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Abstract

A drawing D of a graph G is a representation of G. Such a drawing is called planar,
if no pair of edges cross. Moreover, we can characterize a planar drawing of a graph
by the circular ordering of the incident edges of each vertex, namely the rotation
system of a drawing. If we have given a drawing of a graph with crossings, the
different version of the Hanani-Tutte theorems are helpful to decide whether there is
crossing-free drawing of this graph. If in the given drawing every pair of edges crosses
an even number of times, we know by the weak Hanani-Tutte theorem , there is a
crossing-free drawing of the graph, such that the rotation system is preserved. On
the other hand, the strong Hanani-Tutte theorem provides that a graph has a planar
drawing, if in the given drawing every pair of independent edges cross evenly. So, for
this version, dependent edges can cross. The generalization of these two theorems is
the uniform Hanani-Tutte theorem, where an independently even drawing of a graph
is given. By the uniform theorem, there is a crossing-free drawing of that graph,
such that the rotation system at even vertices is preserved. A vertex is even, if all
incident edges cross all other edges evenly.

In this thesis, we consider the different versions of the Hanani-Tutte theorem in two
settings. We start with the Hanani-Tutte theorems on the projective plane. Here,
we present the proofs of both the weak and the strong Hanani-Tutte theorem on
the projective plane. Afterwards, we show, why the representation of a graph in the
proof of the strong version prevents the adaption to a proof of the uniform version.
In the second part, we treat the Hanani-Tutte theorems for radial planarity. There
we consider level-graphs, where each vertex corresponds to a level. A radial drawing
of a graph, is then a drawing, where each vertex is assigned to a concentric cycle
and the edges are drawn radial. That means the edges cross each level at most once.
We present proofs for the weak and the strong Hanani-Tutte theorems for radial
planarity. Then we prove the uniform Hanani-Tutte theorem for radial planarity
under the assumption that odd crossings appear only at the extreme vertices v1 or
vn. Moreover, we show, that a minimal counterexample to the theorem has to be
connected and does not contain multiple edges.
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Deutsche Zusammenfassung

Eine Zeichnung D eines Graphens G ist eine Darstellung von G. Eine solche Zeich-
nung ist planar, wenn sich keine Kantenpaare kreuzen. Außerdem können wir eine
planare Zeichnung eines Graphen durch die zirkuläre Anordnung der Kanten jedes
Knotens charakterisieren. Dies Anordnung bezeichnen wir als das Rotationssystem
der Zeichnung. Wenn wir eine Zeichnung eines Graphen mit Kreuzungen gegeben
haben, sind die verschiedenen Versionen der Hanani-Tutte Theoreme hilfreich um
zu entscheiden, ob es eine kreuzungsfreie Zeichnung dieses Graphen gibt. Wenn
sich in der gegebenen Zeichnung jedes Kantenpaar gerade oft kreuzt, wissen wir
durch das schwache Hanani-Tutte Theorem, dass es eine kreuzungsfreie Zeichnung
des Graphen gibt, in der das Rotationssystem erhalten bleibt. Wenn sich in der
Zeichnung nur jedes Paar unabhängiger Kanten gerade oft kreuzt, wissen wir durch
das starke Hanani-Tutte Theorem, dass eine planar Zeichnung existiert, in der jedoch
das Rotationssystem nicht erhalten bleibt. In dieser Version können sich dafür ab-
hängige Kanten kreuzen. Die Verallgemeinerung dieser Theoreme stellt das uniforme
Hanani-Tutte Theorem dar. Bei diesem ist wiederum ein Zeichnung eines Graphen
gegeben, in der sich alle unabhängigen Kanten gerade oft kreuzen. Nach dem unifor-
men Theorem gibt es dann eine kreuzungsfreie Zeichnung dieses Graphen, sodass das
Rotationssystem an geraden Knoten erhalten bleibt. Das sind Knoten, bei denen
alle inzidenten Kanten jede andere Kante gerade oft kreuzen.

Wir betrachten die verschiedenen Versionen der Hanani-Tutte Theoreme in zwei
Varianten. Wir beginnen mit den Hanani-Tutte Theoremen für die projektiven Ebene.
Wir präsentieren sowohl den Beweis des schwachen als auch des starken Hanani-Tutte
Theorems. Danach zeigen wir, warum die Darstellung von Graphen im Beweis der
starken Version die Anpassung des Beweises für einen Beweis der uniformen Version
verhindert.
Im zweiten Teil behandeln wir die Hanani-Tutte Theoreme für radiale Planarität.
Dabei betrachten wir Level-Graphen, bei denen jeder Knoten einem Level zugeordnet
ist. Eine radiale Zeichnung eines Graphen ist dann eine Zeichnung, bei der jeder
Knoten auf einem konzentrischen Kreis liegt und die Kanten radial gezeichnet sind.
Das bedeutet, dass die Kanten jede Ebene höchstens einmal kreuzen. Wir stellen
wiederum Beweise für das schwache und das starke Hanani-Tutte-Theorem für radiale
Planarität vor. Dann beweisen wir das uniforme Hanani-Tutte Theorem für radiale
Planarität unter der Annahme, dass ungerade Kreuzungen nur an den extremen
Knoten v1 und vn auftreten. Außerdem zeigen wir, dass ein minimales Gegenbeispiel
für das Theorem zusammenhängend sein muss und keine Mehrfachkanten enthalten
darf.
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1. Introduction

Given a graph G = (V, E) with vertices and edges, it is often not quite clear whether we
mean the graph itself or a drawing of the graph. Such a drawing is the arrangement of
edges and vertices. But we can arrange the objects of a graph in many different way, which
results in many different drawings of a graph. This can also result in drawings containing
crossings, which are points in the drawing, where two edges intersect. Here, it is useful to
find a drawing with as few crossings as possible. An example of different drawings of a
graph with a varying number of crossings is shown in Figure 1.1. By the crossing number
cr(G) of a graph G we can specify, how many crossings are at least necessary to draw the
given graph. Hence, if cr(G) = 0 then there exist a drawing of G without any crossing. We
call such a drawing without crossings a planar drawing of G and the corresponding graph
G planar.
However, if we now have a drawing of a graph G in which crossings are present, we can
classify the vertices and edges of G. For example in Figure 1.1 (b) the edges e and f cross
twice. So this pair of edges crosses evenly. Compared to this e and f cross in Figure 1.1 (c)
only once, so they cross oddly. If a given edge e crosses every other edge of G an even
number of times, we call e an even edge. If a graph G can be drawing only with even edges
is represented by the odd crossing number ocr(G) of G, which specifies, how many pairs of
edges have to cross at least an odd number of times in any drawing of G.
For a graph G, we would like to know if cr(G) = 0, since then a planar drawing of G exists,
which is often an easy-to-read representation. Let us assume for no, that we work with a

(a) (b) (c)

e

f

e

f

Figure 1.1: Three drawings of the same graph. (a) is planar drawing, (b) is a non-planar
drawing, but all edges cross evenly and (c) is a non-planar drawing, where
independent edges cross evenly, but dependent edges may cross oddly.
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1. Introduction

graph G with ocr(G) = 0 and we are already given a drawing of G, where every edge is
even. Then the Hanani-Tutte theorems are helpful, to establish a connection between a
graph with ocr = 0 and planarity. The Hanani-Tutte theorem states:

If there is for a given graph G a drawing realizing ocr(G) = 0, then there is a drawing
realizing cr(G) = 0.

This means that a drawing that only contains even edges is just as good as a drawing that
contains no crossings at all. To compare different drawings, a helpful tool are rotations.
The rotation of a vertex v of G is the cyclic clockwise order of the edge incident to v
in a drawing. The entirety of the rotations of all vertices of G together results in the
rotation system of a drawing of G. By the rotation system of a planar drawing every face
is determined. So if we again have a drawing of a graph G in which there are only even
edges (ocr(G) = 0), we also want to preserve the rotation scheme if possible. The weak
Hanani-Tutte theorem does exactly this:

Theorem 1.1 (weak Hanani-Tutte theorem). Let G = (V, E) be a graph given with a
drawing realizing ocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the
rotation system is preserved.

This is one of the actual version of the Hanani-Tutte theorems, by which a drawing with
only even edges implies that there is also a crossing-free drawing of the same graph with
the same rotation system. This theorem was proved independently multiple times. A
geometric proof was done by Pelsmajer, Schaefer and Štefankovič [PSŠ07a]. Černỳ [Čer08]
gave another proof in his PhD thesis. A proof that used homology theory and intersection
forms was done by Cairns and Nikolayevsky [CN00]. This proof holds for arbitrary surfaces,
not only for the plane.
So far we have only allowed even edges in the given drawings. But can we also allow some
odd crossings, for example if the odd crossings only appear at pairs of dependent edges
i.e. edges that have a common endpoint, see Figure 1.1 (c). If such a drawing exists for a
given graph G is described by the independent odd crossing number iocr(G). This number
specifies how many pairs of independent edges (edges not sharing an endpoint) cross at
least in any drawing of G. For these drawings the strong Hanani-Tutte theorem establishes
the connection to planar drawings:

Theorem 1.2 (strong Hanani-Tutte theorem). Let G = (V, E) be a graph. If there is a
drawing realizing iocr(G) = 0 then there is a drawing realizing cr(G) = 0.

The strong version is the first stated version. It was proven by Hanani [Cho34] and Tutte
[Tut70]. Note, that the naming is misleading. The strong version is not a generalization of
the weak version, since the strong version makes no statement about the rotation system.
Moreover, the weak version has the stronger result, and the strong version the weaker
assumption. A common generalization is the uniform Hanani-Tutte theorem. This theorem
combines the weak and strong Hanani-Tutte theorem in a natural way, by using the weaker
assumption and maintaining the stronger result where possible. Hence, we assume that
the given drawing is independently even, thus all pairs of independent edges cross an
even number of times in the drawing. We want a planar drawing and that the rotation
is preserved. But since there can exist odd crossings, the rotation system can nopt be
preserved at every vertex. We can only preserve the rotation system at even vertices, that
are vertices, where all incident edges are even.

Theorem 1.3 (uniform Hanani-Tutte theorem). Let G = (V, E) be a graph given with a
drawing realizing iocr(G) = 0. Then there is a drawing realizing cr(G) = 0 such that the
rotation at even vertices is preserved.
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Figure 1.2: (a) A planar drawing of a level-graph. (b) A radial-planar drawing of a level-
graph. Note these are two different graphs.

The uniform Hanani-Tutte theorem was shown by Fulek, Kynčl and Pálvölgyi [FKP17]. It
was already indirectly stated by Pelsmajer, Schaefer and Štefankoviv̌ [PSŠ07a]. To prove the
uniform version it is generally popular, to use the proof of the strong Hanani-Tutte theorem
as a basis and adapt it accordingly. Note, that the uniform Hanani-Tutte theorem implies
the weak and the strong Hanani-Tutte theorem. Therefore, if the strong Hanani-Tutte
theorem is already wrong, also the uniform Hanani-Tutte theorem is disproved. More
information about the Hanani-Tutte theorem in the plane can be found in “Hanani-Tutte
and Related Results” by Schaefer [Sch13].

So far we only considered topological drawings in the plane. But there are also drawings
in the plane with special properties. Assume, we have given a level-graph. For such a
graph, the vertices are aligned on levels and the edges are monotone and connect vertices
of different levels. An example of a level-graph is shown in Figure 1.2 (a). If the levels are
not horizontal, but vertical, and the edges are monotone in x-direction, the representation
is called an x-monotone drawing. For these restrictions, all three versions of the Hanani-
Tutte theorems are proven [FPSŠ12, PT04, Bö22]. Thereby, the levels of the vertices are
unchanged. A generalization of level-planarity is radial-planarity. Here the levels are
represented by concentric cycles corresponding to the levels. This concept was firstly
introduced by Bachmaier, Brandenburg and Forster [BBF05]. The weak and the strong
Hanani-Tutte theorems for radial-planarity were proven by Fulek, Pelsmajer and Schaefer
[FPS17, FPS23]. We will consider the uniform Hanani-Tutte theorem for radial planarity
in Chapter 4.

There are also other surfaces then the plane, on which we can represent graphs. Let us
start with the weak Hanani-Tutte theorem for any surface. There is a proof by Cairns
and Nikolayevsky [CN00] using homology theory, that the weak Hanani-Tutte theorem
holds on an orientable surface of any genus. A geometric proof by Pelsmajer, Schaefer and
Štefanokovič [PSŠ07b] extends the result, such that the weak Hanani-Tutte theorem is
also valid for non-orientable surfaces of any genus. By both proofs the weak Hanani-Tutte
theorem is true for all surfaces of any genus.
For the strong Hanani-Tutte theorem, such a general prove does not exist and is generally
incorrect [FK19]. But let us consider the strong Hanani-Tutte theorems for different
surfaces step by step. We start with the non-orientable surfaces. There exists a proof of
the strong Hanani-Tutte theorem on the projective plane. Pelsmajer, Schaefer and Stasi

3



1. Introduction

[PSS09] found a proof by using minimal forbidden minors for the projective plane. These
minors were determined by Archedeacon, Glove, Huneke and Wang [Arc81, GHW79]. A
direct proof for the strong Hanani-Tutte theorem on the projective plane was done later by
Colin de Verdière et al. [CKP+17]. We will take a closer look at this proof in Chapter 3,
where we also consider the uniform version. For all other non-orientable surfaces such
results are known for neither the strong nor the uniform Hanani-Tutte theorem.
For orientable surfaces on the other hand, there exist some more results. We know by Fulek,
Pelsmajer and Schaefer [FPS21] for the orientable surface of genus 1, namely the torus,
that the strong Hanani-Tutte theorem is valid. For orientable surfaces of genus 2 or 3 we
do not know is the strong or the uniform Hanani-Tutte theorems are true. For orientable
surfaces of genus of at least 4 on the other hand there is a counterexample for the strong
Hanani-Tutte theorem. To construct the counterexample Fulek and Kynčl [FK19] created
a counterexample for the uniform Hanani-Tutte theorem on the torus first. Hence, neither
the uniform Hanani-Tutte theorem on the torus nor the strong Hanani-Tutte theorem for
orientable surfaces of genus of at least 4 hold. By the implication between the uniform and
strong Hanani-Tutte theorems, the counterexample of Fulek and Kynčl [FK19] also implies
that the uniform Hanani-Tutte theorems for orientable surfaces of genus of at least 4 are
wrong.

Since the uniform Hanani-Tutte theorem for the torus is false, we go back to the plane,
where we actually treat radial drawings. On the other hand, we will consider drawings on
the non-orientable surface with lowest genus 1, namely the projective plane.
A common way to prove the uniform Hanani-Tutte theorem is to adapt the proof of the
respective strong Hanani-Tutte theorem. So, we will present the strong proof in the two
different settings and try to adapt it to an proof for the uniform version, respectively.
Hence, after introducing some preliminaries in Chapter 2, we treat the different version of
the Hanani-Tutte theorem on the projective plane in Chapter 3. There, we start with the
weak and strong Hanani-Tutte theorem on the projective plane. Building on this, we show,
why we cannot develop the approach of the strong version further to a proof of the uniform
Hanani-Tutte conjecture. Nevertheless, we are able to show a feature of a minimal counter
example. The second main topic, namely the Hanani-Tutte theorem for radial planarity, is
presented in Chapter 4. There we start with some topic-specific definitions, present the
weak and strong Hanani-Tutte theorem for radial planarity and finally treat the uniform
version.
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2. Preliminaries

A surface is a connected compact Hausdorff topological space S that is locally homeomorphic
to an open disk in the plane. It is also called closed surface. So, each point of S has an
open neighborhood homeomorphic to the open unit disk in R2 [BM01]. Let B1 and B2
be two disjoint disks (with the same size) on a surface S. By deleting the interior of B1
and B2 and identify the boundary ∂B1 of B1 with the boundary ∂B2 of B2 such that the
clockwise orientations around ∂B1 and ∂B2 disagree, we obtain a handle. See Figure 2.1 (c)
for an example of a handle on the sphere S0. To obtain a crosscap instead of a handle, we
only add one disk B1 to the surface S. We delete the interior of B1 and identify opposite
points of the boundary ∂B1. Figure 2.1 (b) sketches an example of a crosscap represented
by ⊗ on S0.
To create different surfaces, we add a different number of handles or crosscaps to the
sphere S0. By adding h handels to S0 we obtain the orientable surfaces Sh. The simplest
orientable surfaces are the sphere S0, the torus S1 and the double torus S2.
If we add k crosscaps instead of handles, we obtain non-orientable surfaces Nk. By adding
one crosscap to S0, we obtain the projective plane N1. By adding two crosscaps to the
sphere, we get the Klein Bottle N2.
Given these definitions we are able to classify every surface, as stated by the following
theorem.

Theorem 2.1 (Classification of Surfaces). Every surface is homeomorphic to precisely one
of the surfaces Sh with h ≥ 0, or Nk with k ≥ 1.

N1S0 S1

Figure 2.1: On the left side there is a sketch of the sphere S0, in the middle figure the
projective plane N1, where one crosscap (green) is added. On the right side
there is sketch of the torus, where a handle is added to the sphere.

5



2. Preliminaries

⇒

Figure 2.2: Sketch of the redrawing procedure to remove a self-intersection of an edge
[PSŠ07b].

A proof of Theorem 2.1 was done by Thomassen [Tho92]. Hence, we assume to work with
the described surfaces. For our purposes the sphere S0 and the projective plane N1 are
enough. In Figure 2.1 (a) and b these two surfaces are sketched. In the following chapter
we will represent the sphere by S2 and the projective plane by RP 2.

Let S be a surface and let G = (V, E) be a graph with a vertex set V and an edge set E. A
drawing D(G) of the graph G on a surface S is a representation of G such that each vertex
v ∈ V is drawn as a distinct point on S. An edge uv ∈ E is represented as a continuous
curve on S connecting its endpoints u and v. A crossing is the point in a drawing, where
two edges intersect. Thereby, we assume, that at one crossing point exactly two edges
cross, and that two edges do not overlap, thus they intersect at finitely many crossings.
Moreover, an edge does not pass over any vertex.
If in a given drawing edges have self-intersections, we can easily remove this intersection by
redrawing the edge in a small neighbourhood around the crossing, as shown in Figure 2.2.
This operation does not add any new crossings and only removes the self-intersection.
Hence, we assume that the drawings we work with do not contain self-intersections.
We abuse the notation, such that a vertex v and an edge e represent both the objects of
the graph G and their representation in the drawing D(G).
If we consider the crossings between edges, it is enough for our purposes to check if two edges
cross oddly or evenly, namely the crossing parity of the two edges. So, given a drawing D(G)
of a graph G on a surface S and two edges e and f of G, the number of crossings between e
and f modulo 2 is cr(e, f) = crD(e, f). Therefore, an edge e is even, if cr(e, f) = 0 for every
edge f different from e of G and odd otherwise. As a result of this definition, we do all
calculations in Z2. We distinguish beyond that, if two edges cross independently even or odd.
Then the two edges e and f must not share a common endpoint. If all edges of a graph are
(independently) even, we call the graph (independently) even. Note, that there can be edges
crossing oddly in an independently even drawing, but then the edges must be dependent.
A vertex v in a drawing is even, if all its incident edges are even, otherwise v is an odd vertex.

A graph G is planar, if there exists a planar drawing, that is a drawing of G without any
crossing. For example, the complete graph K5 with five vertices is a non-planar graph on
the plane, but on the projective plane it is a planer graph. Thus, if a graph is planar or
non-planar depends on the considered surface, as shown in Figure 2.3. So, we want to find
a planar drawing, also called an embedding E(G) of G on a given surface S.
The rotation of a vertex v on any surface S is the cyclic clockwise order of all incident
edges of v in the given drawing D. The rotations of all vertices of G together are called
the rotation system of G. This rotation system can be used to characterize an embedding
of G, since by the given rotations all faces of G are determined. For each face, one can
start at a vertex v and move along an edge vw of the face until we reach the vertex w. At
w we pick the next edge to walk along by the rotation of w such that the new edge e is
the successor of vw in the order. By repeating this operation, we obtain the hole face. So,

6



(a) (b)

Figure 2.3: (a) An example of a non-planar graph (K5) on the plane. (b) The same graph
on the projective plane, where it is planar.

two embeddings are the same, if the rotation system is the same. That motivates, why we
want to keep the rotation of a vertex.

A helpful concept will be the decomposition of a graph G into blocks. Such a block is either
a maximal 2-connected subgraph with at least three vertices, an edge or an isolated vertex.
Two different blocks of G intersect at most in one vertex by the maximality of these blocks.
This vertex is called a cutvertex. Each edge of G is assigned to exactly one block by the
decomposition of G into blocks [Die17, CKP+17]. Given such a decomposition, we can
work on the planarity of these blocks individually and get a planar graph by the following
lemma.

Lemma 2.2. Given a graph G with a decomposition into blocks. If all blocks are planar,
then G is planar as well.

Proof. Assume G is not planar. Then by Kuratowski‘s theorem G must contain K5 or K3,3
as a subgraph [Kur30]. Since the two graphs do not contain a cut vertex, one of the two
must be contained in a single block. But then there is a block that is not planar.

Given these preliminaries, we want to work on the different versions of the Hanani-Tutte
theorems on the projective plane and for radial planarity.

7





3. Uniform Hanani-Tutte on the
Projective Plane

In the following chapter, we want to discuss the Hanani-Tutte theorem for the projective
plane. We start with the weak Hanani-Tutte theorem on the projective plane in Section 3.1.
This section is based on the proof of Pelsmajer, Schaefer and Štefankovič [PSŠ07b]. Af-
terwards, we show in Section 3.2 the strong version. The proof in this section comes
from Colin de Verdière et al. [CKP+17]. The last section of this chapter will state some
approaches about the uniform Hanani-Tutte conjecture on the projective plane.

3.1 Weak Hanani-Tutte on the Projective Plane

First we need an embedding scheme to characterize a drawing D of a graph G. This
embedding scheme is the rotation system of D combined with a signature λ : E → {−1, 1}.
Since the projective plane is a non-orientable surface, we pick the rotation of a vertex
clockwise with respect to one side of the surface near to the vertex. The signature of an
edge e = uv indicates if the rotations at u and v agree in the sense of clockwise rotation
along e. If this is the case, the signature is 1 and otherwise −1.

Given a fixed embedding scheme of a drawing D of a graph G we will apply two main tools
to change D into a planar drawing of G. The first one is removing self-intersections of
an edge as defined in Chapter 2. Such self-intersections can occur during the process of
making the drawing planar.

The second, more important, operation is the contraction of an edge e = uv. Thereby the
vertex v is moved to u. For this, each edge f crossing e is moved over v such that f crosses
all other edges that are incident to v. Since f is even, the crossing parity of these other
edges is unchanged. Afterwards, we can combine u and v to obtain a new vertex u′ as
shown in Figure 3.1. The operation changes the embedding scheme naturally. Thus, if
λ(e) = 1 the rotation of u′ is the combined rotations of u and v such that the edges incident
to v are integrated in the rotation of u in the local surrounding of e without intersecting
the edges of u. The signature of the edges stays the same. If λ(e) = −1 we embed the
edges of v in the same way, but we flip their signatures.

This tool is used in the following lemma, by which we are able to undo the contraction of
an edge to get back the original setting.

9
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⇒ ⇒

u

v

e

(a) (b)

u
ve

(c)

u′

Figure 3.1: The steps of contracting an even edge e = uv with resulting vertex u′.

Lemma 3.1. Given a multigraph G together with an embedding scheme and a multigraph
G′ obtained from G by contracting an edge e = uv with modified embedding scheme as
given by the operation. Then, if G′ can be embedded on the projective plane realizing its
embedding scheme, also G can be embedded in the projective plane realizing its original
embedding scheme.

Proof. Let E ′(G′) be an embedding of G′. Now we undo the contraction. For this, we
split the vertex u′ back into the two vertices u and v. Thereby, the incident edges of u′

are redistributed to u and v as they were in G. Then we connect u and v by an edge e
such that no crossings are added. So, by use E ′(G′) for the rest of the graph, we obtain an
embedding E(G). Moreover, if λ(e) was 1 in G, we have to flip the values of lambda for all
edges incident to v in E(G).

Now we want to prove the weak Hanani-Tutte theorem for the projective plane. The
following proposition is used in the proof of the theorem. Thereby, a non-seperating curve
C is a curve on a surface S, such that if we remove C from S and obtain the surface S − C,
S − C is only one component. Otherwise C is a separating curve.

Proposition 3.2. Let G be a multigraph with a single vertex v, drawn on a surface other
than the sphere, so that all edges are even (loops). Then either G contains an edge e that
is a non-separating curve C, or else we can draw a new non-seperating curve through v
that crosses each edge of G an even number of times. (In the latter case, we can add a new
edge e to G, drawn as the new curve, so that all edges are even.)

Proof. Since we are on the projective plane, there is a non-seperating curve C. We assume
that v is not on C. If C is even, we use C. We redraw a small segment of C such that the
deformation does not push C over v, but C contains v afterwards between two consecutive
edges in the rotation. Otherwise if C is not even, there must exist a loop e in G, that
crosses C oddly. But then, since C and e are closed curves and they croos oddly, both are
non-seperating. Hence, e is suitable curve.

Theorem 3.3. If G can be drawn on the projective plane so that all its edges are even,
then G can be embedded on the projective plane, i.e. drawn crossing free, without changing
the embedding scheme.

10
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e e

Figure 3.2: Elimination of even crossings of a edge e with three other edges.

Proof. We fix a drawing D(G) of a graph G on the projective plane. The proof is done by
induction on the number of vertices of G. For this, we will use a slightly stronger statement:

If D is a drawing of a multigraph G on the projective plane such that every pair of edges
crosses an even number of times, then G can be drawn without crossings on the projective
plane without changing the embedding scheme.

If D contains an even edge uv with u ̸= v, we use the contraction operation as shown in
Figure 3.1. Since uv is an even edge, all edges which were incident to v stay even after
the contraction operation. Then we get a new graph G′ with a new vertex u′ with joined
rotations of u and v. Thereby, possible generated self-intersections can be removed by
redrawing the crossing as shown in Figure 2.2. For G′ exists a drawing on the projective
plane without crossings and an unchanged embedding scheme by induction. Afterwards,
we undo by Lemma 3.1 the contraction operation to get back the vertices u and v and the
edge uv. Thus, we get a crossing free embedding of G on the projective plane with the
same embedding scheme.
If G does not contain any contractable edge, we are left with one or more vertices. Assume
we have at least two vertices u and v. Then the graph G is not connected. We introduce a
new curve C from u to v which does not intersect any other edge. For this, we consider C
as an even edge between u and v and can apply the contraction operation along C to get
a new graph G′ as in the previous case. By the induction hypothesis there is a crossing
free drawing D′(G′) of G′ with unchanged embedding scheme. In D′(G′) we can split the
joined vertex back into u and v and ignore C. Then we get the desired drawing of G.
The last case is, that G is a single vertex u with loops. By Proposition 3.2 exists an edge e
in G, that is a non-seperating curve or if no such edge is present, we can add such an edge
e to G. The next step is to make e free of crossings. For this, we partition the crossings
of e into pairs of crossings, such that each pair consists of two crossings between e and
another but fixed edge f different from e. This is possible, since e is even, so there is an
even number of crossings between e and any other edge f . We remove all such crossings by
leaving e and cut the other edge f for each pair. This gives two loose ends of f on each
side. These ends can be connected by an edge alongside of e. We perform this operation
for all pairs of crossings in any particular order, as shown in Figure 3.2. Thereby, the
crossing-parity of any pair of edges is not changed. Moreover, the operation produces
“curves” with multiple components, where only one is connected to v. But these component
can be glued back together. We consider the surface that is obtained from the projective
plane by removing e. There we pick a “curve” g, that consists of multiple components. We
deform a small part of a component of g such that it reaches another component of g. We
then locally redraw the two component such that they form one component as shown in
Figure 3.3. By avoiding u during the redrawing, the parity of crossings between any pair
of edges stays even. Doing the described operation for all components, we get a drawing of
G where each edge is a closed curve and e is crossing free.
To describe the rotation at a vertex, we transfer the cyclic order of the edges of the vertex

11
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u u

g

g

g

⇒

Figure 3.3: Redrawing a “curve” g with multiple components to get a curve consisting of
just one component.

into a word, by representing each end of an edge by a letter. So, the rotation at u is
described as ew1ew2 where w1, w2 are words containing the other edges of G.
We add a closed curve C through u along e to the drawing and remove e. By cutting
the surface S along C, attaching a small disk to each component of S − C and contract
each disk to a point, we get a so called C-reduced surface S′ with smaller genus than the
projective plane. Thus, S′ is a sphere. The cutting gives us a multigraph G′ on two vertices
u1 and u2. Thereby, the rotation at u1 is w1 and at u2 is w2.
Assume now, that C crosses the crosscap evenly. Then C is a two-sided curve, and we draw
G′ by the weak Hanani-Tutte theorem for the plane with the same embedding scheme.
Afterwards we cut a hole at each ui such that the hole touches ui between the first and the
last vertex of wi. By glueing the holes boundaries together we get back G drawn on the
projective plane with the original rotation scheme.
If C crosses the crosscap an odd number of times, C is called a one-sided curve. Then
contracting the attached disk joins u1 and u2 back together to a new vertex u′. For this,
the local rotation and the signature of incident edges at one vertex must be flipped. Let
us pick u1 to be this vertex. That yields to a rotation of w1wR

2 or wR
1 w2 at u′, where R

stands for “reversed”. Since S′ is orientable, we continue flipping local orientations and
signatures until every signature is 1. The weak Hanani-Tutte theorem for the plane gives
us a crossing free drawing of the new graph with the single vertex u′. Afterwards, we split
u′ back into u1 and u2 and cut a hole where u1 and u2 are on its boundary. Let C1 be the
part of the boundary of the hole from u1 to u2 and let C2 be the other part. Identify C1
and C2 to recreate the original surface and the original graph G without crossings.

This proof can be extended such that it holds for any non-orientable surfaces of any genus.
Given the weak Hanani-Tutte theorem for the projective plane we continue with the strong
version of the theorem on this surface.

3.2 Strong Hanani-Tutte on the Projective Plane
The goal of this section is to proof the following theorem, namely the strong Hanani-Tutte
theorem for the projective plane.

Theorem 3.4. A graph G can be embedded into the projective plane if and only if it admits
a Hanani-Tutte drawing on the projective plane.

Given an independently even drawing D(G) of a graph G on the projective plane. The
idea of the proof is to find a simple cycle Z first. That means Z is even and free of self-
intersections. Then Z splits the graph into an inside and an outside part. By duplicating
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the crosscap, such that at both sides there is one, we can find an embedding for G. We will
afterwards show the main tool that is making one side planar without using the crosscap.
So, we get an embedding of G on RP 2, where only one crosscap is present.

To prove the strong Hanani-Tutte theorem on the projective plane we start by defining
different types of drawings and their properties.

3.2.1 Hanani-Tutte Drawings

We start with a general definition of a (strong) Hanani-Tutte drawing.

Definition 3.5. A drawing D(G) of a graph G on a surface S is a (strong) Hanani-Tutte
drawing if every pair of independent edges cross an even number of times.

In the following the term strong Hanani-Tutte drawing is usually abbreviated by HT-
drawing. To talk about drawings on the projective plane, we define how to represent RP 2.
We take the sphere S2 and a disk B. By removing the interior of B and identifying the
opposite points of the boundary ∂B, we get a curve γ called crosscap that is represented by
⊗ in the figures. Thereby, γ is a homologically non-trivial simple cycle (loop) in RP 2, and
the other way round, every homologically non-trivial simple cycle (loop) can be used as a
crosscap up to self-homomorphism of RP 2. Moreover, we assume that an HT-drawing of a
graph is crossing the crosscap only finitely often, otherwise we slightly shift the crosscap
while keeping the properties of an HT-drawing.
To compare Hanani-Tutte drawings on S2 and RP 2, we introduce a map λ : E(G) → Z2.
This map assigns 0 to each edge e of a graph G if e and the crosscap γ cross an even
number of times, and 1 if they cross oddly. Thereby, λ depends on the choice of γ. We
later introduce vertex-crosscap switches, which alter λ. But λ allows checking whether
a cycle Z is homologically nontrivial. Since Z is homologically nontrivial if and only if
λ(Z) = ∑

e∈E(Z) λ(e) = 1 in Z2. This operation is independent of the choice of the crosscap.
Given this map λ, we are able to define a projective Hanani-Tutte drawing on the sphere.

Definition 3.6. Let D be a drawing of a graph G on S2 and λ : E(G) → Z2 be a function.
Then the pair (D, λ) is a projective HT-drawing of G on S2 if cr(e, f) = λ(e)λ(f) for any
pair of independent edges e and f of G. (If λ is sufficiently clear from the context, we say
that D is a projective HT-drawing of G on S2.)

The interesting part of this definition is, that we can transform a given HT-drawing D of a
graph G on RP 2 into a projective HT-drawing D′ of G on S2. It is enough, to remove the
crosscap and let the edges crossing the crosscap cross at the position of the crosscap, as
shown in the first two pictures of Figure 3.4. That is the easy direction, how to get from
a projective HT-drawing on S2 to an HT-drawing on RP 2 is shown in the proof of the
following lemma.

Lemma 3.7. Let (D, λ) be a projective HT-Drawing of a graph G on S2. Then there is an
HT-drawing D⊗ of G on RP 2 such that crD⊗(e, f) = crD(e, f) + λ(e)λ(f) for any pair of
distinct edges of G, possibly adjacent. In addition, if e and f are two arbitrary edges such
that λ(e) = λ(f) = 0 and D(e) and D(f) are disjoint; then D⊗(e) and D⊗(f) are disjoint
as well.

Proof. We insert a small disk B such that B and D do not intersect. As described above,
we convert B into a crosscap γ. All edges e of G with λ(e) = 1 must be redrawn so that
e passes through γ. For this, every such edge e is deformed towards the crosscap with
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RP 2 S2 RP 2

Figure 3.4: Relationship of HT-drawings on RP 2 of a K5 with a projective HT-drawing on
S2 of the same graph. The orange edges have a λ-value of 1.

Figure 3.5: Redrawing the black edges around the crosscap with a finger-move.

a so called finger-move. We pull the edge to the crosscap, such that every other edge is
intersected pairwise. Afterwards, e is drawn through γ as shown in Figure 3.5. This is
done for all such edges in any order. Hence, all edges e with λ(e) = 1 go through γ and all
edges e with λ(e) = 0 do not. This matches exactly the definition of λ for HT-drawings
on RP 2. Moreover, the redrawing around the crosscap adds a crossing between edges e
and f that pass over the crosscap. So, crD⊗(e, f) = crD(e, f) + λ(e)λ(f) holds for the new
drawing D⊗. An illustration of the hole process is shown in the second and third graphic
of Figure 3.4.

Hence, both directions are shown and Corollary 3.8 states, that we can switch between the
representations and for projective HT-drawings on S2 to actual position of the crosscap
is irrelevant. This is helpful, if we want to merge two drawings. To differentiate between
usual and projective HT-drawings on S2 we call the usual one ordinary HT-drawing.

Corollary 3.8. A graph G admits a projective HT-drawing on S2 (with respect to some
function λ : E(G) → Z2) if and only if it admits an HT-drawing on RP 2.

Now, we want to define nontrivial walks, where we will often use special cases, namely
edges, paths or cycles.

Definition 3.9. Let (D, λ) be a projective HT-drawing of a graph G and let ω be a walk
in G. Define λ(ω) := ∑

e∈E(ω) λ(e) where E(ω) is the multiset of edges of ω. Then ω is
trivial, if λ(ω) = 0 and nontrivial otherwise.

By this definition, a cycle Z is trivial if and only if Z is drawn as a homologically trivial
cycle in D⊗ of Lemma 3.7. Moreover, if there is a projective HT-drawing (D, λ) of a graph
G with two such nontrivial cycles, then these cycles are not vertex-disjoint.

Lemma 3.10. Let (D, λ) be a projective HT-drawing of a graph G on S2. Then G does
not contain two vertex-disjoint nontrivial cycles.
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e
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v e
f
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v

Figure 3.6: Execution of a vertex-edge switch (v, e). The crossing parity of e and f changes,
while it stays the same between e and g.

Proof. We prove the lemma by contradiction. Let Z1 and Z2 be two vertex-disjoint
nontrivial cycles of G. So, both cycles contain an odd number of nontrivial edges, such
that λ(Z1) = λ(Z2) = 1. Hence, there exists an odd number of pairs (e1, e2) of nontrivial
edges where e1 ∈ E(Z1), e2 ∈ E(Z2) and λ(e1) = λ(e2) = 1. By Definition 3.6 the edges e1
and e2 have to cross oddly. Thus, the two cycles have to cross an odd number of times.
But on S2 two cycles, crossing at every intersection in D, have to cross an even number of
times. A contradiction.

We want to introduce two operations, by which we are able to modify drawings. Therefore,
we define two switching operations to swap vertices and edges as well as vertices and the
crosscap.

Definition 3.11. Let D be a drawing of a graph G on S2 and let v be a vertex and e an
edge, that is not incident to v. Then a vertex-edge switch (v, e) is pulling a thin finger
from the interior of e towards v and let this finger pass over v.

The execution of a vertex-edge switch (v, e), also known as finger-move, changes the crossing
parity between e and all edges f incident to v. For all other pairs of edges the crossing
parity stays the same, since by the pulling all other crossed edges are crossed pairwise by e,
as shown in Figure 3.6. The second operation is the switch of a vertex with the crosscap,
where we also alter λ.

Definition 3.12. Let (D, λ) be a projective HT-drawing of G on S2. Given a vertex v, the
vertex-crosscap switch over v is defined as follows: Perform vertex-edge switches (v, e) for
all edges e not incident to v with λ(e) = 1 to obtain a drawing D′ and define a new function
λ′ : E(G) → Z2 derived from λ by switching the value of λ on all edges of G incident to v.
This yields to a new projective HT-drawing (D′, λ′).

Lemma 3.13. Let (D, λ) be a projective HT-drawing of G on S2. Let D′ and λ′ be obtained
from D and λ by a vertex-crosscap switch. Then (D′, λ′) is a projective HT-drawing of G
on S2.

Proof. Let v be the vertex inducing the switch. We will check, that crD′(e, f) = λ′(e)λ′(f)
for any pair of independent edges e and f . First we consider the case, that both e and f
are not incident to v, then the crossing-parity of e and f is not changed by the operation,
and we get

crD′(e, f) = crD(e, f) = λ(e)λ(f) = λ′(e)λ′(f).
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Consider now the other case, that one of the two edges is incident to v. Let e be this edge.
Then via the vertex-crosscap switch, we obtain that λ(e) = 1 − λ′(e) and λ(f) = λ′(f). Let
λ(f) = 0, then

crD′(e, f) = crD(e, f) = λ(e)λ(f) = 0 = λ′(e)λ′(f).
Otherwise let λ(f) = 1, then

crD′(e, f) = 1−crD(e, f) = 1−λ(e)λ(f) = λ(f)−λ(e)λ(f) = (1−λ(e)) ·λ(f) = λ′(e)λ′(f).

Hence, all cases are checked and we have shown, that crD′(e, f) = λ′(e)λ′(f) for any pair
of independent edges e and f .

The vertex-crosscap switch over v does not change the triviality or nontriviality of a cycle Z.
If Z contains v, λ(Z) = λ′(Z), since λ(e) ̸= λ′(e) for exactly two edges e of Z. If otherwise
Z does not contain v, λ(Z) = λ′(Z), since all edges e of Z are not incident to v and hence
λ(e) = λ′(e) for all these edges.

We want to use the vertex-crosscap switch to planarize special subgraphs of the graph G.
For this, let (D, λ) be a projective HT-drawing of G on S2 and let P be a subgraph of
G such that every cycle in P is trivial. Then P behaves like a planar subgraph of G, as
shown by the following lemma.

Lemma 3.14. Let (D, λ) be a projective HT-drawing of G on S2 and let P be a subgraph
of G such that every cycle in P is trivial. Then there is a vertex-set U ⊆ V (P ) with the
following property. Let (DU , λU ) be obtained from (D, λ) by vertex-crosscap switches over
all vertices of U in any order. Then (DU , λU ) is a projective HT-drawing of G on S2 and
λU (e) = 0 for any edge e of E(P ).

Proof. Since (DU , λU ) is obtained from (D, λ) by vertex-crosscap switches, (DU , λU ) is
a projective HT-drawing by Lemma 3.13. Let F be a spanning forest of P , where the
spanning trees of P are rooted arbitrarily. THe first step is, that λ(e) = 0 for every edge
e of F . Therefore, we perform a breadth-first search on each tree of h. If we find an
edge e with λ(e) = 1, we perform a vertex-crosscap switch over the vertex of e, which is
farther away from the root of the tree. Doing this for all edges of F , we get a map λU ,
where for all edges e of F the value λU (e) = 0 holds. For all other edges f in E(P ) \ E(Z)
there is a cycle Zf such that Zf − f ⊆ F . But then we get λU (f) = 0 as well, since
λU (Zf ) = λ(Zf ) = 0.

3.2.2 Separation Theorem

The idea of the separation theorem is, to split the graph along a simple cycle splits the graph
into an inside and outside part. Note that a simple cycle is even and free of self-intersections.
Hence, we can work on the two parts separately and merge them afterwards. For this, we
define two subgraphs.

Definition 3.15. Let G be a graph and D be a drawing of G on S2. Let Z be a cycle of G
such that every edge of Z is even and Z is drawn as a simple cycle in D. Let S+ and S−

be the two components of S2 \ D(Z). A vertex v ∈ V (G) \ V (Z) is an inside vertex if it
belongs to S+ and an outside vertex otherwise. An edge e = uv ∈ E(G) \ E(Z) is an inside
edge if either u is an inside vertex or if u ∈ V (Z) and D(e) points locally to S+ next to
D(u). Analogously we define an outside edge. The sets V + and E+ are the inside vertices
and the inside edges, respectively. Analogously, we define V − and E− as outside vertices
and outside edges. Moreover, we define the two subgraphs G+0 := (V + ∪ V (Z), E+ ∪ E(Z))
and G−0 := (V − ∪ V (Z), E− ∪ E(Z)).
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Note that an edge e ∈ E(G) \ E(Z) is either an inside or an outside edge, since the edges of
Z are even. Given this definition, we can formulate the main technical tool for projective
HT-drawings.

Theorem 3.16. Let (D, λ) be a projective HT-Drawing of a 2-connected graph G on S2

and let Z be a cycle of G that is simple in D and where every edge is even. Moreover,
we assume that every edge e of Z is trivial, that is λ(e) = 0. Then there is a projective
HT-drawing (D′, λ′) of G on S2 satisfying the following properties.

• The drawings D and D′ coincide on Z;

• the cycle Z is completely free of crossings and all of its edges are trivial in D′;

• D′(G+0) is contained in S+ ∪ D′(Z);

• D′(G−0) is contained in S− ∪ D′(Z); and

• either all edges of G+0 or all edges of G−0 are trivial (according to λ′); that is, at
least one of the drawings D′(G+0) or D′(G−0) is an ordinary HT-drawing on S2.

The assumption about G that it is 2-connected is not necessary for the proof of Theorem 3.16,
but it simplifies some ongoing steps afterwards. To prove Theorem 3.16, we often need that
G, (D, λ) and Z fulfill the assumptions of the theorem. Thus, we combine the assumptions
in the following definition.

Definition 3.17. A graph G, a projective HT-drawing (D, λ) and a cycle Z satisfy the
separation assumptions if

(1) G is a 2-connected graph;

(2) (D, λ) is a projective HT-drawing of G;

(3) Z is a cycle in G drawn as a simple cycle in D;

(4) every edge of Z is even in D and trivial

We fix G, (D, λ) and Z satisfying the seperation assumptions, which also fixes an outside
and an inside corresponding to the cycle Z.

Definition 3.18. A bridge B of G with respect to Z is a special subgraph of G. Thereby,
B is either an edge not in Z but with both endpoints in Z and the endpoints also belong
to B, or a connected component of G − V (Z) together with all edges and their endpoints,
where one endpoint is in that component and the other one is in Z.
B is an inside bridge if it is a subgraph of G+0 and an outside bridge if it belongs to G−0.
A walk ω in G is a proper walk if no vertex in ω belongs to V (Z), except possibly its
endpoints, and no edge of ω belongs to E(Z). In particular, each proper walk belongs to a
single bridge.

Note that by the assumed 2-connectivity of G, every inside bridge contains at least two
vertices of Z. Moreover, the bridges divide the edges and vertices of G − Z into partitions.
In the following we want to distinguish, which pairs of vertices on Z are connected by
a nontrivial and proper walk via the inside or the outside of Z. For this, we define two,
so called, arrow graphs A+ and A−. The arrow graph A+ is the inside arrow graph for
the inside and A− is the outside arrow graph for the outside. These graphs can have
loops, but do not have multiple edges. The name results from the idea that the edges are
drawn as arrows to distinguish them from E(G). The arrow graphs have the vertex set
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Figure 3.7: A projective HT-drawing of K5 on the left side with the corresponding inside
and outside arrows on the right. The separating cycle Z is shown in blue.

V (A+) = V (A−) = V (Z).
The arrows correspond directly to the proper nontrivial walks of G. Let u and v be two
not necessarily distinct vertices of Z. Let W +

uv be the set of all proper nontrivial walks in
G+0 with endpoint u and v. Then there is an inside arrow uv = vu in E(A+) if and only
if W +

uv is not empty. Analogously, we define W −
uv and the outside arrows. Figure 3.7 shows

the arrows corresponding to a projective HT-drawing of a K5, where the cycle Z is blue,
the inside arrows are orange and the outside arrows are black.
Since any walk w ∈ W +

uv lives in exactly one bridge, we can decompose the set W +
uv. Let B

be an inside bridge. Then the set W +
uv,B contains all walks w ∈ W +

uv such that w belongs to
B. Therefore, W +

uv is a disjoint union of the sets W +
uv,B1

, . . . , W +
uv,Bk

for all existing inside
bridges B1, . . . , Bk. An inside arrow uv is induced by a bridge B if W +

uv,B is not empty.
Hence, an inside bridge B is nontrivial, if it induces at least one arrow. Two inside arrows
uv and xy are induced by different bridges, if there exist at least two different bridges B
and B′ such that W +

uv,B and W +
xy,B′ are not empty. This definition does not exclude, that a

bridge induces both uv and xy even if uv and xy are induced by different bridges. Analog
definitions are made for the outside.

In the following, we introduce forbidden arrow combinations, that means combinations of
arrows, which are not possible. On the other hand, there are redrawable arrow combinations,
for which we can redraw the subgraph of G without the crosscap.
Again we assume to work with fixed G, (D, λ) and Z satisfying the separation assumption
from Definition 3.17. Then following lemma stats properties, which must be fulfilled by
the arrow graphs A+ and A− of G.

Lemma 3.19. Let G, (D, λ) and Z be fixed, satisfying the separation assumption. Then
the arrow graphs must fulfill the following properties:

• Every inside arrow shares a vertex with every outside arrow.

• Let ab and xy be two disjoint inside arrows induced by different inside bridges of G+0.
If the two arrows do not share an endpoint, their endpoints have to interleave along
Z.

• There are no three vertices a, b, c on Z, an inside brigde B+ and an outside bridge
B− such that B+ induces the inside arrows ab and ac (and no other arrows), and
B− induces the outside arrows ab and bc (and no other arrows).

Analogously, the lemma can be formulated with inside and outside swapped.

In Figure 3.8 some forbidden Examples of arrow graphs are shown, which do not fulfill the
properties of Lemma 3.19. In (a) not every inside arrow share a vertex with every outside
arrow. Part (b) shows an example of inside arrows induced by different bridges. These
arrows do not interleave along the cycle Z. And finally the last one sketches the situation
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Figure 3.8: Forbidden arrow combinations. In (a) the cyclic order is arbitrary. In (b) the
cyclic order is important such that the arrows to not interleave. Different drawn
arrows are induced by different bridges. In (c) the inside arrows and the outside
arrows are induced by one bridge, respectively.
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Figure 3.9: The drawings are intended to suggest the redrawable arrow combinations.
Different drawn arrows are induced by different bridges. The loop in (a) is an
inside arrow drawn outside to keep it recognizable. In (c) only one possible
inside split triangle is shown.

of the third point in Lemma 3.19. A proof why these constellations are not possible can be
found by using homology and intersection forms [CKP+17, Section 6].
However, there are also arrow combinations, which are redrawable. That means, we can
redraw the subgraph of G corresponding to the given arrow graph without using the
crosscap. Thus, we can find an ordinary HT-drawing for this subgraph on S2.

Definition 3.20. Let G, (D, λ) and Z be fixed, satisfying the separation assumption. Then
G forms

• an inside fan, if all inside arrows shares one common endpoint. (The arrows may
come from various inside bridges.)

• an inside square if G contains four vertices a, b, c, d ordered in this cyclic order along
Z and the inside arrows are precisely ab, bc, cd and ad. In addition, we require that
the inside graph G+0 contains only one nontrivial inside bridge.

• an inside split triangle if there exist three vertices a, b, c on Z such that the inside
arrows of G are ab, ac and bc. In addition, we require that every nontrivial inside
bridge induces either the two arrows ab and ac, or just a single arrow.

Analogously, the outside fan, outside sqaure and outside split triangle are defined.

In Figure 3.9 two inside fans, an inside square and an inside split triangle are sketched.
But the more interesting fact about the definition above is stated by the following two
propositions. If there is a projective HT-drawing of G with a fixed cycle Z satisfying the
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separation assumptions, G contains a constellation from Definition 3.20, which then can be
redrawn without using the crosscap.

Proposition 3.21. Let (D, λ) be a projective HT-drawing on S2 of a graph G and let Z
be a cycle in G satisfying the separation assumptions. Then G forms an inside or outside
fan, square or split triangle.

This proposition can be proved by a relatively direct case analysis using Lemma 3.19
[CKP+17, Section 5]. The second proposition states, that if there is such a constellation
from Definition 3.20, we are able to embed the corresponding subgraph of G without using
a crosscap.

Proposition 3.22. Let (D, λ) be a projective HT-drawing of G+0 on S2 and Z be a cycle
satisfying the separation assumptions. Let D(G+0) ∩ S− = ∅ (that is, G+0 is fully drawn on
S+ ∪ D(Z)). Moreover, let G+0 form an inside fan, inside square or inside split triangle.
Then there is an ordinary HT-drawing D′ of G+0 on S2 such that D coincides with D′ on
Z and D′(G+0) ∩ S− = ∅.

Again, Proposition 3.22 is proven by treating each constellation separately [CKP+17,
Section 7]. Thereby, for each one is exactly shown, how to redraw the corresponding graph
G+0 without using the crosscap, such that we get an ordinary HT-drawing for G+0.
Finally, the last thing we need is the “redrawing procedure” of Pelsmajer, Schaefer and
S̆tefankovic̆ [PSŠ07a, Theorem 2.1]. The theorem is not stated in the setting of projective
HT-drawings, which is fine due to Definition 3.15.

Theorem 3.23. Let D be a drawing of a graph G on the sphere S2. Let Z be a cycle in G
such that every edge of Z is even and Z is drawn as a simple cycle.
Then there is a drawing D′′ of G such that

• D′′ coincides with D on Z;

• D′′(G+0) belongs to S+ ∪ D(Z) and D′′(G−0) belongs to S− ∪ D(Z);

• whenever (e, f) is a pair of edges such that both e and f are inside edges or both are
outside edges, then crD′′(e, f) = crD(e, f).

The idea of the proof of Theorem 3.23 is to move all crossings between E(G − Z) and
E(Z) to one edge of Z. And afterwards, map G+0 to S+ and G−0 to S− via a self-
homomorphism, such that the number of crossings between pairs of edges on each side is
unchanged [CKP+17, Section 8].
Given these statements, we can prove the separation theorem.

Theorem 3.16. Let (D, λ) be a projective HT-Drawing of a 2-connected graph G on S2

and let Z be a cycle of G that is simple in D and where every edge is even. Moreover,
we assume that every edge e of Z is trivial, that is λ(e) = 0. Then there is a projective
HT-drawing (D′, λ′) of G on S2 satisfying the following properties.

• The drawings D and D′ coincide on Z;

• the cycle Z is completely free of crossings and all of its edges are trivial in D′;

• D′(G+0) is contained in S+ ∪ D′(Z);

• D′(G−0) is contained in S− ∪ D′(Z); and
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D D′′ D+ D′

Figure 3.10: Redrawing steps on the example of a K5 according to the proof of Theorem 3.16.

• either all edges of G+0 or all edges of G−0 are trivial (according to λ′); that is, at
least one of the drawings D′(G+0) or D′(G−0) is an ordinary HT-drawing on S2.

Proof of Theorem 3.16. Let G be a graph and (D, λ) be a projective HT-drawing of G.
Let Z be a cycle of G, such that G, (D, λ) and Z fulfill the separation assumptions from
Definition 3.17. Since Z is even and drawn as a simple cycle, we can use Theorem 3.23
to get a drawing D′′ of G, as shown in Figure 3.10. Afterwards, Z is crossing free and
separates the graph into G+0 and G−0. Thereby, D′′(G+0) is contained in S+ ∪ D(Z) and
D′′(G−0) in S− ∪ D(Z). To get a projective HT-drawing (D′′, λ′′) we need a map λ′′, but
there may be no such map. Thus, we need to modify D′′.
Applying Proposition 3.21 to (D, λ) stats, that on one side of Z the graph G induces a
fan, square or split triangle. Let the redrawable combination be without loss of generality
on the inside. Therefore, D′′(G+0) satisfies the assumptions of Proposition 3.22. This
results in an ordinary HT-drawing D+(G+0) for G+0 such that D′′(Z) = D+(Z). Given
the drawings D′′ and D+ we combine them at Z to create D′. Then D′ is a drawing of
G on S2, where G+0 is drawn as in D+ and G−0 as in D′′. The matching is well defined,
since both drawings coincide on Z as already described.
To get a projective HT-drawing, we still need a map λ′. We set λ′ to be λ′(e) := λ(e)
for e ∈ E− and λ′(e) := 0 otherwise. To show that λ′ is indeed the expected map, let e
and f be to independent edges of G. Let both be inside edges. Since D+ is an ordinary
HT-drawing, both edges do not cross. So, we get

crD′(e, f) = crD+(e, f) = 0 = λ′(e)λ′(f).

Assume otherwise, that e and f are both outside edges, then

crD′(e, f) = crD′′(e, f) = λ(e)λ(f) = λ′(e)λ′(f).

If now one edge is an inside edge and one is an outside edge, these edges do not cross since
D′(e) and D′(f) are separated by D′(Z). So we get

crD′(e, f) = 0 = λ′(e)λ′(f).

3.2.3 Proof of the Strong Hanani-Tutte Theorem on RP 2

Now we finally prove Theorem 3.4, given the previous results. For this, we show that
a graph G with an HT-drawing on RP 2 is actually projective-planar. We can assume
that G has a projective HT-drawing (D, λ) on S2 by Corollary 3.8. The goal is to use
Theorem 3.16, but for this G must fulfill the separation assumptions from Definition 3.17.
We start with a decomposition of G into blocks of 2-connectivity.
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Figure 3.11: Local redrawing operations at Z (blue). The dotted edges represent the
original course of the edges.

Lemma 3.24. If G admits a projective HT-drawing on S2, then at most one block of G is
non-planar. Moreover, if all blocks are planar, G is planar as well.

Proof. Let G be a graph with a projective HT-drawing (D, λ) on S2. Let B1 and B2 be
two distinct non-planar blocks of G. Assume that B1 and B2 do not share a vertex v.
Then at least one of the two blocks does not contain any non-trivial cycle by Lemma 3.10.
Without loss of generality, let B2 be this block. But then B2 is a subgraph of G where
every cycle is trivial. Then by Lemma 3.14, the block B2 can be drawn on S2 without
crossings, such that its drawing D(B2) is an ordinary HT-Drawing. Thus, we can use the
strong Hanani-Tutte theorem for the plane (Theorem 1.2) to prove that B2 is planar. This
is a contradiction to the assumption that both B1 and B2 are non-planar.
Assume otherwise that B1 and B2 share a cut vertex v. We consider the graph H := B1 ∪B2
together with its spanning tree P . Let P be chosen, such that v is only incident to two
edges e1 ∈ B1 and e2 ∈ B2. This is possible, since v is a cut-vertex and B1 and B2 are
not connected after removing v. By using Lemma 3.14 again, we can make all edges of
P trivial by possibly alternating λ. Then any non-trivial edge e in E(H) \ E(P ) forms a
non-trivial cycle Ze in one of the blocks. If the picked edge e is not incident to v, then
Ze does not contain v as we have selected P . Hence, by Lemma 3.10 in at least one block
all non-trivial edges are incident to v. Let this block again be B2. Then B2 is already
planar, since by D an HT-drawing of B2 on S2 is already given where we have no pairs
of non-trivial independent edges. This contradicts the assumption, that B1 and B2 are
non-planar.
The second statement of the lemma follows directly by Lemma 2.2.

Lemma 3.25. Let (D, λ) be a drawing of a 2-connected graph. If D does not contain any
trivial cycle, then G is planar.

Proof. Let G be a 2-connected graph. Then G is either a cycle or it contains two vertices
connected by three disjoint paths. A cycle is already planar. For the other case, at least
two of the paths are trivial or at least two are non-trivial by the pigeonhole principle. But
then these two paths form a trivial cycle, which cannot occur due to the assumption.

Given the needed results about 2-connectivity, we continue with redrawing a cycle Z such
that it fulfills the separation assumptions.

Lemma 3.26. Let (D, λ) be a projective HT-drawing of a graph G on S2 and let Z be a
cycle in G. Then G can be redrawn only by local changes next to the vertices of Z to a
projective HT-drawing (D′, λ) on S2 so that λ remains unchanged and crD′(e, f) = λ(e)λ(f)
for any pair (e, f) ∈ E(Z) × E(G) of distinct (not necessarily independent) edges. In
particular, if λ(e) = 0 for every edge e of Z, then every edge of Z is even in D′.
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u v w u v w

(a) (b)

Figure 3.12: Moving crossings along Z such that only one edge of Z is intersected by other
edges.

Proof. The goal is to show, that we can apply local changes to D, such that the crossing
parity of crD(e, f) changes, if e is an edge of Z and e and f are adjacent. To achieve
that crD′(e, f) = λ(e)λ(f) for any pair (e, f) ∈ E(Z) × E(G) of distinct not necessarily
independent edges, we have to change the crossing parity between the edges of Z and their
adjacent edges.
At first, we want to fulfill the equation for consecutive edges of Z. Thus, let e and f be
consecutive edges on Z with common vertex v. If crD(e, f) ̸= λ(e)λ(f), we locally redraw
f around v, such that we add a crossing between e and f , as shown in Figure 3.11 (a).
Thereby the crossing parity between edges on Z and dependent edges not on Z can change.
Now we fix these crossing parities that may have changed to the wrong value during
the procedure. We consider three dependent edges e, f and h, where e and f are on Z
and h is not on Z. Let v be their common vertex. If we now have to change either the
parity of crD(e, h) or the parity of crD(f, h) we redraw h around v to change the crossing
parity between h and either e or f . The operation is shown in Figure 3.11 (b) for the
redrawing with e. For h and f a symmetric operation is used. If the crossing parity
of both pairs (e, h) and (f, h) have to be changed, we redraw h once completely around
v as shown in Figure 3.11 (c). These moves do not change the parity of crD(e, h′) or
crD(f, h′) for any other edge h′. Hence, step by step the crossing parities change such that
crD′(e, f) = λ(e)λ(f) is fulfilled for any pair (e, f) ∈ E(Z) × E(G).

Given this first step to make the edges of a cycle made even, the next step is to make this
cycle simple. Note that a cycle is simple if all its edges are even and it is drawn without
self-intersections.

Lemma 3.27. Let (D, λ) be a projective HT-drawing on S2 of a graph G and let Z be a
cycle in G such that each of its edges is even. Then G can be redrawn so that Z becomes a
simple cycle, its edges remain even and the resulting drawing is still a projective HT-drawing
(with λ unchanged).

Proof. To prove this lemma we firstly remodel D, such that Z is free of crossings, except
for one edge. Consider three consecutive vertices u, v and w on Z. By almost-contracting
the edge uv, we make uv crossing free. For this, we move v and its incident edges along uv
towards u until all intersections between uv and other edges are shifted to vw, as shown in
Figure 3.12. This operation does not change the image of Z. Since both edges uv and vw
were even edges in D, vw is still even after the redrawing step. By the same argumentation
the crossing parity between edges incident to v and other edges is not affected. If uv and
vw intersect each other, we introduce a self-intersection of vw. By repeatedly doing such
redrawings, we achieve a drawing where only one edge of Z is intersected.
The (possible inserted) self-intersections of Z can be removed as described in Chapter 2 and
shown in Figure 2.2. Hence, we get a drawing D′, where Z is drawn as a simple cycle, and
since we did not change the crossing parities, (D′, λ) is still a projective HT-drawing.
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Figure 3.13: Sketch of the setting, that B does not contain a non-trivial cycle.

After introducing these lemmata to obtain the separation assumptions, let G, (D, λ) and
Z fulfill the separation assumptions of Definition 3.17. The following lemma will be helpful
in the proof of Theorem 3.4, it connects a bridge to a single arrow in the arrow graph.
Note that the arrow graph of G contains the vertices of Z and the edges are represented
by arrows.

Lemma 3.28. Let G, (D, λ) and Z satisfy the separation assumptions. Let B be an inside
bridge such that any proper path in B with both endpoints on V (B) ∩ V (Z) is non-trivial.
Then |V (B) ∩ V (Z)| = 2 and B induces a single arrow and no loop.

Proof. We first show that the given bridge B does not contain a non-trivial cycle. For
contradiction, we assume B contains a non-trivial cycle N . Since G is 2-connected, there
are two vertex-disjoint paths p1 and p2 connecting Z and N . We assume that these two
paths are minimal connecting N and Z. That means, both paths p1 and p2 share exactly
one vertex with both Z and N . Let y1 and y2 be the vertices that N share with p1 and p2,
respectively. The vertices y1 and y2 divide N into two subarcs, which we call p3 and p4.
Without loss of generality, let p3 be the arc that crosses the crosscap an odd number of
times. Given this setting, we consider two paths q1 and q2. Thereby, q1 is a concatenation
of p1, p3 and p2, and q2 is a concatenation of p1, p4 and p2. The setting is sketched in
Figure 3.13. But then q2 is a trivial path. This contradicts the assumption of the lemma,
that any proper walk in B is non-trivial. Hence, B does not contain any non-trivial cycle.
Secondly, we show that B does not induce a loop in the inside arrow graph. We prove
this claim again by contradiction. Assume B induces an arrow loop at a vertex x on Z.
Hence, there exists a proper non-trivial walk κ in B. Let κ be the shortest such walk. By
the previous paragraph, κ can not be a cycle. Thus, it must contain a closed nonempty
subwalk κ′. Let κ′ again be the shortest such walk. So, κ′ must be a cycle, which is trivial
by the previous paragraph. But then we can shorten κ by κ′ and get a contradiction to
the minimality of κ.
It remains to prove, that |V (B) ∩ V (Z)| = 2. Since G is 2-connected, we know that
|V (B) ∩ V (Z)| ≥ 2 holds. To prove that |V (B) ∩ V (Z)| ≤ 2, assume that a, b and c are
three distinct vertices of V (B) ∩ V (Z). Since in this case B is not a single edge, there
exists an inner vertex v of B. By Definition 3.18 a bridge contains proper walks pa, pb and
pc connecting v with the corresponding vertex on Z. Each of these walks is either trivial or
non-trivial. By the pigeonhole principle, at least two of the walks have either 0 or 1 as the
value of λ. Let pa and pb have the same value. But then the concatenation of pa and pb

creates a trivial proper walk in B, that can be shortened to a trivial proper path between
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Figure 3.14: Local changes at u, a vertex Z and γ share. The redrawn edge e is printed in
green with the original drawing of e dotted.

a and b by the same argumentation as above. Thus, we get again a contradiction. Hence,
|V (B) ∩ V (Z)| = 2.
Let x and y be these two vertices on Z. As proven above, every path connecting x and y
is non-trivial. So, B induces a single arrow xy in the inside arrow graph A+. Thereby, no
other arrow in A+ can be induced by B, since no arrow loop is possible.

The following proposition is the main tool to prove Theorem 3.4 by using Theorem 3.16.
It is proven inductively with the help of Theorem 3.16. We will sketch the proof of the
proposition below.

Proposition 3.29. Let (D, λ) be a projective HT-drawing of a 2-connected graph G on S2

and Z a cycle in G that is completely free of crossings in D and such that each of its edges
is trivial in D. Assume that (V +, E+) or (V −, E−) is empty (recall the notation from the
definition of inside/outside arrow graph). Then G can be embedded into RP 2 so that Z
bounds a face of the resulting embedding that is homeomorphic to a disk. If, in addition, D
is an ordinary HT-drawing on S2, then G can be embedded into S2 so that Z bounds a face
of the resulting embedding (this face is again homeomorphic to a disk - there is in fact no
other option on S2).

Sketch of the proof. The proof works by induction over the number of edges of G. The
base case is, if G is just a cycle.
We assume without loss of generality, that (V −, E−) is empty. Thus, G = G+0 and if
(V +, E+) is also empty, G = Z and we are done. So, we assume (V +, E+) is not empty.
We pick a path γ in V (G+0), E(G+0 \ E(Z)) connecting two points x and y with x ̸= y
on Z. Now we consider two cases based on whether there exists a trivial γ or not.

Case 1: Trivial γ exists. First, we want to make γ even and simple, while keeping
these properties for Z. Therefore, we use Lemma 3.14 on the inner vertices of γ such that
λ(e) = 0 for all edges e of Z and γ. Then, to make the edge of γ even without making the
edges of Z odd, we proceed as in Lemma 3.26. The only place, we have to act differently is
for the edges e /∈ E(γ) ∪ E(Z) incident to x or y. We will use without loss of generality
the vertex x in the following. Let f be the edge of γ incident to x and e and f cross oddly.
Then we use the redrawing move sketched in Figure 3.14. So, we get a drawing where
all edges of Z and γ are even. To make γ simple, we use the redrawing procedure from
Lemma 3.27 as shown in Figure 3.12. Hence, we get a drawing of G+0 where γ is even and
simple.
Now we want to switch the inside and outside to simplify the argumentation. This is
allowed due to the use of a homeomorphism of S2. Afterwards, the inside region bounded
by Z is empty.
Let x and y lie antipodal on Z. These vertices split Z into two arcs p1 and p2, whereby we
name p1 the ‘upper’ one and p2 the ‘lower’ one. Moreover, we assume that γ lies above p1.
This can be done by the right choice of correspondence between S2 and the plane. The
setting is sketched in Figure 3.15 (a). Now we let the cycle Z collapse, such that p1 and p2
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Figure 3.15: The deformation steps of G into G, splitting the new graph, to get embeddings
and put the embeddings back together to achieve an embedding of G.

deform towards the straight connection between x and y. The inner vertices of p1 and p2
are also shifted, but in such a way, that they do not lie on the same point. Let us call this
resulted connection path p, see Figure 3.15 (a) and (b). This results in a new projective
HT-drawing (D, λ) of the new graph G, where all vertices are preserved. The edges have
reduced by one, since the edges of Z have been removed but replaced by the edges of p.
For λ we keep the value for all adopted edges and set λ(e) = 0 if e is an edge of p.
In this new graph G the paths γ and p form a cycle Z. Then G, Z and (D, λ) fulfill
the separation assumptions of Definition 3.17. So, the region between γ and p1 from
G corresponds to G

+0. Thus, we can apply Theorem 3.16 and obtain a drawing D′ of
G. Thereby, if we look at the two sides separately, one side, say G

+0 has a projective
HT-drawing and the other one, say G

−0, an ordinary HT-drawing on S2. If D were already
an ordinary HT-drawing, both sides result in an ordinary HT-drawing by Theorem 3.23.
Since G is 2-connected, G is 2-connected as well. We apply the induction hypothesis to G

+0

and G
−0 separately. Hence, we get an embedding of G

+0 on RP 2 and an embedding of G
−0

on S2, as shown in Figure 3.15 (c). In both embeddings Z bounds a face homeomorphic to
a disk. Again, if D were an ordinary HT-drawing, both embeddings lie on S2.
Now we merge the two embeddings of G

+0 and G
−0 along Z to get an embedding of G,

see Figure 3.15 (d).
To get an embedding of G, we only have to reshape Z. For this, we undo the identification
of p1 and p2 to p. A vertex v on p belongs to p1 if all incident edges e ∈ E(G)\E(Z) belong
to G

+0. Analogously, a vertex v on p belongs to p2 if all incident edges e ∈ E(G) \ E(Z)
belong to G

−0. So, we can move the vertices of p with its incident edges to p1 and p2
to obtain the original cycle Z. Hence, we have undone the identification and we get an
embedding of G for this case, as shown in Figure 3.15 (e).

Case 2: No trivial γ exists. Since each possible path γ is non-trivial, we fulfill the
requirements of Lemma 3.28. Thus, every inside bridge B induces exactly one arrow in the
inside arrow graph A+.
We claim, that we can handle each bridge separately. Namely, for any inside bridge B,
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Figure 3.16: An example of a mixed graph A+0 together with the redrawing steps.

there is a planar drawing of Z ∪ B such that Z is the outer face. This claim holds, since a
single arrow forms an inside fan and by Proposition 3.22 this inside fan is redrawable, such
that we receive an ordinary HT-drawing. But then we work with an ordinary HT-drawing,
which is already dealt with by Case 1.
Let A+0 be a mixed graph obtained from A+ by adding the edges of Z. So, A+0 contains Z
and the inside arrows of A+, see Figure 3.16 (a) for an example. The goal is to find an
embedding of A+0 in RP 2 with Z bounding a face. Afterwards, by the previous claim, we
are able to replace the inside arrows by an embedding of the corresponding bridges. If
several bridges induce the same arrow, we embed these brides in parallel.
To find an embedding of A+0, we abuse point two of Lemma 3.19 that disjoint inside arrows
must interleave. We want to reorder the connections of the arrows to the vertices of Z.
Therefore, let E1 and E2 be two concentric disks such that E1 is in the interior of E2 and
Z lies on the boundary of E2. Let a be the number of inside arrow of A+. Then we put
2a points on the boundary of E1 evenly distributed. We name the points by pairs (x, y)
where xy is an inside arrow. The names are assigned to the points as follows: The first
coordinate is ordered in the same way, as the vertices of Z are ordered along Z. The second
coordinate for a fixed first coordinate x is ordered in reverse order corresponding to the
order of the vertices of Z along Z, as shown in Figure 3.16 (b). Then the two points (x, y)
and (y, x) lie directly opposite on E1. Then we add simultaneously for each arrow xy an
edge between x and (x, y) as well as an edge between y and (y, x) without crossings. By
identifying the opposite points of E1 we create a crosscap and get an embedding E(A+0) of
A+0 on RP 2. By replacing the edges representing arrows in E(A+0) with the embeddings
of the corresponding bridges, we are done.

Given all these results, we can finally prove the strong Hanani-Tutte theorem for the
projective plane.

Theorem 3.4. A graph G can be embedded into the projective plane if and only if it admits
a Hanani-Tutte drawing on the projective plane.

Proof of Theorem 3.4. The proof is done by induction over the number of vertices of G.
Assume that G has at least three vertices, since otherwise the theorem follows directly by
the simplicity of G. Let us consider two cases based on whether G is 2-connected or G has
at least two 2-connected blocks.
We start with the latter one and assume G can be represented as G1 ∪ G2 with a minimal
cut G1 ∩ G2 of G. This separation contains at most one cutvertex. Using Lemma 3.24 we
can assume that, without loss of generality G1 is planar and G2 is non-planar. Then, we
get an embedding E2(G2) on RP 2 by induction. Hence, we have an embedding of G1, an
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embedding of G2 and at most one cutvertex. So, by merging the drawings at the cutvertex
we get an embedding of G = G1 ∪ G2 on RP 2.
Let us assume otherwise, that G is 2-connected. Then (D, λ) contains at least one trivial
cycle Z by Lemma 3.25. Each edge of Z can be made trivial by Lemma 3.14 and even by
Lemma 3.26. Given these properties for the edges of Z, we make Z simple by Lemma 3.27.
This yields a projective HT-drawing (D∗, λ∗), which fulfills together with G, and Z the
separation assumptions from Definition 3.17. Hence, we can apply Theorem 3.16 to
obtain a projective HT-drawing (D′, λ′) that separates G along Z into G+0 and G−0. Let
D+ := D′(G+0) and D− := D′(G−0) such that without loss of generality D− is an ordinary
HT-drawing on S2 and D+ a projective HT-drawing on S2. By applying Proposition 3.29
to both drawings D− and D+ separately, we get embeddings E(G+0) and E(G−0) of G+0

and G−0. Thereby, E(G+0) is on RP 2 and E(G−0) is on S2. In both embeddings Z bounds
a face. Hence, we can merge the two embeddings along Z into one embedding of G on
RP 2.

3.3 Uniform Hanani-Tutte on the Projective Plane
The goal of this section is to deal with the uniform Hanani-Tutte conjecture for the
projective plane. The conjecture is the following:

Conjecture 3.30. Let G be a graph with an independently even drawing on the projective
plane. Then G can be embedded on the projective plane, i.e. drawn crossing free, such that
the embedding scheme at even vertices is preserved.

By using the contraction operation described in Section 3.1, we are able to prove a property
of a minimal counter example. We modify the given graph G such that even vertices form
an independent set. An even vertex is thereby a vertex, such that all its incident edges
are even. This reduces the problem to a smaller instance. Therefore, we can assume for a
minimal counter example that even vertices are not connected by an edge.

Lemma 3.31. In a minimal counter example the even vertices form an independent set.

Proof. Let G be a graph and D(G) a minimal counterexample. Assume for contradiction,
that there are two even vertices x and y connected by an even edge e. By contracting e as
defined in Section 3.1 and shown in Figure 3.1 we get a new graph G′ with a new drawing
D′(G′) that contains a new vertex x′ with the combined rotations of x and y instead of x, y
and e. Since all edges incident to x and y were even, the edges incident to x′ stay even.
By induction, we get an embedding scheme E ′(G′) of G′ such that the rotation system at
even vertices is preserved. By Lemma 3.1, we can then undo the contraction and get an
embedding E(G) of G preserving the original embedding scheme at even vertices. So, D(G)
is not a minimal counterexample and we have a contraction. Hence, even vertices must
form an independent set in D(G).

Given this approach of a minimal counter example, we tried to adapt the proof of the
strong Hanani-Tutte theorem to obtain a proof for Conjecture 3.30. The huge problem
why we cannot use the proof of the strong Hanani-Tutte theorem as a basis for the proof
of the uniform version, is the used representation of drawings. The representation as a
projective HT-drawing on S2 possibly adds odd crossings between dependent edges at a
vertex v as shown in Figure 3.17. Then we would be allowed to reorder the edges at v.
Hence, we cannot ensure that at v the rotation is preserved and the uniform Hanani-Tutte
theorem on the projective plane is not fulfilled.
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RP 2 S2

v v

Figure 3.17: Removing the crosscap adds an odd crossing between dependent edges.

Moreover, at several points in the proof, the rotation system is not preserved at even
vertices. For example, the redrawable combinations of arrows from Definition 3.20 are not
redrawable in the same way as it is proven for the strong version. There we often have to
change the rotation at the vertices of Z, where multiple bridges are incident.
So, perhaps an approach to prove Conjecture 3.30 would be to use the forbidden minors
for the projective plane as it was done by Pelsmajer, Schaeffer and Stasi for the strong
version [PSS09], but there it could be difficult to keep the rotations at even vertices. On
the other hand, it is possible, that one has to find a completely new proof independent of
the given proofs for the strong version.

In the next Chapter we will treat the Hanani-Tutte theorems for radial planarity. For this,
we change the surface we are working on back to the plane. Hence, the setting is easier,
since the surface does not have a crosscap.
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4. Uniform Hanani-Tutte for Radial
Drawings

In this chapter we want to discuss the Hanani-Tutte theorem for radial planarity. Thereby,
we start with some definitions, followed by the weak Hanani-Tutte theorem for radial
planarity. The presented proof in Section 4.2 is the proof of Fulek, Pelsmajer and Schae-
fer [FPS17, FPS23]. Afterwards, we show the strong Hanani-Tutte theorem for radial
planarity in Section 4.3. This proof is based on the proof given again by Fulek, Pelsmajer
and Schaefer [FPS23]. The last section of this chapter will state the uniform Hanani-Tutte
theorem.

4.1 Terminology
A given graph G is a leveled graph, if its vertices can be assigned to levels 1, . . . , k, and the
edges of G connect vertices on different levels and are monotone. An example of a leveled
graph is shown in Figure 4.1 (a). The same graph G can be represented as a radial drawing.
Therefore, the levels are drawn as concentric circles, meaning they share the same centre.
The edges of G in the radial drawing have to be radial, so they intersect each circle at
most once. Figure 4.1 (b) shows a radial representation. If there is a one on one matching
between the vertices and the levels (each vertex has its one level), we say, that G is an
ordered graph. In such an ordered graph G there is a lowest and highest vertex, namely v1
and vn. Analogously to Chapter 2, a drawing D is an (independently) even radial drawing,
if it is a radial drawing, such that all (independent) edges cross an even number of times.
A graph G is radial-planar, if there exists a radial embedding E(G) of G. That is a
crossing-free drawing of G respecting the levels. It is clear, that every level-planar graph is
also radial-planar, since we can place the planar drawing of a level-planar graph also on
the concentric cycles without changing the embedding. But the other way around does not
hold, as Figure 4.2 shows.
For this chapter, we allow that our considered graphs have multiple edges, but no loops.
For the sake of simplicity, we use a special representation of radial drawings. We draw
the graphs on a standing cylinder C = S1 × (0, 1) = {(cos Θ, sin Θ, ℓ) : Θ ∈ R, ℓ ∈ (0, 1)}.
A vertex on the cylinder is specified by (Θ, ℓ). An edge is radial, if there is a function f
with interval domain such that Θ = f(ℓ) is fulfilled. A drawing is radial on the cylinder, if
the ℓ-coordinates of the vertices match the levels and the edges are radial. For a better
visibility of the edges we use the flat version of the cylindrical representation for figures as
shown in Figure 4.3. There we cut the cylinder open and roll it out such that we get a flat
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Figure 4.1: Given a leveled graph G with six levels and seven vertices. Figure (a) shows a
level-planar representation, and Figure (b) is a radial-planar representation.
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Figure 4.2: Given a leveled graph G that is not level-planar (a), but radial-planar (b).
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Figure 4.3: Figure (a) shows a cylindrical embedding of the graph from Figure 4.2. In
Figure (b) the cylindrical embedding is represented in the flat version, which is
the main form used for representation in this chapter.

drawing. The opposite sides on the left and right are identified with each other.
The notation ℓ(X) for some X ⊆ C is the interval of ℓ-coordinates of X on the interval
(0, 1). Assume that H is an ordered graph. Then max H means either the maximum vertex
max V (H) or the maximum ℓ-coordinate max ℓ(H), depending on the context. The same
holds for min H. Important to note is, that in a radial drawing, the maximum (minimum)
ℓ-coordinate is the ℓ-coordinate of the maximum (minimum) level, since the edges do not
cross these levels. Moreover, we often use for the ℓ-coordinate of a vertex v just v instead
of ℓ(v), since in an ordered graph each vertex has a unique ℓ-coordinate.
Let u and v be vertices of a graph G. The graphs G(u, v), G(u, v], G[u, v) and G[u, v] are
subgraphs of G restricted to the ℓ-coordinates between ℓ(u) and ℓ(v). If the bracket next
to the vertex is ‘(’ or ‘)’ the ℓ-coordinate is excluded and with ‘[’ or ‘]’ it is included. Let
D(G) be a drawing of G and G′ be a subgraph of G. Then D(G′) is the drawing of G′ that
is created from D(G) by restricting the drawing to G′.
In a radial drawing we can classify the edges into upper and lower edges at a vertex v. A
upper edge e at v is an edge where min e = v, and for a lower one max e = v holds. So, a
vertex that only has upper edges is a source, and a vertex with only lower edges is a sink.
Analogously to the classification of the edges, we can also split the rotation at a vertex v
into an upper and lower rotation. The upper (lower) rotation at a vertex v is the linear
order of the upper (lower) edges of v in the rotation of v. Thereby the order corresponds
to the orientation of S1 in clockwise order. So, on the flattened cylinder both orders are
read from left to right. Hence, the upper rotation is clockwise and the lower rotation
counterclockwise on the cylinder.

Let G be a graph with a radial drawing D(G). Assume there exists a simple curve γ on
the cylinder connecting S1 × 0 with S1 × 1 such that D(G) and γ do not intersect, then we
can cut the cylinder along γ and get a leveled drawing of G. Hence, we can handle it as a
leveled drawing or as an x-montone drawing by rotating it by 90 degrees. So, the levels are
vertical. This is interesting, since for leveled drawings and x-monotone drawings the three
versions of the Hanani-Tutte theorems exist [PT04, FPSŠ12, Bö22].
Let C be a closed curve on the cylinder. The winding number of C is the number of times
the curve winds around the cylinder. That means, the number of times the projection of C
to S1 passes trough a point in counterclockwise direction minus the number of windings in
clockwise direction. Such a curve or a closed walk in the graph is essential, if the winding
number is odd. The winding number parity of a cycle states if the winding number of this
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w1

w2
w3

w4

Figure 4.4: The left figure shows a level with four vertices including two sources (w1, w4)
and a sink (w3). The right figure shows the modification, where the original
four vertices are distributed in a small neighbourhood (dark gray) and the
added vertices and edges are place in the small area around (light gray).

cycle is odd or even. Hence, if the winding number parity does not change the property
that a cycle is essential does not change. If a graph G contains an essential cycle, then G
is essential.
If we have a closed curve C, we can two-color the complement of the curve, namely red and
blue. Thereby the color changes if we cross the curve. At self-crossings the color switches
twice if we walk straight over the crossing, since there we actually pass two times over the
curve. So every region gets one color. If C is non-essential, the region incident to S1 × 0
and the region incident to S1 × 1 have the same color, let it be red. Hence, the red regions
form the exterior of C and the blue regions form the interior of C.

Given a radial drawing D(G) of a given graph G. To change the crossing parity of a pair
of edges by an non-degenerate continuous deformation of D(G), we perform a vertex-edge-
switch (v, e). Thereby, we move an edge e over a vertex v that is not incident to e. Then
the crossing parity between e and all edges incident to v change. A more precise definition
is given by Definition 4.7.

4.2 Weak Hanani-Tutte for Radial Drawings
Given these terms, we want to state the weak Hanani-Tutte Theorem for radial planarity.

Theorem 4.1. If a leveled graph has a radial drawing in which every two edges cross an
even number of times, then it has a radial embedding with the same rotation system and
leveling.

To prove Theorem 4.1 a stronger and more powerful statement is needed. The following
theorem ensures, that also the winding number parity remains.

Theorem 4.2. If an ordered graph has an even radial drawing, then it has a radial
embedding with the same ordering and the same rotation system such that the winding
number parity of every cycle remains the same.

To get Theorem 4.1 from Theorem 4.2 we use the construction shown in Figure 4.4. Thereby
a leveled graph is deformed into an ordered graph, such that each vertex gets its own level.
For this, assume there exists a level l = c with more then one vertex. Firstly, we add to
each source or sink a short edge to the side without an edge. The second endpoint of that
edge is place on a new not used level below or above, respectively. This is also able for
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the lowest and highest vertex, since we work on an open cylinder. Now all the vertices on
level l are slightly moved such that each vertex receives its own level without passing any
other level. Hence, we get an ordered graph G′. For G′ exists by Theorem 4.2 a radial
embedding that preserves the ordering, the rotation system and the winding number parity
of every cycle. Afterwards, the added vertices and edges can be removed. Due to these
added vertices and edges, there is enough room to move the original vertices back to their
old level. Thus, we get a radial embedding for the original graph G with preserved rotation
system and leveling.
To prove Theorem 4.2 we first introduce some tools and properties of even radial drawings.

4.2.1 Working with Even Radial Drawings

In the following, we need the concept of a facial walk W . This is, given a connected graph
G with a rotation system, just traversing the edges according to the rotation system. At a
vertex continue the walk with the consecutive edge in clockwise direction.
Moreover, if we have an ordered graph G with an ordering v1 < v2 < · · · < vn we can define
extrema of such facial walks. The maximum (minimum) of a facial walk W in a radial
drawing of G is the vertex vi with the highest (lowest) index i that lies on W . Analogously,
a local maximum (local minimum) is a vertex vi on a facial walk W , such that for both
adjacent vertices vj , vk the indices j, k are smaller (larger) than i.
An upper (lower) facial walk of an even radial drawing is a facial walk that contains S1 × 1
(S1 × 0) in its interior. This definition splits the facial walks into two classes. An upper or
lower facial walk is an outer facial walk and all other facial walks are inner facial walks. If
a graph G has a radial embedding with only one outer face, there is also only one outer
facial walk. Then the graph also has an x-monotone embedding: There exists a curve γ
connecting S1 × 0 and S1 × 1 which does not intersect G. We cut the cylinder C along γ.
By unrolling C \ γ and rotating it, we get vertical levels and an x-monotone drawing. This
directly introduces the following lemma.

Lemma 4.3. In a radial embedding of a graph G exist two outer faces if and only if G
contains an essential cycle.

Proof. Assume there is only one outer face. Then we can add a curve γ to the outer face
with endpoints on S1 × 0 and S1 × 1. The embedding of the curve γ does not intersect the
embedding of G. So, every cycle is disjoint from γ and thereby the winding number of any
cycle is zero. Hence, G has no essential cycle in the embedding.
If there are two outer faces, one contains S1 × 1 and the other one S1 × 0. Then the lower
face boundary of the radial embedding is homotopic to S1 × 0 and has therefore an odd
winding number. Thus, G must also contain an essential cycle by induction.

Lemma 4.4. A cycle C in an even radial drawing is essential if and only if the two path
connecting its extreme points do so in inverse order.

Proof. Let C be a cycle with a maximum vertex v and a minimum vertex u. Let Pe be one
path from u to v and Pf the second one. Both paths together form the cycle C. Thereby,
Pe is connected to v by an edge e and to u by an edge e′; analogously Pf is connected
to v by an edge f and to u by an edge f ′. Note e = e′ and f = f ′ is allowed. Assume
e, e′, f ′, f appear in C in this order as shown in Figure 4.5. Let <v be the lower rotation
at v in counterclockwise direction and <u the upper rotation at u in clockwise direction.
Let e <v f . Then C is an essential cycle if and only if f ′ <u e′. To prove this clam we
two-color the complement of C. For this we traverse Pe. Since we have an even drawing Pe
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e f

f ′ e′

Pf

Pe

Figure 4.5: An essential cycle with maximum vertex v and minimum vertex u. The paths
Pe and Pf form the cycle and they connect to u and v in inverse order.

is even. Thus, the color to the right side of Pe is the same at u and v. So the region above
v has the same color as the region below u if and only if e′ <u f ′. But then the winding
number parity of cycle C is even. Hence, C is essential if and only if f ′ <u e′.

Moreover, such an essential cycle splits the graph into two parts, one above and one below.
The following lemma states this behaviour.

Lemma 4.5. Let P be a path and let C be an essential cycle, that is vertex disjoint from
P in an even radial drawing of G. Then ℓ(P ) does not contain ℓ(C).

Proof. We prove this lemma by contradiction. Assume ℓ(P ) contains ℓ(C). Then there
exist vertices u and v with u < ℓ(C) < v. Since P is a connected path and C is essential,
there exists at least one edge e on the subpath between u and v which crosses an edge f of
C an odd number of times. This is a contradiction.

For the proof of Theorem 4.2, we want to work with simple facial walks. By the following
lemmata, we can simplify the existing facial walks. For this, we need the concept of
bounded drawings and the radial (e, v)-move.

Definition 4.6. A given edge e = uv drawn on a cylinder C is bounded, if ℓ(u) < ℓ(p) <
ℓ(v) holds for every point p in the interior of e. A drawing of a graph G is bounded, if
every edge of G is bounded.

Definition 4.7. Given an edge e and a vertex v not adjacent to e with min e < ℓ(v) < max e.
A radial (e, v)-move is the deformation of e such that it passes over v in a small band
S1 × [ℓ(v) − ϵ, ℓ(v) + ϵ] around v as shown in Figure 4.6. Thereby, the crossing parity
between e and any adjacent edge to v changes, the parity of every other pair of edges stays
the same.

Lemma 4.8. If an ordered graph has an even bounded drawing, then it has an even radial
drawing with the same rotation system.

Proof. We want to show, that we can deform the edge e = uv such that it becomes radial
without changing the crossing parity between e and any other edge. Moreover, we want
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Figure 4.6: (e, v)-move in a small area S1 × [ℓ(v) − ϵ, ℓ(v) + ϵ] around v.
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Figure 4.7: Sketch of the decomposition of a facial walk W to reduce local maxima. In blue
the added edge e is shown before the redrawing step with Wuv2 chosen as W ′.

to preserve the rotation system at u and v. We apply the necessary steps to each edge
individually until the hole graph is deformed: We keep the rotation system at u and v
fixed, and deform e in ℓ(e) = [u, v] continuously such that e is radial. For this, e passes
over some vertices an odd number of times. Let us call this set of vertices S. To obtain the
original crossing parities, which only changed between e and edges adjacent to vertices in
S, we perform radial (e, w)-moves as described in Definition 4.7 for every vertex w ∈ S.
Repeating this steps for every edge in any order until the drawing is radial, gives us the
desired drawing.

Lemma 4.9. If an ordered graph has an even radial drawing, then we can add edges to
the drawing of the graph so that the resulting drawing is still even and radial, every inner
facial walk has at most two local minima and two local maxima, and each outer facial walk
of each component has exactly one local minimum and one local maximum.

Proof. We start with reducing the local maxima in an inner facial walk W. For this, assume
there are at least three local maxima in W . Now we divide W into some subpaths. Let u
be the vertex of W with the lowest ℓ-coordinate. Let the vertices v1 and v2 on W be the
two local maxima with the two highest ℓ-coordinates. Thereby, also v1 = v2 is possible,
since a vertex can occur multiple times on a facial walk. We split W into several subwalks,
namely a walk Wuv1 between u and v1, a walk Wv1v2 between v1 and v2, and a walk Wuv2

between u and v2. Let u′ be the local minimum in Wv1v2 with the lowest ℓ-coordinate,
which exists by definition since v1 and v2 are local maxima. Then u′ divides Wv1v2 into two

37



4. Uniform Hanani-Tutte for Radial Drawings

subpaths. The first walk is Wv1u′ between v1 and u′ and the second one is Wv2u′ between
v2 and u′. Hence, W is divided into four subwalks such that each of the subwalks has its
extrema at the endpoints, as shown in Figure 4.7.
By the assumption that there are at least three local maxima, at least one subwalk contains
a local maximum, which is not at an endpoint of this subwalk. Let W ′ be that one. To
reduce the local maxima in W , we add an edge e along W ′ connecting the endpoints of W ′.
Since the endpoints of W ′ are its extrema, the new edge e is bounded. By the previous
Lemma 4.8, we make the resulting drawing even and radial. Hence, W is replaced by two
new facial walks, where one does not include the local maximum of W ′ and the second one
does not include at least one of v1 and v2. Therefore, both new facial walks have fewer
local extrema than W . By repeating this operation in any order, we will get at some point
a drawing, where each inner facial walk contains at most two local maxima. To reduce the
number of local minima, we use the same operation, but the roles of maxima and minima
are swapped. Hence, we can assume, that every inner facial walk has at most two local
maxima and two local minima.
Let now W be an outer facial walk. Let u be the minimum vertex of W and v the maximum
vertex of W . If now either or both of the subwalks between u and v has another local
extreme, we add an edge between u and v in the exterior of W . Again, we make the
drawing even and radial by Lemma 4.8. Hence, the new outer facial walk has exactly one
maximum and one minimum.

The previous lemma yields in an usefull tool that each non-essential component can be
placed at the position of an edge, since for these components an x-monotone embedding
exists, which can be made arbitrarily small in its width.

Lemma 4.10. If a graph G has an even radial drawing that contains no essential cycle,
then G has an x-monotone embedding with the same rotation system.

Proof. We will prove the lemma for connected graphs. If the graph is not connected, we
can easily embed the x-monotone embeddings of the different components next to each
other.
By Lemma 4.9, we can assume that the outer facial walk is just two edges between the
extreme vertices of the graph. Note there is only one other facial walk, since G is non-
essential. We can make one of these edges crossing-free without changing the rotation
system with Lemma 4.11. Then cutting the cylinder along this crossing-free edge results in
an even x-monotone drawing in the plane. The weak Hanani-Tutte theorem for x-monotone
drawings gives us the desired embedding with unchanged rotation system, if we remove all
during the process added edges [PT04].

4.2.2 Removing Radial Crossings

Now we want to complete the proof of Theorem 4.2. For this, we want to use the following
redrawing tool, by which we can make an edge crossing-free.

Lemma 4.11. Suppose we are given a radial drawing of a graph G (not necessarily even),
and an even edge e of G. Then the edges crossing e can be redrawn inside S1 × ℓ(e) to
make e crossing-free and keeping the drawing radial. The redrawing does not change the
rotation system, the locations of the vertices, the crossing parity of any pair of edges, or
the winding number parity of any cycle.

Proof. Let f be an edge crossing e. We cut f at every crossing with e. Since e is even, f
crosses e an even number of times. Therefore, we have at each side of e an even number
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Figure 4.8: Deformation of G1 and G2 such that they can be embedded above each other
without intersections.

of end of f . Thus, we can pair up these ends in order at each side and reconnect them
locally. This yields a “curve” f with multiple components. To get back an edge f with
only one component, we reconnect the components by narrow tunnels avoiding e, which
is possible, since e does not separate the cylinder. Such a tunnel locally reconnect two
components. Thereby, the crossing parity between f and any other edge is unchanged,
since these tunnels cross another edge evenly. These operations are similar to the ones
done in the proof of Theorem 3.3.
Now f may not be radial anymore. But the redrawings are done strictly between the
endpoints of f . Thus, we can use the redrawing from Lemma 4.8 to make f radial. Doing
this process for every edge f crossing e in any order, we remove all crossings from e. The
redrawing of f does not change the rotation system, the locations of the vertices, the
crossing parity of any pair of edges, or the winding number parity of any cycle.

To finish the proof of Theorem 4.2, we firstly prove, that a counterexample to theorem
has to be connected. Thereby, the proof also shows why a minimal counterexample to the
strong Hanani-Tutte theorem for radial planarity also has to be connected.

Lemma 4.12. A counterexample to Theorem 4.2 with the smallest number of vertices is
connected.

Proof. Let G be a minimal counterexample. We can assume, that G has only a restricted
number of local extrema in each facial walk as given by Lemma 4.9. We now distinguish
whether G has a non-essential component.
Assume there is a non-essential component H. By induction, we get an embedding of H,
such that the winding number parity of cycles is preserved. Since H is non-essential, we
know that the embedding is an x-monotone embedding by Lemma 4.10. Let mH := min H
and MH := max H. We can assume by Lemma 4.9 that the outer face of H is bounded by
two radially drawn paths between ℓ = mH and ℓ = MH . The given embedding of H can be
deformed, such that it lies in a small neighbourhood of a curve C with ℓ(C) = [mH , MH ].
This can be done independently for each non-essential component. Thus, if every component
is non-essential, we combine the different embeddings to one embedding of G by placing
them next to each other. Hence, we can assume that G contains at least one essential
component.
Let G∗ be the subgraph containing all essential components of G. Again, by induction we
get a radial embedding of G∗. Let E′ be the set of edges e in G∗ such that MH ∈ ℓ(e).
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Then these edges divide G∗ into two subgraphs G+
∗ and G−

∗ induced by the vertex sets
{v ∈ V (G∗) : v > MH} and {v ∈ V (G∗) : v > MH}, respectively.
Assume for the upper outer face of G−

∗ that it lies completely above ℓ = mH . Then the
boundary of that face contains an essential facial walk WU . This walk WU lies between
mH and MH . But this is a contradiction to Lemma 4.5, since ℓ(H) would contain ℓ(WU ).
Therefore, the upper outer face of G−

∗ intersects ℓ = mH . Moreover, every face of G∗
lying in the upper outer face of G−

∗ intersects ℓ = MH . Hence, in G∗ there exists a face f
intersecting both mH and MH . In f is a radially drawn path Pf connecting its maximum
and minimum by Lemma 4.9. Then H can be embedded as above along Pf , and also every
other non-essential component in the same way. Hence, we can assume that all components
of G are essential.
Let G1 be the component of G, that contains v1 and let G2 = G \ G1 be the rest of the
graph. By induction we get embeddings for G1 and G2. Let W1 be the upper facial walk of
G1 and W2 the lower facial walk of G2. Since W1 and W2 are essential and min W2 > v1,
Lemma 4.5 implies that max W2 > max W1 and min W2 > min W1. By Lemma 4.9 both
W1 and W2 consists of two radially drawn curves. Then we deform the radial embedding
of G1 such that it lies, except for a small strip near ℓ = max W1, in a small neighbourhood
around a radial curve in the region between min W1 and max W1. Analogously, we deform
the embedding of G2 such that it lies, except for a small strip near ℓ = min W2, in a
small neighbourhood around a radial curve in the region between min W2 and max W2.
See Figure 4.8 for an illustration. Now, these two embeddings can easily be placed above
each other such that they do not intersect. Hence, we get an embedding of G satisfying
Theorem 4.2.

Given these lemmata we now prove Theorem 4.2:

Theorem 4.2. If an ordered graph has an even radial drawing, then it has a radial
embedding with the same ordering and the same rotation system such that the winding
number parity of every cycle remains the same.

Proof of Theorem 4.2. Assume we have a counterexample to Theorem 4.2. Moreover, we
can assume that the counterexample does not have an inner facial walk with just two
edges. Since we can remove one of the edges, get an embedding of the rest by induction
and embed the removed edge next to the other one.
We pick the counterexample G such that it has the fewest vertices and among these the
largest number of edges. By the Lemmata 4.12 and 4.9 we know that G is connected, every
inner facial walk contains at most two local minima and maxima and every outer facial
walk contains at most one local minimum and maximum.
Let Di be an even radial drawing of G restricted to S1 × [ℓ(v1), ℓ(vi)]. The goal is to
stepwise prove for 1 ≤ i ≤ n that Di is a crossing-free radial drawing. Then Dn is the
desired drawing. Let D1 be the given drawing of G. We assume that Di for i < n is given
and show how to redraw it to obtain Di+1. We distinguish whether vi+1 is a source. We
start with the case that vi+1 is not a source.

Vertex vi+1 is not a source. Then vi+1 has at least one lower edge. Let e be such an
edge. By Lemma 4.11, we make e crossing-free without adding crossings in the region
S1 × [ℓ(v1), ℓ(vi)], which is already free of crossings by assumption. The setting is shown in
Figure 4.9 (a).
We define πi to be the cyclic order of elements of G intersecting the circle S1 × ℓ(vi).
Thereby, we replace vi (the only vertex on that level) by the order of the edges in its upper
rotation.
We claim, that the lower edges of vi+1 have to appear consecutive in πi. Assume otherwise,
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Figure 4.9: The steps of redrawing Di to obtain Di+1 if vi+1 is a source. Dashed edges can
contain crossings.

that there is a subsequence a, b, c, d of edges in πi, where a and c are incident to vi+1 and b
and d are not. But then b or d have to cross a or c an odd number of times. There cannot
be another crossing in the region S1 × [ℓ(v1), ℓ(vi)], since there all edges cross evenly. That
is a contradiction to the condition that we have an even drawing.
To remove crossings in the region S1 × [ℓ(vi), ℓ(vi+1)], we can change the order the edges
intersect the circle S1 × ℓ(vi+1). For this, we continuously deform the edges in the region
(S1 × [ℓ(vi+1)−ϵ, ℓ(vi+1)+ϵ])\ (e∪vi+1) as shown in Figure 4.9 (b). Due to the deformation,
no odd crossing is added, since the modified region does not contain a vertex. Thus,
crossings are added pairwise. With this operation we change the order of edges intersecting
(S1 × ℓ(vi+1)) \ vi+1 such that they match the ordering from πi, where the edges incident to
vi+1 are removed. This gives us a drawing, where the edges in the region (S1 ×ℓ(vi+1))\vi+1
cross evenly and the orderings at the top and bottom match. So, it is easy to redraw the
edges in that region without any crossings, resulting in the desired drawing Di+1, as shown
in Figure 4.9 (c).

Vertex vi+1 is a source. Let W be the facial walk, such that the two edges reaching vi+1
are consecutive in clockwise order and vi+1 occurs as a local minimum. Then W has two
local maxima (possibly the same vertex), because vi+1 is a source. Let z be the maximum
vertex, y the second local maximum and u the minimum of W . The facial walk W contains
by Lemma 4.9 four radially-drawn paths: a path P between u and y, a path Q between y
and vi+1, a path T between vi+1 and z, and a path between z and u. Moreover, we make
P crossing-free by repeatedly applying Lemma 4.11 to each edge of P individually. The
vertex vi+1 together with the path P split the circle S1 × ℓ(vi+1) into two parts. Let S be
the part that reaches P from the interior of W . Analogously, we define T to be the part of
the circle S1 × y, that lies between y and R and reaches R from the exterior of W . The
setting is shown in Figure 4.10.
If now S is crossing-free, we can add an edge along S and P between u and vi+1. But then
vi+1 is not a source any more. Hence, we can apply induction and are done.
So, we assume that S is not crossing-free. However, we want to make S crossing-free, while
keeping the drawing even and without crossing P . The curve formed by S, Q and the part
of P between y and S is simple and closed. Let VS be the set of vertices contained in
its interior (vi+1 and y are not part of the interior). Similarly, we define a simple closed
curve formed by T, Q and the part of R between vi+1 and T . Then let VT be the set of
vertices on this curve and its interior. We pick the side of the curve as interior that does
not contain VS . So, VS and VT are disjoint. This is also illustrated in Figure 4.10.
Let ES be the set of edges, where one endpoint is in VS and the other endpoint is in
V \ (VS ∪ {vi+1, y}). Then each such edge have to cross S oddly, since the edges of P are

41



4. Uniform Hanani-Tutte for Radial Drawings

P

T

VT

VS

y

vi+1

z

R

u

S

Q

Figure 4.10: The facial walk W where vi+1 is a source. The dotted lines represent different
levels and the dashed curves may be crossed.The grey regions represent the
vertex sets VS and VT .

crossing-free and the edge of Q are even. Thus, the second endpoint lies below ℓ = ℓ(S).
Analogously, we define ET to be the set of edges, where exactly one endpoint is in VT .
Then such an edge e ∈ ET crosses either T oddly or e crosses R below ℓ = ℓ(T ) oddly and
a second time above ℓ = ℓ(T ) oddly, since Q is even. In both cases, the second endpoint of
e lies above ℓ = ℓ(T ). Hence, ES and ET are disjoint and share no incident vertex.
Let us consider a vertex w and an edge e with w ∈ ℓ(e). Then we perform a radial
(e, w)-move without crossing P if either e ∈ ES and w ∈ VT or e ∈ ET and w ∈ VS . This
yields still to an even drawing, since the only crossing parity that may change is between
edges eS ∈ ES and eT ∈ ET . But for these pairs of edges the crossing parity changes for
each endpoint in ℓ(eS) ∩ ℓ(eT ) which is in VS ∪ VT . So, if ℓ(eS) ∩ ℓ(eT ) ̸= ∅, then there are
exactly two endpoints of eS and eT , for which an (e, w)-move is performed. Hence, the
crossing parity between eS and eT remains even.
The (e, w)-moves with w = vi+1 move all crossings off of S and above vi+1. Since no other
(e, w)-move changes something in the region around ℓ = ℓ(vi+1), S is crossing-free, and we
can argue as above, where we added an edge between vi+1 and u along S and P .
The rotation system is preserved by all operations, since no ordering at a vertex is changed.
By Lemma 4.4, the winding number parity is unchanged, because the rotation system is
the same.

4.3 Strong Hanani-Tutte for Radial Drawings

Given the weak Hanani-Tutte Theorem for radial drawings the next step is to prove the
strong version of the theorem. We want to use the weak Hanani-Tutte theorem as a basis
for finding a minimal counter example. Therefore, a minimal counter example must contain
at least one pair of adjacent edges crossing oddly.

Theorem 4.13. If a leveled graph, possibly with multiple edges but without loops, has a
radial drawing in which every two independent edges cross an even number of times, then
it has a radial embedding.

The proof of the weak version uses that the parity of the winding number of cycles is
preserved in even radial drawings. But if we only have an independently even radial
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v1

v3v2

v5
v4
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Figure 4.11: An independently even radial drawing with two essential cycles v1v2v4 and
v1v3v5. To obtain a radial embedding the winding number parity of at least
one cycle has to change.

drawing, this property is not preserved. Figure 4.11 shows a counterexample, where the
winding number parity cannot be preserved to obtain a radial embedding.

Therefore, we need other concepts to prove the strong version. Suppose we have a
graph G and two radial drawings D1 and D2 of G. Then D2 is supported by D1 if
for every essential cycle C2 in D2 there exists an essential cycle C1 in D1 such that
[min C1, max C1] ⊆ [min C2, max C2]. That means, that for every essential cycle C2 in D2,
there must be an essential cycle C1 in D1 such that the height of C1 on the cylinder is
contained in the height of C2. Thus, the height for the essential cycles in D2 cannot be
reduced below the height in D1. Note that there may be more essential cycles in D2 than
in D1.
The second definition is that a drawing is weakly essential. Given an ordered connected
graph G, a radial drawing of G is weakly essential, if every essential cycle contains the first
vertex v1 or the last vertex vn. Now again we use a stronger version to prove Theorem 4.13.

Theorem 4.14. Let G be an ordered graph. Suppose that G has an independently even
radial drawing. Then G has a radial embedding. Moreover, (i) if the given drawing of G is
weakly essential, then G has an x-monotone embedding; and (ii) the new radial embedding
is supported by the original drawing.

Theorem 4.13 follows from Theorem 4.14 by an equivalent construction as we used in
Section 4.2 to prove Theorem 4.1. Thereby, we convert the given graph into an ordered
graph, apply Theorem 4.14 and then rebuild the original graph.

4.3.1 Working with Independently Even Radial Drawings

In the following we state some properties of (independently) even radial drawings, which
will be helpful in the proof of Theorem 4.14. Some of the results are extended results from
Section 4.2.

Lemma 4.15. If an ordered graph has an (independently) even bounded drawing, then it
has an (independently) even radial drawing with the same rotation system which preserves
whether cycles are essential or non-essential.

Proof. We want to show, that we can deform the edge e = uv without changing the crossing
parity between e and any other edge, preserve the rotation systems at u and v and do not
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Figure 4.12: A graph with added edges (blue) in the outer faces to obtain 2-faces.

change the winding number of any cycle. Then apply the necessary steps to each edge
individually until the hole graph is deformed. So, we keep the rotation system at u and v
fixed, and deform e in ℓ(e) = [u, v] continuously such that e is radial. For this, e passes
over some vertices an odd number of times. Let us call this set of vertices S. To obtain
the original crossing parities, which only changed between e and edges incident to vertices
in S, we perform radial (e, w)-moves as described in Definition 4.7 for every w ∈ S. By
repeating these steps for every edge in any order until the drawing is radial, we get the
desired drawing.

We know by the lemma above, that it is enough to find a bounded drawing. Moreover, we
can use this lemma, to reduce the local extrema in each face as stated by the following
corollary.

Corollary 4.16. In a radial embedding of a connected ordered graph G we can subdivide
any face f by adding an edge joining its maximum vertex with its minimum one while
keeping the embedding radial. If f is an outer face, we can subdivide it by adding at most
two edges so that the new outer face contains exactly one local minimum and maximum.

Proof. For the first part of the corollary we take a face f and add a new bounded edge
e between the minimum and maximum of f along the boundary of f . Since the edge is
bounded, we apply Lemma 4.15 to get a radial drawing of e. Moreover, e is an even edge,
since it is placed along the boundary without crossing any other edge. Thus, we use the
weak Hanani-Tutte Theorem (Theorem 4.1) to get a radial embedding.
For the second part, we assume f is an outer face. The facial walk W of f can be split
into two subwalks between the minimum and maximum. Along each subwalk we can add
an edge in f as shown in Figure 4.12. If the subwalk is just a single edge, we use this edge.
The two edges form a new boundary walk W ′ bounding a 2-face f ′. This new outer face
f ′ replaces the old outer face f . By applying Lemma 4.15 and Theorem 4.2 we obtain a
radial embedding for the new edges. Therefore, the rotation system is unchanged, and
since G is connected, W ′ also bounds the new face f ′

∗. Moreover, the winding number of
W ′ is not changed by these operations. Thus, by Lemma 4.4 f ′

∗ is essential if and only if
f ′ was essential and the unchanged rotation system makes sure the face f ′

∗ is an outer face.
The new outer face has only two vertices. Hence, only one local minimum and maximum
can exist.

Lemma 4.17. Let P be a path and let C be an essential cycle, vertex disjoint from P , in
an independently even drawing of a graph. Then ℓ(P ) does not contain ℓ(C).
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Figure 4.13: A graph G (gray) with upper and lower face bounded by essential 2-cycles
with aligned minima and maxima.

Proof. We prove this lemma by contradiction. Assume ℓ(P ) contains ℓ(C). Then there
exist vertices u and v with u < ℓ(C) < v. Since P is a connected path and C is essential,
there is at least one edge e on the subpath between u and v, which crosses an edge f of C
an odd number of times. Given that P and C are vertex disjoint, e and f are independent
edges. But this contradicts that the given drawing is independently even.

The next part describes how we combine embeddings of different components. Let H be a
graph with an independently even radial drawing without essential cycles, then H has an
x-monotone embedding. This follows by Lemma 4.22, where we prove a slightly stronger
statement. Moreover, this x-monotone embedding can be reduced in width as required.
Thus, we can embed H arbitrarily close next to a radial curve e with ℓ(H) ⊆ ℓ(e). This is
called a “skinny” embedding.

Observation 4.18. If an ordered graph H has an x-monotone embedding and e is a radial
curve on the cylinder with ℓ(H) ⊆ ℓ(e), then H has an embedding on the cylinder that lies
arbitrarily close to e.

If we have a radially-embedded graph with essential cycles, we find a level-preserving
deformation, such that the maxima and minima of the outer faces can be aligned at any
distinct angles Θ1 and Θ2 on S1, as shown in Figure 4.13.
Let Θ1 and Θ2 be angles on S1 and m and M be two height in [0, 1], then γ(Θ1, m, Θ2, M)
is an essential 2-curve connecting the two points (Θ1, m) and (Θ2, M) by two edges, such
that the curve is an essential cycle.

Lemma 4.19. Suppose an ordered graph G containing essential cycles is radially embedded.
Let mL and ML be the minimum and maximum of the lower face boundary and let mU and
MU be the minimum and the maximum of the upper face boundary. Then for any distinct
Θ1, Θ2 on S1, there is a radial embedding of G that lies between the curves γ(Θ1, mL, Θ2, ML)
and γ(Θ1, mU , Θ2, MU ).

Proof. Since G contains an essential cycle, by Lemma 4.3 the graph G has a separate
upper and lower outer face. By Corollary 4.16 we can add edges, such that we have upper
and lower outer 2-faces with radially-drawn edges. We can deform the edges of these
outer 2-faces such that the endpoints stay on their level and the upper face matches the
curve γ(Θ1, mU , Θ2, MU ) and the lower face matches the curve γ(Θ1, mL, Θ2, ML). After
removing the added edges, we get an embedding of G between these to certain curves.
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4.3.2 Weakly Essential Drawings

Given a vertex v, such that two consecutive edges e and f in the rotation at v cross an odd
number of times. We can remove this odd crossing, by flipping e and f in the rotation at v.
This operation adds a crossing between e and f such that e and f cross evenly. Thereby,
both e and f are either in the upper or in the lower rotation of v. The idea is to use the
proof of the strong Hanani-Tutte theorem for x-monotone drawings as a reference and
construct the proof for radial drawings similarly [FPSŠ12, Theorem 3.1]. In that setting
are to possible obstacles, if we are not able to make incident edges at a vertex v cross
evenly by flipping. Either there is a component H of G{v, w} for some w ∈ V (G) such that
v ≤ min H < max H ≤ w or a multiple edge vw. We handle both cases by reducing them
to the weak Hanani-Tutte theorem for x-monotone drawings [FPSŠ12, Theorem 2.11]. But
this approach does not work for the radial setting. There can exist a vertex v such that its
incident edges can not be made crossing evenly by flipping operations and there is neither
a component H nor a multiple edge vw. This can only occur at the first or the last vertex
of the corresponding ordered graph as we show in Lemma 4.22. For this, we define a new
graph G′.

Definition 4.20. Given an ordered graph G with vertices v1 < · · · < vn and without the
edge v1vn. Define G′ to be the ordered graph obtained from G by removing v1 and vn and
replacing the edges to these vertices. Let wi with i ∈ 1, . . . , k be the adjacent vertices of v1
in G. For G′ replace each edge v1wi by a new edge v′

iwi preserving the crossings appearing
in G. The vertex v′

i is a new degree-1 endpoint for each new edge. Analogously, let w′
j

with j ∈ 1, . . . , l be the adjacent vertices of vn in G. For G′ replace each edge vnw′
j by a

new edge v′′
j w′

j such that the crossings appearing in G are preserved. The vertex v′′
j is new

degree-1 endpoint for each new edge.

Lemma 4.21. If G is a connected ordered graph with an (independently) even radial
drawing D(G), then G′ has an (independently) even radial drawing D′(G′) such that
D′(G \ {v1, vn}) = D(G \ {v1, vn}) and D′(G′) is supported by D(G).

Proof. Let us construct G′ as in Definition 4.20. Then the originally oddly crossing pairs at
v1 in D(G) except of multiple edges become independent edge crossings. To remove these
crossings, we apply some radial (e, v)-moves. Let wi be the upper endpoint of the edge
incident to v′

i for 1 ≤ i ≤ k. If two edges v′
iwi and v′

jwj with i < j cross an odd number of
times, we perform a radial (v′

iwi, v′
j)-move to add one crossing between v′

iwi and v′
jwj such

that they cross evenly. We apply this procedure to all pairs. So, for each j ∈ 1, . . . , k we
perform for each edge v′

iwi that crosses v′
jwj oddly a radial (v′

iwi, v′
j)-move. Afterwards all

v′
iwi, v′

jwj-pairs cross evenly.
Similarly, we handle vn with the new endpoints v′′

1 < · · · < v′′
l . Thus, we get a drawing

D′(G′) of G′ with D′(G \ {v1, vn}) = D(G \ {v1, vn}). Moreover, every essential cycle of
D′(G′) is also essential in D(G) such that, D′(G′) is supported by D(G).

With Lemma 4.21 we can prove part (i) of Theorem 4.14.

Lemma 4.22. Suppose that G has an independently even radial drawing D(G) that is
weakly essential. Then G has an x-monotone embedding.

Proof. By the previous Lemma 4.21 we get an independently even radial drawing D′(G′).
Given that D(G) is weakly essential and D′(G′) is supported by D(G), we know by the
construction of D′(G′) that the only possible existing essential cycles in D(G) (containing
v1 or vn) are erased in D′(G′). Hence, D′(G′) has no essential cycles.
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Figure 4.14: The set of edges E′ (dashed) and the induced graphs G− (gray edges) and
G+ (black edges); the green radial curve xy in face f represents the place for
mHMH and H respectively.

We add new vertices v, v′ with v < min G′ ≤ max G′ < v′ and a radial edge e = vv′ such
that e does not contain any vertex of G′. Define E′ to be the set of edges of G′ that crosses
e an odd number of times. Moreover, E′ is an edge-cut of G′ and by performing radial
(e, w)-moves for all vertices w on one side of the cut E′, we make e even. By Lemma 4.11
based on the graph (V (G′) ∪ {v, v′}, E(G′) ∪ {e}), we can make e crossing free. Then we
use e as a cut line and deform the cylinder C into a subset of the plane. After rotating
the radial drawing, it becomes x-monotone. With the strong version of the Hanani-Tutte
theorem for x-monotone drawings we get an x-monotone embedding of G′ [FPSŠ12]. To
get a drawing of G, we combine the vertices v′

i for 1 ≤ i ≤ k to the vertex v1 and v′′
j

for 1 ≤ j ≤ l to vn. This is done, such that we do not add crossings. Hence, we get an
x-monotone embedding of G.

4.3.3 Components of a Minimal Counterexample

To prove part (ii) of Theorem 4.14, we work with a minimal counterexample. Let G be a
minimal counterexample with the fewest number of vertices and among them one with the
fewest edges. Let D(G) be an independently even radial drawing of G. Then there is no
radial embedding of G that is supported by D(G). Moreover, D(G) is not weakly essential
by the previos Lemma 4.22.

Lemma 4.23. A minimal counterexample does not contain multiple edges.

Proof. Assume the graph G for a minimal counterexample contains multiple edges e, e′

with endpoints u and v. By induction, we get a drawing D(G − e) of G − e. We add e
along e′ without crossings to the drawing to receive an embedding of G. This embedding
is supported by D(G − e), since for every essential cycle C, that contains e, the cycle
C ′ = C − e + e′ is also essential and in D(G − e) and moreover ℓ(C ′) = ℓ(C).

Lemma 4.24. G is connected.

Proof. Assume G is not connected. The first case is, that there exists a non-essential
component H of G with mH = min V (H) and MH = max V (H). Then we embed
G′ = G \ H by induction. We want to add a crossing-free edge mHMH to the embedding.
By Observation 4.18, this edge is enough such that H can be embedded around the area of
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mHMH .
For this, we divide G′ into a set of edges E′ and two embedded subgraphs G− and G+. E′

is the set of edges e with min e < MH < max e; the set of vertices {v ∈ V (G′) : v < MH}
induces G− and {v ∈ V (G′) : v > MH} induces G+ as shown in Figure 4.14. By definition,
the upper face of G− contains ℓ = MH and it must also intersect ℓ = mH . If not, the upper
boundary of G− contains between mH and MH an essential cycle, which contradicts part
(ii) of Theorem 4.14 with Lemma 4.17 and H. Define a point x with ℓ(x) = mH in the
upper boundary of G− such that x does not intersect with E′ and the face f containing x
must intersect with ℓ = MH . Thus, we can add a curve xy from ℓ = mH to ℓ = MH , which
can be made radial by Corollary 4.16. By Observation 4.18 this edge can be replaced by
mHMH or H. This results in an embedding of G and satisfies part (ii) of Theorem 4.14,
because the previous operations do not remove or add any essential cycle.
The second case is, that every component of G is essential. Let H be the component
of G with max H = max G. We again embed G′ = G \ H by induction. By the same
argumentation as above, the upper face of G′ must contain ℓ = max H and intersect
ℓ = min H, since otherwise there exists an essential cycle between mH and MH contradicting
part (ii) of Theorem 4.14 with H and Lemma 4.17. Thus, the minimum mU of the upper
boundary of G′ is below the minimum of H. G′ can be embedded on a cylinder below the
curve γ(0, mU , π, max G′) by Lemma 4.19. The component H can also be embedded by
induction such that the maximum ML of the lower boundary of H satisfies max G′ < ML.
Again by Lemma 4.19 the embedding of H lies strictly above the curve γ(0, min H, π, ML).
These two embeddings of G′ and H do not intersect, since mU < min H and max G′ < ML

and so, the two curves lie with a gap above each other. This is an embedding of G satisfying
part (ii) of Theorem 4.14 since all essential cycles lie in a component which was drawn by
induction.

Assume we have a vertex v of G. Let B be a component of G \ v with min B > v. Then G
contains at least one edge from v to a vertex in B, since G is connected by Lemma 4.24.

Lemma 4.25. Let v be a vertex and B be a component of G \ v with min B > v. Then
either |V (B)| = 1 or B is essential in D(G).

Proof. We prove the statement by contradiction. For this assume that B is free of essential
cycles and |V (B)| ≠ 1. We define B′ to be the induced subgraph of V (B) ∪ {v}. Since
B do not contain any essential cycle, we can apply Lemma 4.22 to get an x-monotone
embedding E(B′) of B′. Let vPw be a path in B′ from v to w = max B. We replace B′

by a single curve e from v to w to get a graph G′. The drawing D(G′) of G′ is almost the
same as D(G) only D(e) = D(P ). For this, the vertices of P are omitted to get the drawing
D(e). The curve e is maybe not radial. So, D(G′) does not have to be radial. But since e is
bounded and independently even, we can apply Lemma 4.15 to get an independently even
drawing D′(G′) of G′. By induction, we get a radial embedding E(G′) of G′. To complete
the embedding to an embedding for G, we use Observation 4.18 to replace e in E(G′) by
a “skinny” version of E(B′) intersecting in v and w. So, the created embedding of G is
supported by D(G) contradicting the assumption of a minimal counterexample.

Lemma 4.26. Let v be a vertex and B a component of G \ v with min B > v. If B is
essential in D(G), then v = v1.

Proof. Let G be a graph. Assume B is essential and v ̸= v1. We consider the components of
G\v. Let G1 be the union of the components H with min H > v and the union of the other
components be G2. Both subgraphs are non empty, since B is part of G1 and the vertex
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Figure 4.15: G′
1 in black and G′

2 \ w in gray. Vertex u of G′′
2 directly below max W1 and

dotted the upper outer 2-face of G′′
2.

v1 ≠ v is in G2. Let G′
1 be the subgraph of G induced by V (G1) ∪ {v} and G′

2 the union of
the subgraph induced by V (G2) ∪ {v} and an edge e between v and w := max G′

1 = max G.
In G1 exists a path vPw connecting v and w. For this path, we can argue as in the proof
of Lemma 4.25, where the inserted edge e is affected, that there exists an independently
even radial drawing of G′

2. Moreover, G′
2 is not equal to G, since G′

1 contains an essential
cycle, because B is in G. Figure 4.15 shows an example.
By the minimality of G, there are radial embeddings E1(G′

1) and E2(G′
2) of G′

1 and G′
2.

Each embedding is supported by the existing drawings of G′
1 and G′

2, respectively. We
distinguish two cases, whether E1(G′

1) is essential. If E1(G′
1) is non-essential, we insert a

“skinny” embedding of E1(G1) along the embedding of e in E2(G′
2) intersecting in v and w.

Thus, we get an radial embedding of G.
The second case is that E1(G′

1) is essential. Then the lower facial walk W1 of G′
1 in E1(G′

1)
is essential. Moreover, max W1 > max(G′

2 \ w). If this claim would be wrong, there must
be a vertex y in G′

2 \ w with y > max W1. But every component H of G2 has at least one
vertex x with x < v by definition. Thus, there must be a path xPy from x to y in G′

2 \ w.
But this path and W1 contradict Lemma 4.17. So, the claim that max W1 > max(G′

2 \ w)
holds. To finish the proof, we define G′′

2 from G′
2 in three steps. First, we subdivide e in

G′
2 by adding a vertex u just below max(G′

1) and above max(G′
2 \ w). Let e′ be the new

edge between v and u. Secondly, we remove w and thus also uw from G′
2. Finally, we

add a second edge e′′ between v and u such that ve′ue′′v form an essential 2-cycle. The
edge e′′ can be added to the embedding by Corollary 4.16, since w and e are on the upper
boundary walk of G′

2. Thus, in the embedding E2(G′′
2) of G′′

2 the upper facial walk is the
essential 2-face e′e′′ with minimum v and maximum u, as shown in Figure 4.15. Using
again Corollary 4.16 we can also add edges to G′

1 such that lower outer face of E1(G′
1) is a

2-face with minimum v and maximum max W1. By Lemma 4.19 we combine E1(G′
1) and

E2(G′′
2) into an embedding containing G. By deleting the added edges, we get a radial

embedding of G that is supported by D(G), which contradicts the choice of G.

Lemma 4.27. Suppose that v, w ∈ V and B is a component of G \ {v, w} with v < min B
and max B < w. Moreover, there is at least one edge from B to v and at least one from B
to w. Then B is essential.

Proof. We prove this Lemma in a similar way as Lemma 4.25. Therefore, we assume that
B is free of essential cycles. Define B′ as the subgraph induced by V (B) ∪ {v, w}. We get
an x-monotone embedding E(B′) of B′ by Lemma 4.22.
There exists a path vPw from v to w in B′. We obtain G′ from G by replacing B′ with a
single curve e′ from v to w. Thus, we get the drawing D(G′) of G′ by inheriting from D(G)
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where D(e) is obtained from D(P ) by suppressing the interior vertices of P . Afterwards,
D(G′) is perhaps not radial due to e, but still bounded and independently even. Thus,
with Lemma 4.15 we get an independently even radial drawing D′(G′). Since G is minimal,
we get a radial embedding E(G′) of G′. To obtain a radial embedding of G, we replace e in
E(G′) by a “skinny” copy of E(B′) intersecting E(G′) in v and w.
The second part is to show, that the created embedding of G is supported by D(G).
Therefore, we assume that there is a essential cycle C in our embedding. By assumption C
is not in B. So, either B′ ∩ C is a path between v and w or C does not intersect B. For
the first case, replace the path by the edge e to get an essential cycle C ′ in the embedding
E ′(G′), and for the second case C is already an essential cycle in G′, so we set C ′ = C.
Since the embedding E(G′) of G′ is supported by D(G′), there exists an essential cycle C ′′

in D(G′) with ℓ(C ′′) ⊆ ℓ(C ′). If C ′′ contains the edge e, replace e by P to get C ′′′ in G.
C ′′′ is essential in G, because P can be deformed to e within the cylinder. If otherwise C ′′

does not contain e, just use C ′′ as C ′′′. Thus, we get ℓ(C ′′′) = ℓ(C ′′) ⊆ ℓ(C ′) = ℓ(C) and
the obtained embedding E(G) of G is supported by D(G).

4.3.4 Completing the Proof of Theorem 4.14

To complete the proof, we firstly assume that D(G) is even. But then Theorem 4.2 finishes
the proof of part (ii), since we get an embedding of G such that the winding number parity
is preserved. Thus, cycles stay essential or non-essential and therefore the embedding is
supported by the original drawing.
So, we consider a non-even drawing, that means, there is at least one vertex, which has a
pair of edges that cross oddly. If such a pair of edges is in consecutive order in the upper
or lower rotation of a vertex v, we can just flip these two edges in a small area around v
such that they cross evenly. We repeat this operation until all such consecutive pairs are
removed. Afterwards, the only odd pairs that can exists are in a non-consecutive order
around a vertex. Assume without loss of generality, that the edges e and f with a common
vertex v, lie in the upper rotation at v and are not consecutive, but have a minimum
distance in the rotation. Thus, there is at least an edge g between e and f such that g
cross both other edges evenly. Actually, the distance in the upper rotation does not matter,
only the crossing parity and the order in the rotation. So, we define an unflippable triple.

Definition 4.28. An unflippable triple are three edges a, b and c in that order in the
upper rotation at a common vertex v such that the outer pair (a, c) crosses oddly and the
other two pairs (a, b) and (b, c) cross evenly.

The following lemma allows us to rotate the edges of an unflippable triple such that the
unflippable triple is preserved.

Lemma 4.29. If a, b, c is an unflippable triple with common vertex v, we can redraw the
ends of a, b and c so their order is b, c, a, and we can redraw the ends at v so their order is
c, a, b. In either case, the edges form again an unflippable triple after the redrawing.

Proof. We can flip a to its right with every edge until it flips with c. So, for all these edges
the crossing parity with a changes. In particular the pair (a, b) cross now oddly and (a, c)
evenly. The order is then b, c, a, the outer pair (b, a) crosses oddly and the other two pairs
(b, c) and (c, a) cross evenly. This is still an unflippable triple, but with cyclically shifted
order. By moving c in the original triple to the left and with a similar argumentation, we
get that also c, a, b is an unflippable triple.

The next lemma is a main tool for the rest of the proof. Figure 4.16 shows the setting.
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Figure 4.16: Paths P, Q, Q′ in a configuration that cannot occur in an independently even
radial drawing, if the edges e1, e2, e3 at vertex v form an unflippable triple.
(left) P starts at e2; (right) P starts at e1.

Lemma 4.30. Let e1, e2, e3 be three edges in that order in the upper rotation of a common
vertex v, such that e1, e3 cross oddly and both e1, e2 and e2, e3 cross evenly. Suppose
that P, Q, Q′ are paths that begin at v and their first edges are e1, e2, e3, not necessarily
respectively in that order, such that V (P ) ∩ V (Q) = {v} = V (P ) ∩ V (Q′) and v = min Q =
min Q′ > min P . (See Figure 4.16) Then it cannot be that both max Q > max P and
max Q′ > max P .

Proof. We prove the lemma by contradiction and assume the contrary. We pick the
three paths P, Q, Q′ to be minimal. That means, that all vertices of the path except for
the last one lie in the region S1 × [ℓ(v), max ℓ(P )]. By adding a simple curve γ∗ in the
region S1 × (max ℓ(P ), 1) joining the endpoints of Q and Q′, we get a non-essential curve
γ = γ∗QQ′. Since the end of the path P is in the region S1 × (0, ℓ(v)), it is in the exterior
of γ. Thus, P crosses γ oddly if and only if P starts in the interior of γ, which only occurs
if the first edge of P is e2. If P starts with e1 or e3 it crosses γ evenly.
Since γ∗ lies in the region S1 × (max ℓ(P ), 1), P does not cross γ∗. So, the only possible
edges between γ and P that can cross are e1, e2 and e3, because we do not have independent
odd edge crossings. If P starts with e2, it crosses γ evenly, since e1, e2 and e2, e3 cross
evenly. Otherwise if P starts with e1 or e3 it crosses γ oddly, since e1, e3 have a odd number
of crossings and e1, e2 and e2, e3 an even number. This contradicts the observations from
the previous paragraph.

The remaining proof of Theorem 4.14 splits into two cases, namely whether our considered
vertex v with edges e, f and g is v1 = min V (G) or not.

Case 1: Assume that v ̸= v1.

There has to be a path P through e, f or g ending in the region S1 × (0, ℓ(v)). If this is not
the case, pick a component G \ {v} containing one of the upper endpoints ve, vf , vg of e, f
or g. This component lies in the region C(v, 1) and is a single vertex by Lemma 4.25 and
Lemma 4.26. Thus, the upper endpoints ve, vf , vg are degree-1 vertices in G. Remove the
one with the smallest i-coordinate. Without loss of generality let it be ve together with e.
By induction, we get an embedding E(G − ve) of G − ve. Afterwards, we embed e along f
without any crossings to get a radial embedding for G.
Let P be a minimal path starting at v with e, f or g that minimizes max P and ends in the
region C(0, v), such that all its vertices except the last one are in the region C[v, 1). Moreover,
let wP be the maximum vertex of P . Divide the path P at wP into two subpaths P1 from
v to wP and P2 from wp to the vertex in the region C(0, v). Let H be the subgraph induced
by the vertices u ∈ V (G) : v < u < wp between v and wp. Let H2 be the component that
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Figure 4.17: The subgraph H (gray region) between v and wP with its subcomponents.

intersects P2. If P2 is only one edge, H2 is empty. The components He, Hf , Hg are the not
necessarily distinct components of H incident to e, f, g, respectively. Again, He, Hf , Hg can
be empty, if the upper endpoint of e, f, g lies above wp. See Figure 4.17 for an illustration.
The subgraph H2 is disjoint from He, Hf , Hg due to the way P is chosen and there is no
edge from He ∪ Hf ∪ Hg to the region C(0, v).

Claim 4.31. He is non-essential and adjacent to a vertex in the region C(wp, 1), unless
He is empty, and likewise for Hf and Hg. (He is empty if and only if max e ≥ wp, and
likewise for Hf and Hg.)

Proof of Claim. If He contains an essential cycle, this cycle and the path P2 contradict
Lemma 4.17. Moreover, He cannot be adjacent to a vertex in the region C(0, v) due to the
choice of P . Assume that He is not adjacent to a vertex in the region C[wP , 1). Then the
only adjacent vertex to He is v. But Lemma 4.25 and Lemma 4.26 provide, that He is
just a single vertex ve, namely the upper endpoint of e. Removing ve and e gives us by
induction a radial embedding E(G − ve) of G − ve, that is supported by D(G − ve). If there
exists an edge vw′ with w′ ≥ wP we can embed e along vw′ to get an embedding for G. If
there is no such edge, P1 contains at least one vertex in the region C(v, wP ).
Analogously to H2, we define H1 as the component of H that intersects P1. Thereby,
the component H1 is equal to He, Hf or Hg since P starts with e, f or g. Let H ′

1 be the
subgraph induced by V (H1) ∪ v. This subgraph is not incedent to an edge intersecting
the region C(0, v) by the choice of P and it does not contain any essential cycle. If H ′

1
would contain an essential cycle, it would contradict Lemma 4.17, since ℓ(H ′

1) ⊆ ℓ(P2).
On top of this, we define H ′′

1 as the union of H ′
1 with all incident edges intersecting the

region C(wP , 1). We can use the boundary of the lower outer face of this subgraph H ′′
1 in

the embedding E(H ′′
1 ), to draw e along it, such that e is bounded. We can redraw this

bounded drawing of e with Lemma 4.15 to get an embedding of e without crossings, this is
a contradiction.
Hence, if He is not empty, it must be adjacent to a vertex different from v in the region
C[wP , 1), since C(0, v) is not possible by the choice of P . Similarly Hf and Hg have
neighbours in C[wP , 1) if they are not empty.

Claim 4.32. There exists a cycle C in G[v, wP ] that contains v and exactly two edges in
{e, f, g}.

Proof of Claim. Without loss of generality we assume, that P goes through e. If this it
not the case, we use Lemma 4.29 to reorder the edges at v, such that e is the left edge and
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the start of P , g is the middle one and f the right one. By Claim 4.31, there is a path
from vertex v over f through Hf that ends in G[wP , 1). Name a minimal such path Pf .
Analogously, we define Pg, that starts with the edge g. Let us assume, that neither Pf

not Pg intersect with P1 \ v. Then both paths do not intersect P . Moreover, both end in
C(wP , 1), which is a contradiction to Lemma 4.30. Therefore, at least one of the paths Pf

or Pg contains a subpath from v to a vertex in P1 in the region C[v, wP ]. Hence, there is a
cycle C in the region C[v, wP ] containing e, v, f or e, v, g.

We pick the cycle C in G[v, wP ] such that it contains exactly two of the three edges {e, f, g}
and minimizes max C. Define w = max C ≤ wP to be the maximum vertex of C. If the
upper endpoint ve of e is in G(v, w), we define the component of G(v, w) that contains
ve as Be. The component B′

e is the union of Be with all incident edges and endpoints,
which includes e and v. If otherwise ve ≥ w, then Be = ∅ and B′

e is just the edge e with
its endpoints v and ve. Bf , B′

f , Bg, B′
g are defined analogously with f and g, respectively.

Since w ≤ wP , Be ⊆ He, Bf ⊆ Hf and Bg ⊆ Hg. By the choice of C, neither of the
components Be, Bf , Bg intersect with each other and by P none is adjacent to a vertex in
G(0, v).

Claim 4.33. If C is non-essential, then w is the upper endpoint of the edge in {e, f, g} \
E(C).

Proof of Claim. We first treat the case that C contains e and f . Then the edge g starts
between e and f around v and since g crosses every edge of C an even number of times, the
upper endpoint of g lies in the interior of C or on C. Moreover, every vertex of Bg lies in
the interior of C, because C and Bg are disjoint and their edges cross evenly. By the same
argumentation, Bg is not connected to any vertex in G(w, 1) and V (B′

g) \ V (Bg) ⊆ {v, w}.
Assume Bg has no neighbour in G[w, 1), then Bg = Hg. But by Claim 4.31 the component
Hg is adjacent to a vertex in C(wP , 1), which is a contradiction to wP ≥ w. If now Bg is
adjacent to w, Lemma 4.27 gives us, that Bg is essential. This is also a contradiction since
Bg ⊆ Hg and Hg is by Claim 4.31 non-essential. Hence, Bg is empty, the upper endpoint
of g lies on C and is therefore by the choice of C the vertex w. So, g = vw.
The next case is, if C contains e and g. Again g lies between e and f around v. Thus, f
starts in the exterior of C. But since f crosses g evenly and e oddly its endpoint lies in the
interior of C or on C. By the same argumentation as before with f and g switched, we get
f = vw.
The last case, that C contains f and g is similar to the second one, with e starting in the
exterior of C. As a result, we get e = vw.

Claim 4.34. We may assume that C is essential and wP = w, so Be = He, Bf = Hf and
Bg = Hg.

Proof of Claim. We can split C into two v, w-paths. Assume C is non-essential. Then each
of the two paths form with the edge in {e, f, g} \ E(C) again a cycle with maximum w.
But then we can apply Claim 4.33 to each of the new cycles and get that e = f = g = vw,
which is a contradiction to Lemma 4.23 that G has no multiple edges. Hence, we can
choose for C an essential cycle.
If wP > w, then the path P2 must cross C which contradicts Lemma 4.17. So, wP = w
and Be = He, Bf = Hf and Bg = Hg.

Claim 4.35. If B′
e (or B′

f or B′
g) does not intersect G(w, 1), then B′

e (or B′
f or B′

g) has
only one edge, vw = e (or f or g).
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Proof of Claim. Assume that B′
e does not intersect G(w, 1). By the previous Claim 4.34,

wP = w and Be = He. Thus, He is not adjacent to a vertex in G(wP , 1).
If now He is not empty, He is non-essential and has a neighbour in G[wp, 1) by Claim 4.31.
Hence, the only possible neighbour of He in G[wp, 1) is wP . But then we get a contradiction
to Lemma 4.27, since He has no neighbour in G(0, v) by the choice of P .
We assume otherwise, that He = ∅. Then B′

e is just the edge e with its endpoints, such
that the upper endpoint ve is in G[wp, 1). Since B′

e does not intersect G(w, 1), ve = w and
we get e = vve = vw. The same argumentation works with B′

f and B′
g instead of B′

e which
finishes the proof of the claim.

To end the proof of this case we want to find a contradiction to Lemma 4.23, that there are
no multiple edges. For this, we assume without loss of generality, that the cycle C contains
e and f . Otherwise, use Lemma 4.29 and renaming.

Claim 4.36. B′
g intersects G(w, 1).

Proof of Claim. Assume the contrary. Then by Claim 4.35 the subgraph B′
g = vw and by

Claim 4.34 the cycle C is essential. The two v, w-paths of C form with g two new cycles,
where at least one must be non-essential, since otherwise C is obtained as a symmetric
difference of two essential cycles and therefore non-essential, which is a contradiction. We
pick that non-essential cycle and apply Claim 4.33 to this cycle according to the definition
of C before Claim 4.33. This gives us, that e = vw = g or f = vw = g, what contradicts
Lemma 4.23.

Claim 4.37. B′
e and B′

f do not intersect G(w, 1).

Proof of Claim. Assume that B′
e intersect G(w, 1). It works symmetrically with B′

f . Then
there exists a path Q in B′

e that starts at v with e and ends in G(w, 1). But there is also
a path Q′ starting at v with g and ending in G(w, 1) by Claim 4.36. As a third path we
pick P ′ to be the concatenation of P2 and the v, w-path in C ∩ B′

f . Then P ′ ∩ Q = v
and P ′ ∩ Q′ = v. Thus, P ′, Q, Q′ apply to Lemma 4.30 through f, e and g and we get a
contradiction.

Hence, by Claim 4.37 and 4.35, e = vw = f , which is a contradiction to Lemma 4.23. So,
if any edges cross oddly in the upper rotation of a vertex v, we get v = v1. Symmetrically,
we get that if any two edges cross oddly in the lower rotation of a vertex v, v = vn.

Case 2: Only pairs of edges incident to v1 or to vn may cross oddly.

Firstly, we assume that G does not contain the edge v1vn. If G contained v1vn, D(G)
would be weekly essential, since any essential cycle not containing v1 or vn would contradict
Lemma 4.17 with the edge v1vn. But then Lemma 4.22 gives us a radial embedding.
We modify G to get G′ as in Definition 4.20. By Lemma 4.21 we get an even drawing and
then by Theorem 4.2 a radial embedding of G′. To obtain a radial embedding of G we
redraw the pendent edges of Definition 4.20 and identify the ends to get v1 and vn. This
must be done carefully to satisfy part (ii) of Theorem 4.14.
We redraw the edges incident to v1 such that the maximum vertex x of the lower face
boundary walk W of G′ is also on the outer face boundary walk of G. Assume that W
starts and ends at x. Then the remaining vertices of W are ordered by W in a certain
way. We order the edges incident to v1 in exactly that way at v1, as shown in Figure 4.18.
Analogously, we proceed at vn such that the minimum vertex of the upper boundary walk
of G′ is on the outer boundary walk of the embedding of G.
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Figure 4.18: The lower part of G′ without the pendent edges in black. The edges incident
to v1 are added in grey as they are in the embedding of G such that the
maximum vertex v7 = x of the lower face boundary of G′ is on the outer face
boundary of G.

Then any essential cycle that is in G but not in G′ must contain v1 or vn. To fulfill
part (ii) of Theorem 4.14 the embedding of G′ must contain an essential cycle C ′ with
[min C ′, max C ′] ⊆ [min C, max C]. But a lower or upper facial walk of G′ contains such a
essential cycle. Hence, the proof of Theorem 4.14 is finished.

4.4 Uniform Hanani-Tutte for Radial Drawings
Now we want to state the uniform variant of the theorem.

Theorem 4.38. If a leveled graph, possible with multiple edges but without loops, has a
radial drawing in which every two independent edges cross an even number of times, then
it has a radial embedding, such that the rotation system at even vertices is preserved.

To prove this theorem, we again prove a stronger version from which Theorem 4.38 directly
follows. Thereby, we convert the given graph into an ordered graph, apply the stronger
version and rebuilt the original graph, analogously to the construction in Section 4.2 to
prove Theorem 4.1.

Theorem 4.39. If an ordered graph G has a radial drawing in which every two independent
edges cross an even number of times, then G has a radial embedding, such that the rotation
system at even vertices is preserved. Moreover, the new radial embedding is supported by
the original drawing.

Compared to the stronger version of the strong Hanani-Tutte theorem for radial planarity
(Theorem 4.14), we left out the part, that G has an x-monotone embedding, if the given
drawing of G is weakly essential. This is the case, since Lemma 4.22 does not work in the
uniform setting. In the last step of the proof of Lemma 4.22 we combine the new vertices
back to one. This merge may change the rotation system at v1 or vn, which is not allowed
if the respective vertex is even. See Figure 4.19 as an example.

But we can prove a slightly weaker lemma. By adding the condition that G that every
essential cycles goes through v1 and v1 has an odd crossing.

Lemma 4.40. Suppose that G has an independently even radial drawing, such that each
essential cycle passes through v1 and v1 is odd. Then G has an x-monotone embedding.
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v1
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Figure 4.19: A weakly essential graph G with an upper and lower essential cycle. The
middle figure shows the split and the last one the combination with a changed
rotation system at v1 and vn.

Proof. Let D(G) be the independently even radial drawing, such that each essential cycle
passes through v1 and v1 is odd. By an adaption of Definition 4.20 and Lemma 4.21 we
get a new graph G′ such that we only remove v1 and leaf vn as it is. Moreover, this gives
us an independently even radial drawing D(G′) that contains no essential cycle, since every
essential cycle passed through v1. Now we prove the lemma analogously to Lemma 4.22:
We can find a curve e, along which the cylinder can be cut open. By applying the uniform
Hanani-Tutte theorem for level planarity [Bö22], we get an x-monotone embedding for G′.
To get a drawing for G we combine the added vertices v′

i back to vertex v1. Since v1 was
odd, we are allowed to change the rotation system, such that we arrange the edges around
v1 in any particular order, so no essential cycles arise. This gives us an embedding for G
that is x-monotone and has no essential cycles.

4.4.1 Components of a Minimal Counterexample

But we are able to prove some requirements for a minimal counter example. Let G be a
minimal counterexample with the fewest number of vertices and among them one with the
fewest edges. Let D(G) be an independently even radial drawing of G. Then there is no
radial embedding of G that is supported by D(G) and keeps the rotation at even vertices.
We start with the proof, that a minimal counterexample does not contain multiple edges
and show afterwards, that the graph must be connected.

Lemma 4.41. A minimal counterexample does not contain multiple edges.

Proof. Assume a graph G for a minimal counterexample contains multiple edges e and
e′ with endpoints u and v. If e and e′ cross oddly, u and v are odd vertices and we are
allowed to change the rotation system at these vertices. Thus, we proceed as in the proof
of Lemma 4.23. Remove e′ from G and get by induction a drawing D(G − e′) of G − e′.
Afterwards draw e′ alongside e and get an embedding E(G) of G. This embedding is
supported by the original drawing of G, since for any essential cycle C through e′, the cycle
C ′ = C − e′ + e is in G − e′ and essential with ℓ(C) = ℓ(C ′).
Suppose otherwise, that e and e′ cross an even number of times. We concatenate e and e′

to get a closed curve C. We two-color the complement of this curve such that connected
regions get the same color and crossing C changes the color. Let the colors be red and
blue. Our goal is to obtain a drawing of G such that no edge crosses C an odd number of
times. This is the case if every edge of G except of e and e′ belong to exactly one of the
two colors. Therefore, a vertex w ∈ V (G) \ {u, v} is red if it lies completely in a red region

56



4.4. Uniform Hanani-Tutte for Radial Drawings

v

u

f

e e′

v

u

f

e e′

Figure 4.20: Multiple edges e and e′ with an edge f that crosses e oddly. In the right figure
the local change at u is shown such that f belongs to blue.

and blue if it lies in a blue region. The vertices u and v do not belong to one color, since
these vertices lie on the curve C. We now describe how to proceed with the vertex u; the
case of v is analogous. If an edge g is adjacent to u, we consider a small area around u.
This area is two-colored by C. Then u is red with respect to g, if the area around u, where
g is connected to u, is red. Otherwise, u is blue with respect to g, if the entered area is
blue. So, the color of u depends on the considered edge g. So, an edge h belongs to red if
both endpoints are red and to blue if both endpoints are blue.
We now assume, that there is an edge f whose endpoints have different colors. Then at
least one endpoint has to be u or v, because we only get different colored endpoints if f
crosses C and so e and e′ an odd number of times. Since the drawing is independently
even, f shares an endpoint with e and e′, which is u or v. Let without loss of generality u
be the common vertex of e, e′ and f . We locally change the rotation at u such that only
f is moved around u until it connects to u through the other colored region as shown in
Figure 4.20. We repeat this operation in any order for all edges that do not belong to one
color. Hence, we get a drawing D′(G) such that each edge of G except of e and e′ is either
red or blue.
First suppose, that the red or the blue area of the drawing D′(G) do not contain any edge.
Then e and e′ lie next to each other in the rotations of u and v. Then, we just remove
e′ from D′(G) to get an embedding of G − e′ by induction and add e′ alongside e such
that the rotation at u and v is preserved. This is possible, since e and e′ cross evenly by
assumption. Then the support-property is fulfilled by the same argumentation as above in
the case, where e and e′ cross oddly.
Assume now, that e and e′ do not form an essential cycle. Define Gred to be the subgraph
that belongs to red, which should be without loss of generality the interior of the curve C
including u and v and Gblue to be the blue subgraph including u and v as well as e and e′.
Then Gred is non-essential, since otherwise e and e′ with an essential cycle in Gred would
contradict Lemma 4.17. So, by induction we get radial embeddings E(Gblue) of Gblue and
E(Gred) of Gred. We add a “skinny” copy of E(Gred) to E(Gblue) between e and e′ such
that they intersect at u and v. This gives an embedding of G such that the rotation at
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Figure 4.21: The set of edges E′ (dashed) and the induced graphs G− (gray edges) and
G+ (black edges); the green radial curve xy in face f represents the place for
mHMH and H respectively.

even vertices is preserved.
If e and e′ form an essential cycle, this cycle splits the graph into an upper and lower
subgraph. Let Gblue be e and e′ together with the upper subgraph that is without loss of
generality blue. Let Gred be again e and e′ together with the lower subgraph that is in the
red region. Then by induction we get a radial embedding E(Gblue) of Gblue such that e
and e′ are the lower face boundary and we get a radial embedding E(Gred) for Gred such
that e and e′ are the upper face boundary. These two embeddings can be merged at u, e, v
and e′ by Lemma 4.19. This results in a radial embedding of G.
In the previous paragraphs the created embedding of G is always supported by the original
drawing D(G). Hence, a minimal counterexample does not contain multiple edges.

To prove that a minimal counterexample is connected, we firstly prove that a non-essential
component can be added to the embedding of the rest of the graph.

Lemma 4.42. Let G be a non-connected graph and D(G) an independently even radial
drawing of G. Let H be a non-essential component of G and G′ = G \ H the remaining
graph. Let E ′(G′) be an radial embedding of G′ such that it is supported by D(G′) and the
rotation at even vertices is preserved.
Then there is an embedding E(G) of G such that E(G) is supported by D(G) and the
rotation at even vertices is preserved.

Proof. We define mH = min V (H) and MH = max V (H). The goal is to add a crossing-free
edge mHMH to the embedding E ′(G′). By Observation 4.18 this edge is enough such that
H can be embedded around the area of mHMH .
For this, we divide G′ into a set of edges E′ and two embedded subgraphs G− and G+. E′

is the set of edges e with min e < MH < max e; the set of vertices {v ∈ V (G′) : v < MH}
induces G− and the set of vertices {v ∈ V (G′) : v > MH} induces G+ as shown in
Figure 4.21. By definition, the upper face of G− contains ℓ = MH and also intersects
ℓ = mH . If not, the upper boundary of G− contains an essential cycle between mH and
MH , which contradicts Theorem 4.39 together with Lemma 4.17 and H. Define a point x
with ℓ(x) = mH in the upper boundary of G− such that x does not intersect with E′, but
the face f containing x has to intersect ℓ = MH . Thus, we can add a curve xy through f
from ℓ = mH to ℓ = MH , which can be made radial by Corollary 4.16.
To get an embedding of G, we also need an embedding of H. Since H is non-essential, we
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get an embedding E′′(H) of H that is supported by D(H) and keeps the rotation at even
vertices by the uniform Hanani-Tutte theorem for level-graphs [Bö22]. By Observation 4.18
the edge xy can be replaced by mHMH or H. So, we combine the two embeddings E′′(H)
and E′(G′) to an embedding E(G) of G. Thereby no rotation at any even vertex is changed.
Moreover, E(G) is supported by D(G), since the previous operations do not add or remove
any essential cycle.

Lemma 4.43. G is connected.

Proof. Assume G is not connected and there is an independently even drawing D(G).
Firstly, suppose there is a non-essential component H of G. Let then G′ = G \ H be the
remaining graph. By induction, we get an embedding E′(G′) that is supported by D(G′)
and keeps the rotation at even vertices. By Lemma 4.42 we get an embedding of G that is
supported by D(G) and preserves the rotation at even vertices.
The second case is, that every component of G is essential. Let H be the component
of G with max H = max G. We again embed G′ = G \ H by induction. By the same
argumentation as in Lemma 4.42, the upper face of G′ must contain ℓ = max H and
intersect ℓ = min H, since otherwise there exists an essential cycle between mH and MH

contradicting Theorem 4.39 with H and Lemma 4.17. Thus, the minimum mU of the
upper boundary of G′ is below the minimum of H and so G′ can be embedded on the
cylinder below the curve γ(0, mU , π, max G′) by Lemma 4.19. The component H can also
be embedded by induction such that the maximum ML of the lower boundary of H satisfies
max G′ < ML. Again by Lemma 4.19 the embedding of H lies strictly above the curve
γ(0, min H, π, ML). These two embeddings of G′ and H do not intersect, since mU < min H
and max G′ < ML. Hence, the embeddings of the two subgraphs can be placed above each
other with a gap. This is an embedding of G satisfying Theorem 4.39, since all essential
cycles lie in a component that was drawn by induction.

4.4.2 Radial Drawings with Odd Crossings at v1 or vn

Given these properties of a minimal counterexample, we want to prove Theorem 4.39,
where the only odd crossings appear at v1 or vn. This means, there is an unflippable triple
(Definition 4.28) at v1 or vn. Only such odd crossings are interesting, since if edges, which
are consecutive in the rotation of their common vertex, cross oddly, we can just flip these
two edges, such that they cross an even number of times.
We start with a lemma, by which we can change an outer face without changing the circular
ordering of any vertex.

Lemma 4.44. Let G be an ordered graph with an even radial drawing D(G). Let fi with
i ∈ {1, . . . , k} be the faces containing v1. Then there is a even radial drawing Di(G) of G
such that fi is an outer face and the circular order of the edges at any vertex stays the
same as in D(G).

Proof. Assume fi is not the outer face of G, since otherwise we are done. The face fi has
at least two edges at v1. Let e be the right edge of fi in the linear upper rotation of v1.
Then starting from e, we have a circular order of the edges around v1 given by D(G). We
take this ordering and transform it into a linear ordering πi starting from e. We redraw
the incident edges of v1 in the region S1 × [ℓ(v1), ℓ(v2)] such that they connect to v1 as
defined in πi without adding crossings or changing the rotation at any other vertex then
v1. After the redrawing the drawing is still even and bounded. By Lemma 4.8 we get the
desired even radial drawing Di(G). An example is shown in Figure 4.22. Hence, the face
fi becomes the outer face and the circular ordering at any vertex remains the same.
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Figure 4.22: Change the drawing such that fi becomes the outer face, while keeping the
circular order at v1.

Analogously we can redraw the graph at vn such that every face at vn can become the
outer face.

Corollary 4.45. Let G be an ordered graph with an even radial drawing D(G). Let fi with
i ∈ {1, . . . , k} be the faces containing vn. Then there is a drawing Di(G) of G such that fi

is the outer face and the circular order of the edges of vn stays the same as in D(G).

Now we want to prove the different cases whether there is an odd crossing at v1 or vn

and whether the edge v1vn is present. For this, we introduce a new definition similar to
Definition 4.20.

Definition 4.46. Given an ordered graph G with vertices v1 < · · · < vn. Define G′
v1 to be

the ordered graph obtained from G by removing v1 and replacing the edges incident to v1.
Let wi with i ∈ {1, . . . , k} be the adjacent vertices of v1 in G. For G′

v1 replace each edge
v1wi by a new edge v′

iwi such that the crossings appearing in G are preserved. The vertex
v′

i is a new degree-1 endpoint for each edge.
The graph G′

vn
is defined analogously with vn instead of v1.

Lemma 4.47. Let G be an ordered graph with an independently even radial drawing D(G),
such that the only odd crossings appear at v1. Then there is a radial embedding E(G)
such that E(G) is supported by D(G) and the original rotation system at even vertices is
preserved.

Proof. We use Definition 4.46 to obtain G′
v1 from G. To remove the odd crossings we

apply some radial (e, v)-moves. Let wi be the upper endpoint of the edge incident to v′
i

for 1 ≤ i ≤ k. If now v′
iwi and v′

jwj cross oddly, we perform a radial (v′
iwi, v′

j)-move to
make these edges cross evenly. We do this for all such pairs: for each j ∈ {1, . . . , k} we
perform for each edge v′

iwi that crosses v′
jwj oddly a radial (v′

iwi, v′
j)-move. Afterwards

all v′
iwi, v′

jwj-pairs cross evenly, and we get an even drawing of G′. By Theorem 4.2, we
obtain an embedding E ′(G′

v1) of G′
v1 , where the rotation of even vertices and the winding

number parity of cycles are preserved. To get an embedding of G, we redraw the pendent
edges to recreate v1. It is allowed that the edges at v1 are reordered, since in D(G) there
were odd crossings at v1. So, we get a crossing-free radial drawing D′(G) of G, that may
not be supported by D(G).
To achieve that the resulting embedding is supported by D(G), we connect the edges to
v1 such that the maximum vertex x of the lower face boundary walk W of G′ is on the
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outer face of G. By Lemma 4.44, we pick the face of v1 containing x and get a drawing
such that x is on the outer face of G, as shown in Figure 4.18. This reinsertion of v1
ensures that the support-property is fulfilled. Since any essential cycle C, that is in G
but not in G′

v1 has to pass through v1. Thus, there must be an essential cycle C ′ in the
embedding of G′

v1 with [min C ′, max C ′] ⊆ [min C, max C]. But a lower facial walk of G′
v1

contains such an essential cycle. Hence, we get an embedding E(G) of G that is supported
by D(G). Moreover, the rotation at even vertices is preserved, since the only possible
changed rotation is at v1, which is allowed by the odd crossing at v1.

Analogously we can embed a graph G whose only odd crossings appear at vn.

Corollary 4.48. Let G be an ordered graph with an independently even radial drawing
D(G), such that the only odd crossings appear at vn. Then there is a radial embedding
E(G) such that E(G) is supported by D(G) and the original rotation system at even vertices
is preserved.

In the following we assume for the given drawing D(G) of our graph G, that there is an
odd crossing at v1 and there is an odd crossing at vn. All edges with other endpoints cross
evenly.

Lemma 4.49. Let G be an ordered graph with an independently even radial drawing D(G),
such that there are odd crossings at v1 and vn, at all other vertices no such odd crossing
appear and the edge v1vn is not in G. Then there is a radial embedding E(G) such that
E(G) is supported by D(G) and the original rotation system at even vertices is preserved.

Proof. There is an odd crossing at each of the two vertices v1 and vn. We modify G as in
Definition 4.20 to get G′ with pendent edges at both sides of the graph. By Lemma 4.21
we obtain an even drawing and by Theorem 4.2 an embedding E ′(G′) of G′. To get an
embedding of G, we redraw the pendent edges to recreate v1 and vn. It is allowed that
the edges at v1 and vn are reordered, since in D(G) were odd crossings at the vertices v1
and vn. So, we get a drawing D′(G) of G. To achieve that the resulting embedding is
supported by D(G), we connect the edges to v1 such that the maximum vertex x of the
lower face boundary walk W of G′ is on the outer face of G. By Lemma 4.44, we pick the
face of v1 containing x and get a drawing such that x is on the outer face of G, as shown in
Figure 4.18. Analogously, we proceed with vn and Corollary 4.45, such that the minimum
vertex y of the upper face boundary walk of G′ is on the outer face of G. This reinsertion
of v1 and vn ensures, that the support-property is fulfilled. Since any essential cycle C,
that is in G but not in G′ must pass through v1 or vn. Thus, there must be an essential
cycle C ′ in the embedding of G′ with [min C ′, max C ′] ⊆ [min C, max C]. But a lower or
upper facial walk of G′ contains such an essential cycle. Hence, we get an embedding E(G)
of G that is supported by D(G) and preserves the rotation system at even vertices.

In the previous lemma we assumed, that v1vn is not in G. Now we look at the case, when
v1vn is present. For this, we introduce again a new form of G′ from Definition 4.20, namely
G′

v1vn
.

Definition 4.50. Given an ordered graph G with vertices v1 < · · · < vn and with the edge
v1vn. Define G′

v1vn
to be the ordered graph obtained from G by removing v1 and vn and

replacing the edges to these vertices. Let v′
1v′′

1 represent v1vn in G′
v1vn

such that v′
1 is the

lowest vertex and v′′
1 the highest vertex in G′

v1vn
. Let wi with i ∈ 2, . . . , k be the adjacent

vertices of v1 except of vn in G. For G′
v1vn

replace each edge v1wi by a new edge v′
iwi such
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Figure 4.23: Sketch of the steps to get an embedding from a drawing, where the odd
crossings appear at v1 and vn. Therby, in (a) we have the starting drawing
D(G) and in black in (b) the even radial drawing D′(G′

v1vn
). In green the

new embedding of v′
1v′′

1 is sketched. The last graphic (c) shows the graph
embedded without crossings.

that the crossings appearing in G are preserved. The vertices v′
i are a new degree-1 endpoint

for each new edge. Analogously, let w′
j with j ∈ 2, . . . , l be the adjacent vertices of vn except

of v1 in G. For G′
v1vn

replace each edge vnw′
j by a new edge v′′

j w′
j such that the crossings

appearing in G are preserved. The vertices v′′
j are a new degree-1 endpoint for each new

edge.

Lemma 4.51. Let G be an ordered graph with an independently even radial drawing D(G),
such that there are odd crossings at v1 and at vn, at all other vertices no such odd crossing
appear and the edge v1vn is in G. Then there is an even radial drawing D′(G′

v1vn
) of G′

v1vn

and D′(G′
v1vn

) is supported by D(G).

Proof. We use Definition 4.50 to obtain G′
v1vn

from G. To get an even drawing D(G′
v1vn

of G′
v1vn

from D(G), we redraw the pendent edges of G′
v1vn

. We remove independent odd
crossings, which can appear, since there were odd crossing at v1 and vn, we do some radial
(e, v)-moves. Let wi be the upper endpoint of an edge incident to v′

i for 1 ≤ i ≤ k. If
two edges v′

iwi and v′
jwj with i < j cross an odd number of times, we perform a radial

(v′
iwi, v′

j)-move to add one crossing between v′
iwi and v′

jwj such that they cross evenly.
We apply this procedure to all pairs. So, for each j ∈ 1, . . . , k we perform for each edge
v′

iwi that crosses v′
jwj oddly a radial (v′

iwi, v′
j)-move. Afterwards all v′

iwi, v′
jwj-pairs cross

evenly. Analogously, we perform on the other side with the edges v′′
i ui. Then in the drawing

D′(G′
v1vn

) of G′
v1vn

all edges are even, since we handled the pendent edges and the other
edges are already even. That D(G) supports D′(G′

v1vn
) follows, since every essential cycle

in D′(G′
v1vn

) is also in D(G).

Lemma 4.52. Let G be an ordered graph with an independently even radial drawing D(G),
such that there are odd crossings at v1 and vn, at all other vertices no such odd crossing
appear and the edge v1vn is in G. Then there is a radial embedding E(G) such that E(G) is
supported by D(G) and the rotation system at even vertices is preserved.

Proof. We use Definition 4.50 to obtain G′
v1vn

from G. By Lemma 4.51, we get an even
radial drawing D′(G′

v1vn
) of G′

v1vn
. The graph G′

v1vn
has two components, namely v′

1v′′
1
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and G′′
v1vn

= G′
v1vn

\ v′
1v′′

1 . See Figure 4.23 (a) and (b) for an example. Since D′(G′′
v1vn

) is
even, we use Theorem 4.2 to get an embedding E ′(G′′

v1vn
) of G′′

v1vn
such that the rotation

at even vertices and the winding number parity for cycles is preserved. With Lemma 4.42
we get an embedding E ′(G′

v1vn
) for the whole graph G′

v1vn
. In Figure 4.23 (b) the green

edge sketches, how to redraw v′
1v′′

1 , which corresponds to v1vn in G.
To get an embedding of G, we redraw the pendent edges to recreate v1 and vn. In part
(c) of the figure the embedding of G is sketched. It is allowed that the edges at v1 and vn

are reordered, since in D(G) were odd crossings at the vertices v1 and vn. So, we get a
drawing D′(G) of G.
To achieve that the resulting embedding is supported by D(G), we connect the edges to v1
and vn such that v1vn is on the outer face of G and every possible essential cycle contains
v1vn. This is possible, since we can reorder the edges at v1 and vn, and we only get an
essential cycle in E(G), if there was already one in D(G). Since v1 and vn are the extreme
vertices, the property that there must be an essential cycle C ′ in D(G) for every essential
cycle in E(G) with [min C ′, max C ′] ⊆ [min C, max C] is fulfilled.

The entirety of the previous lemmata shows, that we can prove Theorem 4.38, if the only
odd crossings appear at v1 or vn.

Corollary 4.53. If an ordered graph G has a radial drawing D(G) in which every two
independent edges cross an even number of times and the only odd crossings appear at v1
or vn, then G has a radial embedding, such that the rotation system at even vertices is
preserved. Moreover, the new radial embedding is supported by the original drawing.

Proof. Assume that in D(G) the only odd crossings are either at v1 or at vn. Then
Lemma 4.47 and Corollary 4.48 provide the intended result. If we have odd crossings at
both vertices v1 and vn, we distinguish, whether v1vn is in G or not. If v1vn is in G we use
Lemma 4.52, and if v1vn is not in G we use Lemma 4.49.

We have shown, that Theorem 4.39 holds, if the odd crossings only appear at v1 or vn. This
matches the end of the proof of Theorem 4.14. To complete the proof of Theorem 4.39,
one has to extend the properties of a minimal counterexample about cut-vertices and the
corresponding components, see Lemma 4.25 - 4.27. Then the goal is to prove analogously
to Case 1 that the odd crossings can only appear at v1 and vn.
A possible starting point is, to assume that the given graph is 3-connected. Then G does
not contain any cut-vertices or split-pairs.

Conjecture 4.54. If an ordered 3-connected graph G has a radial drawing in which every
two independent edges cross an even number of times, then G has a radial embedding, such
that the rotation system at even vertices is preserved. Moreover, the new radial embedding
is supported by the original drawing.

Here, the three Lemmata 4.25 - 4.27 are no longer interesting, since there is no possible
cut-vertex v or split-pair (v, w) to create the necessary component B. Moreover, any two
planar embeddings of a 3-connected graph are equivalent [Die17, Whitney 1933]. This
means there is a unique solution except for mirroring. So, perhaps one can adapt the proof
of Theorem 4.14 at Case 1 to prove Conjecture 4.54.
Building on this, assume that the given graph is 2-connected. Thus, there are still no
cut-vertices, but now a split-pair can exist.
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Conjecture 4.55. If an ordered 2-connected graph G has a radial drawing in which every
two independent edges cross an even number of times, then G has a radial embedding, such
that the rotation system at even vertices is preserved. Moreover, the new radial embedding
is supported by the original drawing.

In this setting Lemma 4.25 and 4.26 are still not interesting, since there are no cut-
vertices. But the property described in Lemma 4.27 probably can be proven for a minimal
counterexample to Conjecture 4.55, because split-pairs can be present. Again, one can
then perhaps adapt the proof of Theorem 4.14 at Case 1 to prove Conjecture 4.55.
As a last step one can then probably use the proofs found for the two Conjectures 4.54 and
4.55 together with the results in this chapter (Lemma 4.41, Lemma 4.43 and Corollary 4.53)
to finish the proof of Theorem 4.38.
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5. Conclusion

We considered different versions of Hanani-Tutte theorems and wanted to extend the proof
of the strong Hanani-Tutte theorem to a proof for the uniform version. We started on the
projective plane and have stated the proof for the weak and strong Hanani-Tutte theorem.
Afterwards, we tried to extend the proof of the strong version to prove that the uniform
Hanani-Tutte conjecture for the projective plane also holds. But here a main problem
occurred, namely that the representation of projective Hanani-Tutte drawings in the proof
of the strong Hanani-Tutte theorem does not work in the uniform setting. So, we were not
able to extend the proof of the strong version. To deal with the problem, there are multiple
possible ways to continue: We can find another suitable representation for projective
Hanani-Tutte drawings and can adapt the proof of the strong version appropriately to get
a proof for the uniform Hanani-Tutte theorem on the projective plane. Another approach
for a proof is to use the minimal forbidden minors for the projective plane, as Pelsmajer,
Schaefer and Stasi [PSS09] did for the strong version, but here it could be difficult to fulfill
the property that the rotation at even vertices is preserved. Hence, one probably has to
find a complete new proof for Conjecture 3.30. On the other hand, it is also possible, that
the uniform Hanani-Tutte conjecture for the projective plane is not true. Then one can
probably find a counterexample.

In the second part of the thesis, we considered the Hanani-Tutte theorems for radial
planarity. We presented the weak Hanani-Tutte theorem and showed a proof of the strong
version of the theorem. Based on this proof, we tried to prove the uniform Hanani-Tutte
theorem. We were able to show, that a minimal counterexample has to be connected and
does not contain multiple edges. Moreover, we proved that the uniform Hanani-Tutte
theorem is true, if odd crossings appear only at v1 and vn.
To complete the proof of the uniform Hanani-Tutte theorem for radial planarity, one has
to extend the properties of a minimal counterexample. For this, one can first consider
3-connected and 2-connected graphs. Afterwards, the goal is to show the properties of a
minimal counterexample about cut-vertices and the corresponding components. Then one
has to show analogously to the proof of the strong version that the odd crossings can only
appear at v1 and vn. This would complete the proof of the uniform Hanani-Tutte theorem
for radial planarity.

65





Bibliography

[Arc81] Dan Archdeacon. A kuratowski theorem for the projective plane. Journal of
Graph Theory, 5(3):243–246, September 1981.

[Bö22] Veronika Böhm. A Unified Hanani-Tutte Theorem for Level-Graphs. University
of Passau, 2022. Bachelor’s Thesis.

[BBF05] Christian Bachmaier, Franz J. Brandenburg, and Michael Forster. Radial level
planarity testing and embedding in linear time. Journal of Graph Algorithms
and Applications, 9(1):53–97, 2005.

[BM01] Carsten Thomassen Bojan Mohar. Graphs on Surfaces, chapter 3 Surfaces,
pages 78 – 97. Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press, 2001.
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