ∫(−→Ga) ⊔ ∫(e⃗t) = ∫(e⃗s) ⊔ sc
a ⊔ ∫(e⃗t).

Similarly, ←−G is the (non-2-legged) series-composition of et, the parallel composition of Gb

and ←−Ga, and then the series-composition of es. Again Lemma 4.51 then implies that

∫(−→G) = ∫( ⃗es) ⊔ (∫(Gb) ⊓ ∫(
←−
Ga)) ⊔ ∫( ⃗et) = ∫( ⃗es) ⊔ (∫(Gb) ⊓ sa

a) ⊔ ∫( ⃗et)

Case 2: a = 2. We know that an orthogonal representation Hb of Gb exists with σ(Hb) =
−|rs

1 +rs
2|−|rt

1 +rt
2|+σt

a−σs
a +4 and let T be the combined representation. See Figure 4.37b

for an example. The new face f is created by a reversed clockwise st-path of Ga and an
st-path of Gb. So T is an ortho-radial representation, because the face f has rotation

rot(f) = rot(es
2, e

s
1)−σ(Ta)+rot(et

1, e
t
2)+σ(Hb) = |rs

1 +rs
2|−σt

a +σs
a + |rt

1 +rt
2|+σ(Hb) = 4.

The oriented spirality of T is also (σs
a− rs

2, σ
t
a + rt

2) = (σs, σt). Regarding the validity of T ,
any newly created simple essential cycle C is a concatenation of an st-path Pa ∈

←−
G− =←−Ga

and an st-path Pb ∈
−→
G− = Gb. The validity of such a cycle follows from sa

a⊔∫(Gb) ∈ {0,±}
similar to the case a = 1. The step value pair of T also follows analogous to case a = 1.
Now to the ” =⇒ ”-direction. Let T be a valid ortho-radial representation of G with
oriented spirality (σs, σt) and let Ta be the induced ortho-radial representation of Ga

and Hb be the induced orthogonal representation of Gb. Then ℓ(e⃗s
a) = ℓ(e⃗s) + rs

a = σs + rs
a

and ℓ(e⃗t
a) = ℓ(e⃗t)− rt

a = σt − rt
a. So Ta has the oriented spirality (σs + rs

a, σ
t − rs

a). Now
let a = 1. With f being the newly created face it follows that

4 = rot(f) = |rs
1 + rs

2|+ σ(Ta) + 4 + |rs
1 + rs

2| − σ(H)
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and the condition in the statement holds. As T is also valid, every simple essential
cycle C in G is valid. This implies the validity of the induced representation Ta. Let C
be the set of simple essential cycles traversing Gb. Then C ∈ C is the concatenation of
st-paths Pa ∈

−→
G− = −→Ga and Pb ∈

←−
G− = Gb. If on the one hand, there exists a simple

essential cycle C∗ ∈ C having only edges with label 0, then there also exist such st-paths
in −→Ga and Gb. It follows that ∫(−→Ga) ⊔Gb = 0. If on the other hand, all simple essential
cycles in C contain both a positively- and negatively-labelled edge, then ∫(−→Ga) ⊔Gb = ±
and in total ∫(−→Ga) ⊔Gb ∈ {0,±}. Equality for the step value pair of T is already shown in
the ”⇐= ”-direction. The case a = 2 for the ” =⇒ ”-direction follows analogously.

The following lemma combines the results in Section 4.2 and gives an upper bound to the
runtime of creating a structure for a node in the decomposition tree.

Lemma 4.55. Given a 2-legged series-parallel orthoradial-plane 3-graph G = (V,E) the
structure S of G can be computed in O(n2) time.

Proof. A decomposition tree of G of size O(n) can be computed in O(n) time. Lemma 4.37
then implies a runtime of O(n) for creating a structure of every node that does not
contain fc. For nodes containing fc, we first limit the possible size of any structure S
of a node. The size of a structure S is dependent on the number of possible oriented
spiralities (σs, σt). An in absolute terms high value for σs requires at least an equal amount
of vertices for rotations to somewhere create an edge with a label of the opposite sign. The
same holds true for σt. Therefore, S has size O(n).

For the marked P-node creating fc, Lemmas 4.47 and 4.52 imply a constant-time algorithm
to compute its structure, as only a constant amount of cases have to be checked. For S-
nodes, Lemma 4.53 implies a linear-time algorithm to calculate its structure because each
structure-entry only takes a constant amount of time to check. For an unmarked P-
node containing fc with induced graph G, let first Gb be its ortholinear-plane subgraph
not containing fc. Calculating which step values ∫(Hb) and ∫(Hb) are possible over all
orthogonal representation Hb of Gb takes a constant amount of time with Lemma 4.46.
Then it also only takes a constant amount of time to check each structure-entry and a
structure for the P-node can be calculated in linear time. With the size of the decomposition
tree being O(n), the total runtime is O(n2).

4.3 General Series-Parallel 3-Graphs
In this section, we extend the approach for 2-legged series-parallel plane 3-graph, described
in Sections 4.1 and 4.2, to general series-parallel plane 3-graph. The difference between the
two is that a 2-legged series-parallel plane 3-graph requires deg(s) = deg(t) = 1 whereas
for general series-parallel plane 3-graph we may have deg(s), deg(t) ∈ [1, 3]. General series-
parallel 3-graphs are recursively defined by combining single edges in series and parallel-
compositions. As a single edge has degree 1 at each terminal and a series-composition
does not change the degree of the resulting terminals, we know that the terminals of an
SP-graph with a degree other than 1 must have been created at some parallel-composition.

Looking at the subgraphs of this parallel-composition, there are two possibilities. Either
the subgraphs have only one edge incident to the terminal or two. If a subgraph has only
one edge incident to both terminals of the parallel composition, this subgraph is a 2-legged
SP-graph, like the leftmost subgraph of the left parallel-composition in Figure 4.38. If it
has two edges incident, like the left child of the middle parallel-composition in Figure 4.38,
we can artificially add an extra leg to the terminal of the subgraph to again make it
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P3o P3oP3c

P3f

P3f

P2cβ P2oβ

P2oβ

P2cα

P2oαP2oα

Figure 4.38: The special cases for general series-parallel 3-graphs. A label in some face or
subgraph indicates how this case is named if the central face is found in this
part of the graph.

2-legged. This artificial leg obviously influences thestructure of the subgraph and therefore
special treatment is later required here. Nevertheless, after a single parallel-composition
with terminals of degree other than 1, we again only have to handle 2-legged SP-graphs.
Therefore, only a few special cases have to be taken into consideration at these parallel-
compositions. Further downwards in the composition tree all the results of Section 4.2
about 2-legged SP-graphs apply. Moreover, a single SP-graph can contain at most two
such special parallel compositions because at least one of the terminals of a special parallel
composition has a degree other than 1 and no further composition is here. This implies
that this terminal must also be a terminal of the whole graph, of which only two exist.

As the goal is to find ortho-radial representations, the position of the central face fc is also
important to decide which special case applies in a specific instance. To define all special
cases, Figure 4.38 shows parallel compositions with terminals of degree other than 1. A
label in some face or subgraph indicates how this case is named if the central face is found
in this part of the graph. The subscript of the label encodes the special case as follows. The
first digit, 2 or 3, indicates the number of children of the special case. An optional greek
letter further subdivides this case, and the final letter is either ”c” if fc is contained in the
middle child, ”o” if fc is contained in the left or right child, or ”f” if it is contained in a
newly created face of the parallel composition. In the case that the parallel composition has
two subgraphs we get the following cases. First, it may be that one, or both terminals have
a degree of 2 and are therefore simply missing the leg of a 2-legged SP-graph. We call this
case P2αf if the central face is created at the parallel composition, or P2α0 if the central
face is contained in one of the two children. If we have a degree of 3 for some terminal,
then one subgraph has twi incident edges to the terminal. Therefore, it must directly start
with a parallel composition missing the leg in the subgraph. We call this case P2βf if the
central face is created at the parallel composition, or P2β0 if it is contained in a subgraph.
If one terminal has degree 3 and the other degree 2, we still use the cases P2βf and P2β0.
In the case that the parallel composition has three children, all three subgraphs have to
be 2-legged. From this, the cases P3c, where fc is contained in the central subgraph, P3o,
where fc is contained in one of the outer subgraphs, and P3f , where fc is one of the two
newly created faces, arise. Finally, for a parallel composition with degree 2 at one terminal
and degree 1 at the other, as may be the case for P2αf or P2α0, there could also be the case
that the central face is contained in a serially joined 2-legged SP-graph, connected to the
terminal that has degree 1. Here, an artificial leg can be added to make the graph 2-legged
without sacrificing equality. This is due to the face that if an orthogonal representation of
the special parallel composition exists, then with Lemma 4.7 there also exists one with a
non-negative rotation at the terminal with degree 2 by possibly reducing the spirality of
a subgraph. And with a non-negative rotation there is always space to add a leg at this
terminal. The decomposition tree as defined for 2-legged SP-graphs can still be used for
all the special cases by simply marking the non-2-legged P-node with a label indicating
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(a) (b)

s

t

e∗
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Figure 4.39: Examples of the case P2αf with degree 2 at some terminal. They take advantage
of the fact that a negative clockwise rotation is possible at either s (a) or t (b).

the special case. We now cover a few cases separately and then show that the rest can be
reduced to using Lemma 4.54.

First, the case P2αf . At a normal parallel composition of a 2-legged SP-graph, the
rotations rot(et

1, e
t
2) and rot(es

2, e
s
1) between the legs of the two subgraphs must always be

greater than 0. This is due to the fact that in the middle the leg of the terminal is present.
As this leg is missing in the P2αf case, this rotation can also be negative. See Figure 4.39a
for an example where rot(es

2, e
s
1) = −1. The following lemma shows that this property is

enough to make every such P-node orthoradial-plane.

Lemma 4.56. Let ϕ be a P-node for which the case P2αf applies and where its children ϕ1
and ϕ2 both are rectilinear-plane. Then ϕ is also orthoradial-plane.

Proof. As the case P2cα applies, the parallel connection has degree 2 at either s or t or
both and the other terminal has degree 1. If Lemma 4.23 implies the existence of a valid
ortho-radial representation using the structures of ϕ1 and ϕ2, then G admits the same
representation, only without the extra leg at the terminals that now have degree 2.

If Lemma 4.23 does not imply a valid ortho-radial representation, then Equation (4.16)
does not hold. Using Lemma 4.20 we know that this is only possible for the step val-
ues [sl

1, s
r
1, s

z
1] = [0, 0, 1] and [sl

2, s
r
2, s

z
2] = [x, y, 0], x, y ∈ N or the inverse assignment.

Without loss of generality, let the step values be as they are shown above. Then there
exists an OR H2 of G2 such that σ(H2) = 0 and every st-path through G2 has a positive
relative label. Moreover, an OR H1 of G1 must exist with σ(H1) = 0. Suppose deg(s) = 2
and deg(t) = 1. The two orthogonal representations can be combined into a representation T
of G with rotations rot(et

1, e
t
2) = 1 and rot(es

2, e
s
1) = −1. The usage of rot(es

2, e
s
1) = −1 is

possible here, as deg(s) = 2. Figure 4.39a shows this case. We then know that

rot(fc) = rot(fo) = σ(H1) + rot(et
1, e

t
2)︸ ︷︷ ︸

1

−σ(H2) = 0 + rot(es
2, e

s
1)︸ ︷︷ ︸

= −1

= 0

and T is an ortho-radial representation. Now let es
2 be the reference edge directed such

that it points to the outside of G2 and let C be an arbitrary simple essential cycle in T .
Then ℓ(e⃗s

1) = rot(es
2, e

s
1) = −1. Let ⃗e ∈ G2 be the edge contained C that has a positive

relative label in H2. It follows that

ℓ( ⃗e) = ℓ( ⃗e) + rot(C[e, es
2])︸ ︷︷ ︸

= rot(C) = 0

− rot(C[e, es
2])︸ ︷︷ ︸

= − ℓs2 (e) < 0

> 0

Therefore C contains the positively-labelled edge e and the negatively-labelled edge es
1 and,

as C was arbitrary, T must be a valid ortho-radial representation.

Now if deg(s) = 1 and deg(t) = 2, then the same argumentation but with rot(et
1, e

t
2) = −1

and rot(es
2, e

s
1) = 1 implies the statement as also seen in Figure 4.39b. If both terminals
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have degree 2, then one terminal can be selected to have a negative rotation, while the
other terminal has a positive one.

In the case P2βf , there exists at least one subgraph missing a leg. This subgraph is then
not 2-legged anymore and therefore the results of Section 4.1 can not be used to describe
it. But this connection point has a similarity to the series connection in Figure 4.3. There,
the problem was that a normal series composition of SP-graphs may leave one child of the
2-legged SP-graph without a leg. The solution was to share the connecting leg between the
two subgraphs and when connecting them in series, the two legs get merged into one edge
again. The same idea is used here in the case P2βf . This results in a parallel composition,
where at one, or maybe even both terminals, not a parallel connection but a series one is
performed.

Lemma 4.57. Let ϕ be a P-node for which the case P2βf applies and where its children ϕ1
and ϕ2 both are rectilinear-plane. Let G be the induced graph of ϕ and G1 and G2 be
the induced graphs of ϕ1 and ϕ2. Then ϕ is orthoradial-plane if and only if the matching
condition holds.

1. If deg(s) = 1 and deg(t) = 3, then for the series composition of G1 and G2 one
of slr = 1, sz = 1, −1 ∈ s(1), or −1 ∈ s(−2) holds.

2. If deg(s) = 3 and deg(t) = 1, then for the series composition of G2 and G1 one
of slr = 1, sz = 1, −2 ∈ s(1), or −1 ∈ s(−2) holds.

3. If deg(s) = 3 and deg(t) = 3, then for the series composition of G1 and G2 one
of slr = 1, sz = 1, 0 ∈ s(2), or 0 ∈ s(−2) holds.

4. If deg(s) = 2 and deg(t) = 3, then for the series composition of G1 and G2 one
of slr = 1, sz = 1, −1 ∈ s(1), −1 ∈ s(−2), 1 ∈ s(−1), or 1 ∈ s(2) holds.

5. If deg(s) = 3 and deg(t) = 2, then for the series composition of G2 and G1 one
of slr = 1, sz = 1, −1 ∈ s(1), −1 ∈ s(−2), 1 ∈ s(−1), or 1 ∈ s(2) holds.

Proof. We explicitly prove equality only for the first condition, and then explain how the
proof can be adapted to the others.

Case 1: deg(s) = 1 and deg(t) = 3. Let [s, sz, slr] be the structure of the series composi-
tion H of G1 and G2 with legs es and et. The idea is to create an orthogonal representation
of H and to the connect the legs es and et as in a parallel composition to create an
ortho-radial representation. See for example Figure 4.40a, where an orthogonal represen-
tation of H with spirality 0 is wrapped around the center of the ortho-radial grid and
connected at es and et. With r ∈ {0, 1} being the rotation between et and es, the legs of an
orthogonal representation H of H can be connected with a new leg to form an ortho-radial
representation of G if 0 = rot(fc) = rot(fo) = σ(T ) + r. This implies σ(T ) ∈ {0,−1}. A
simple essential cycle of the ortho-radial representation is then equivalent to an st-path
of H. If slr = 1 or sz = 1, then using the respective representations with r = 0 obviously
results in a valid ortho-radial representation with e∗ = es. The case slr = 1 is shown in
Figure 4.40a. Having −1 ∈ s(1) similarly results in a valid ortho-radial representation
with e∗ = es since every st-path contains the negatively-labelled edge et and also an edge
with label 1 (see Figure 4.40b). If −1 ∈ s(−2), using e∗ = et results in a label of ℓ(e⃗s) = 1,
because r must be 1. Figure 4.40c shows this case. Then every edge e with relative label −2
has normal label ℓ(e⃗) = −2 + 1 = −1 and the representation is again valid.

Conversely, if a valid ortho-radial representation T of G exists with x := ℓ(e⃗s), then when
splitting it up at the leg vertex of s, an orthogonal representation of the series composition
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Figure 4.40: Examples of the case P2βf . The vertices s and t represent the terminals of the
composed graph. After merging, t is contained in G2 for every example. The
blue legs are the artificially added legs used to create a series-composition and
the legs es, et of this series-composition are connected to form an ortho-radial
representation. For (d), also these legs get merged, as deg(s) = deg(t) = 3 in
this case.

of G1 and G2 is created. For this representation we know that ℓs (et) = −r ∈ {0,−1}.
There are now two possibilities.

Case 1a: Every st-path of H contains an edge e+ with a positive label in T , for
which ℓs (e+) = ℓ(e⃗+) − x ≥ −x + 1, and an edge e− with a negative label in T , for
which ℓs (e−) = ℓ(e⃗−) − x ≤ −x − 1. If x > 0, then es already has a positive label
and ℓs (e−) ≤ −x − 1 ≤ −2 implies y ∈ s(−2) with y = ℓs (et) ∈ {0,−1}. Using
Lemma 4.32, both cases imply that −1 ∈ s(−2). If x = 0, then ℓ(e⃗) = ℓs (e) for every
edge e ∈ H, so ℓs (e+) > 0 and ℓs (e−) < 0. If also ℓs (et) = 0 it follows that slr = 1 and
if ℓs (et) = −1, it follows that −1 ∈ s(1). If finally x < 0, then ℓs (e+) ≥ −x + 1 ≥ 2
and it follows that y ∈ s(2) with y = ℓs (et) ∈ {0,−1}. Using Lemma 4.32 this always
implies −1 ∈ s(1).

Case 1b: There exists a simple essential cycle having only edges with label 0 in T . Then
especially ℓ(e⃗s) = 0 and the corresponding st-path of H therefore also has only edges with
relative label 0. This implies sz = 1 for H.

Case 2: deg(s) = 3 and deg(t) = 1. The argumentation of Case 1 can directly be used to
show equivalence for this case. Only the series composition H is constructed differently.

Case 3: deg(s) = 3 and deg(t) = 3. For the ” =⇒ ”-direction, the series composition H
of G1 and G2 with legs es and et can now only be connected with r = 0 since also es

and et get merged into a single edge (see Figure 4.40d where the condition 0 ∈ s(2) is
used). For the conditions slr = 1 or sz = 1, this is already given as shown in Case 1.
For the condition 0 ∈ s(2) and 0 ∈ s(−2) this is also possible since the spirality in both
cases is 0. When picking a reference edge such that ℓ(e⃗s) = −1 for 0 ∈ s(2) and ℓ(e⃗s) = 1
for 0 ∈ s(−2), then the validity can be shown similar to Case 1. The ” =⇒ ”-direction
follows with the argumentation of Case 1 when using r = 0.
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P3c P3o P3f

180◦

180◦ 180◦

180◦

P2oα

180◦

P2oβ

180◦

Figure 4.41: For each special case a depiction of how it can be reduced to 2-legged series-
parallel 3-graphs.

Case 4: deg(s) = 2 and deg(t) = 3 or deg(s) = 3 and deg(t) = 2. In these cases, the
rotation value r may also have the value −1 and the same argumentation as in Case 1,
implies the equivalence.

Any other special case not covered in Lemmas 4.56 and 4.57 can simply be reduced to
handling 2-legged series-parallel 3-graphs. For this we define Gl and Gr to be the left and
right subgraph of a special parallel composition, and if the composition has three children,
then Gc also denotes the central subgraph. Figure 4.41 gives a graphical example for every
of the following cases. For P3c, the graph can be split up into two 2-legged series-parallel
3-graphs. One consisting of Gc, where also the central face is contained, and one we call Gj

consisting of Gl and Gr joined with a copy of the legs of Gc. If we can create a valid
representation for both subgraphs separately and ensure that their legs have opposing
orientations, we can merge the legs together to form a valid representation of the whole
graph. The new subgraph Gj is again 2-legged but the induced embedding of Gj is not
an outer embedding because the legs are incident to the central instead of the outer face.
Barth et al. [BNRW21, Lemma 6] have defined so-called flipped representations, which in
essence swap the central and inner face in the embedding. The resulting embedding of this
process is then again outer and the results of Section 4.1 can be used to find an st-outwards
valid ortho-radial representation. When flipping the representation back, the legs point
inwards to the center and can therefore be merged again with an st-outwards representation
of Gc. Conversely, if a valid ortho-radial representation of P3c exists, Lemma 4.23 implies
that there also exists a valid ortho-radial representation of Gc and the flip of Gj , both of
which are st-outwards.

For P3o, where without loss of generality Gl contains fc, the graph can be split up into
the 2-legged series-parallel 3-graphs Gl and one we call Gj consisting of Gc and Gr joined
with temporary legs to make it 2-legged. Both graphs can then be connected via a parallel
composition. Given a valid ortho-radial representation of this new parallel composition, a
representation of P3o can be created by removing the new legs of the parallel composition
and merging the temporary legs of Gj with the ones from Gl. This process is not possible
though if the legs of Gl and Gj do not align correctly. But by enforcing an internal
angle at the leg-vertices of the new parallel composition of 180◦, the legs of Gj and Gl

can always be merged, as they have opposite orientations. Then every valid ortho-radial
representation of the constructed parallel composition translates to a valid ortho-radial
representation of P3o. The angle of 180◦ can be enforced by considering only the rotation
combination rs

1, r
t
1 = −1 and rs

2 = rt
2 = 1 in Lemma 4.54. Conversely, a valid ortho-
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radial representation of P3o always translates to a valid ortho-radial representation of the
constructed parallel composition by subdividing the legs of Gl and adding new legs.

The other cases can be handled similarly. For P3f , where without loss of generality fc is
between Gl and Gc, the graph can be split up into the 2-legged series-parallel 3-graphs Gr

and one we call Gj consisting of Gl and Gc joined with temporary legs to make it 2-legged.
A parallel composition with a fixed inner angle of 180◦ can then be used similarly to
the P3o-case. For P2β0, every subgraph not being 2-legged gets a temporary leg and if a
terminal has degree 2 as in the P2α0 case, then one of the subgraphs is serially composed
with a D-node to represent the possible rotations at the terminal. In both cases the same
approach using a parallel-composition with a fixed inner angle of 180◦ can then be used as
in the P3o-case.

The following theorem summarizes the results of this section and gives a polynomial
bound to the runtime of creating a bend-free valid ortho-radial representation of a general
series-parallel plane 3-graph.

Theorem 4.58. Given a series-parallel plane 3-graph (G, E), a fixed outer face fo, and a
fixed inner face fc, a bend-free valid ortho-radial representation of G, if one exists, can be
found in O(n2) time.

Proof. The runtime of O(n2) to check if a bend-free valid ortho-radial representation exists
follows from Lemma 4.55, the fact that Lemmas 4.56 and 4.57 require constant time to
compute, and the fact that the other special cases can be reduced to handling 2-legged
series-parallel 3-graphs. The actual creation of an ortho-radial representation can then be
handled similar to Theorem 4.25.
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5. Conclusion

The TSM-framework of Tamassia [Tam87], created for finding orthogonal drawings of a
graph, has been used by Barth et al. [BNRW21] to find ortho-radial drawings instead.
In the intermediate step of both approaches, a representation of the drawing must be
found that only describes the angles between edges and excludes the concrete lengths
of an edge. The definition of orthogonal representations for orthogonal drawings and
ortho-radial representations for ortho-radial drawings share many similarities. In the
ortho-radial case, the existence of only a so-called valid ortho-radial representation, which
adds global conditions for essential cycles, is equivalent to the existence of an ortho-radial
drawing. However, efficient algorithms for finding such a valid ortho-radial drawing were
not known. In this work we showed that in contrast to orthogonal representations, the
problem of finding a bend-free valid ortho-radial representation is NP-complete for general
plane 4-graphs. This directly implies that finding an ortho-radial drawing for such graphs is
NP-complete as well. Moreover, we have also shown that when restricting the graph to be
a series-parallel plane 3-graph, efficient algorithms for finding bend-free valid ortho-radial
representations exist. When the graph is restricted further to be a 2-legged series-parallel
plane 3-graph, even a bend-minimum valid ortho-radial representation can be efficiently
searched for.

Future work can still be put into extending the shown algorithm for series-parallel 3-graphs to
a less restrictive class of graphs, like general 3-graphs or series-parallel 4-graphs. Orthogonal
representations can in both cases be found using so-called splines [DBLV98][DKLO22],
which are a natural extension to the st-paths of 2-legged SP-graphs. It may therefore be
possible to also define properties, similar to step values, using these splines, and build up a
recursive algorithm. Moreover, it may also be possible to use the concepts introduced in
this work and use the branch-width of a graph to formulate a parameterized algorithm on
sphere-cut decompositions even for general 4-graphs.

Another point for improvement could be to search for a valid ortho-radial representation
over all possible outer embeddings as well as every assignment of the outer and central
face of a series-parallel 3-graph. The embedding of an SP-graph with terminals s and t
is encoded by the order of child nodes at every P-node in the decomposition tree. By
checking all arrangements of subgraphs for each node, one automatically searches over
all possible outer embeddings. The open question here is how efficiently one can test all
possible assignments of the outer and central face as well as all possible terminals s and t
(as these change the decomposition tree).
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5. Conclusion

Finally, this work only gives an approach to find bend-free, and not bend-minimum, valid
ortho-radial representations for general series-parallel 3-graphs. It is imaginable that
the same concept as in Section 4.1.3 can give a polynomial time algorithm to also find
bend-minimum representations for these graphs.
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