
Mathematical Foundations of
Machine Learning

Lecture, first given in winter semester 2015/16

Tomas Sauer

Version 1.3
Last modified on: 16.7.2022

Statt einer Leerseite . . . 0

Denn die Doktrin der geschlechtergerechten Sprache macht das Lesen
solchermassen "‘gerechter"’ Texte nicht nur fast unerträglich. Sie basiert
auch auf einem linguistischen Grundirrtum, weil es das biologische
Geschlecht mit dem grammatischen Genus gleichsetzt.

C. Wirz, "‘Neusprech für Fortgeschrittene"’, NZZ Online, 12.7.2013

Die wahren Analphabeten sind schließlich diejenigen, die zwar lesen
können, es aber nicht tun. Weil sie gerade fernsehen.

L. Volkert, SZ–Online, 11.7.2009

(0 + 1)!
0!1!

≥
√
(0 + 1)0+1
0011

.

And it didn’t stop being magic just because you found out how it was
done.

T. Pratchett, Wee Free Men

Oh mein Gott! Schon wieder ein englischsprachiges Skript. Aber im Zeitalter der
Internationalisierung von Studiengängen, insbesondere des ITS–Schwerpunkts im
Master “Informatik” bleibt einem nichts anderes übrig und letztendlich gilt halt
doch: The o�cial language of science is broken English. In diesem Sinne: Viel Spass
damit.

Tomas Sauer
Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverabeitung

Universität Passau
Innstr. 43

94032 Passau

CONTENTS 1

Contents 0
1 Introduction – What is It All About? 3

1.1 Supervised and unsupervised . 3
1.2 An simple classification problem . 4

1.2.1 Discrimination by interpolation 4
1.2.2 Simpler models . 8
1.2.3 A “di�erent” concept: likelihood 11
1.2.4 Hilbert spaces . 13
1.2.5 Summary . 19

1.3 Separating hyperplanes and support vector machines 19

2 Introduction to Optimization 25
2.1 Basic observations . 25
2.2 Convexity and its consequences . 27
2.3 Constrained optimization . 30
2.4 Convex problems and duality . 35
2.5 How to compute optimizers? . 38

2.5.1 Descent algorithms . 39
2.5.2 Variants of Newton’s method 41

2.6 Penalty and regularization . 44

3 Kernels 48
3.1 Reproducing kernel Hilbert spaces 48
3.2 Examples of Mercer kernels . 52
3.3 Mercer’s theorem . 58
3.4 Learning with kernels . 59
3.5 Make your own kernel . 61
3.6 Nodal functions and packing . 63
3.7 Kernel support vector machines . 69
3.8 Examples for kernel learning . 72
3.9 Choosing the kernel . 78

4 Neural networks 81
4.1 Definition and basic facts . 81
4.2 What to learn? . 86
4.3 The simplest case: the perceptron 87
4.4 Training by backpropagation . 89
4.5 Kolmorogov’s theorem . 93
4.6 Ridge functions and universality . 97
4.7 Convolutional networks . 100

2 CONTENTS

5 Unsupervised learning and clustering 102
5.1 –means clustering . 102
5.2 Spectral clustering . 109
5.3 Dimension reduction by PCA . 113
5.4 Independent component analysis . 122

3

The Vertrauensmann is man we are
trusting. Not yesterday, maybe not
tomorrow. But today we are trusting
him for ever.

J. le Carré, A Perfect Spy

Introduction – What is It
All About? 1

Machine Learning is definitely one of the most popular fields of research in Com-
puter Science, with a lot of promises and announcements and even some real
progress. Algorithms that gather and classify data and even make decisions on
the basis of this data and its classification are widely available and often reported
in the press. In this chapter we will try to learn about the basic mathematical for-
mulation of the problem and some oversimplified ideas how to approach it, as a
motivation for the more detailed mathematical facts we are deriving thereafter.

The simplest and most accepted way to distinguisch Machine Learning from
other methods of articifical intelligence is to say that it is data driven. This means
that the methods are not based on expert knowledge of the underlying data but try
to learn the answer to the problem from data that has been gathered somehow and
somewhere. Of course, amount and quality of that data play a fundamental role in
what can really be learnt from them.

1.1 Supervised and unsupervised

Most common in machine learning are so–called classi�cation problems which
can be, in wide generality, be described as follows.

De�nition 1.1 (Classification problem). Given a set1 X and a finite2 subset - ⊂
X of training data, determine from - classes -1, . . . , -= and a discriminant
function 5 : X → {1, . . . , =} with

5 (- 9) = { 9}, 9 = 1, . . . , =,

that determines to which class an arbitrary element of X belongs.

Learning problems can arise in two ways:

1. For each element G ∈ - of the training data we know a label HG ∈ {1, . . . , =}
that tells us which class the object belongs to. This is called supervised
learning.

1“Set”, in contrast to “space”, is no accident here, in many problems the data to work on can
be quite unstructured.

2Try to work with infinite sets in practice.

4 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

2. We have only the training data and have to detect the “hidden structure” and
the classification automatically, maybe even the number = of classes. This is
called unsupervised learning.

Any supervised learning problem can be easily turned into an unsupervised one
by setting

-′ = - × H, H = {HG : G ∈ -} ⊂ {1, . . . , =}- ,
with the hope that the unsupervised classification function 5 : -′ → {1, . . . , =}
satisfies

5 (G, HG) = HG , G ∈ -.

1.2 An simple classification problem

In this section we will introduce some of the basic ideas of learning theory by
merging the introductionary chapters of [54], [6] and [20]. The problem is a simple
supervised one with two categories. The data is given as

- ⊂ X , HG ⊂ {±1}, G ∈ -.

For X we will consider three options:

1. unstructured set X ,

2. “vector space”: X = R3 ,

3. one parameter: X = R,

and we will learn a mechanism from [54] to extend the vector space ideas to unstruc-
tured sets by means of kernels. The case X = R will help to test the approaches by
means of a very simple example. What the chapter will also show is that there are
various approaches that lead to the same thing in the end, but with quite di�erent
justifications why one does it in this particular way.

1.2.1 Discrimination by interpolation

But let us begin simple, with - ⊂ X = R3 and H ⊂ {±1}- . We note that the
problem is solved once we find the discriminant function 5 : X → {±1}, then the
classification is 5 (G) for any G ∈ X . The most naive way is to find a function that
exactly “learns” the information provided by H, i.e., a function with the property

5 (G) = HG , G ∈ -. (1.1)

Such functions are well known and studied for a long time3.

De�nition 1.2 (Interpolation). A function 5 is said to interpolate the data . at
- or is called an interpolant for . at - if it satisfies (1.1) which we abbreviate as
5 (-) = H.

3According to [5], the term “interpolation” has been introduced by Wallis in 1655. Hence, it is
older than “derivative” or “matrix”.

1.2 An simple classi�cation problem 5

Of course, the interpolation problem (1.1) has infinitely many solutions, even
among continuous or well–behaved functions of whichever sort. Normally it is
turned into a linear problem by considering a vector space of functions spanned
by a finite set Φ of functions X → R. There is a point in considering real valued
functions, we want a vector space and its structural4 properties; for simplicity, we
choose the most common underlying field, namely R.

Exercise 1.1 Show that { 5 : [0, 1] → {±1}} is no vector space. Give at least three
reasons. ♦
Any element 5 of the vector space F spanned by Φ can now be written as

5 =
∑
i∈Φ

0i i, 0i ∈ R, i ∈ Φ,

and our interpolation problem (1.1) can be rewritten as5

HG = 5 (G) =
∑
i∈Φ

0i i(G) = Φ(G)) 0, 0 :=
[
0i : i ∈ Φ

]
,

or, in matrix form

H =

[
i(G) : G ∈ -

i ∈ Φ

] [
0i : i ∈ Φ

]
=: Φ) (-) 0, (1.2)

which is a linear system based on the collocation matrix

Φ(-) :=
[
i(G) : i ∈ Φ

G ∈ -

]
=


i1(G1) . . . i1(G#-)
...

. . .
...

i#Φ(G1) . . . i#Φ(G#-)

 , (1.3)

where in the right hand side expression we number the functions and points to
indicate the structure in which the matrix is arranged. Now we can easily rely on
linear algebra.

Proposition 1.3 (Solvability of (1.2)).

1. The linear system6 has a solution if the rank of the matrix Φ(-) is at least #-
which implies that #Φ ≥ #- .

2. The linear system has a unique solution if the matrix is invertible, i.e., #Φ = #-
and detΦ(-) ≠ 0.

3. With our notation, in the case of a unique solution the interpolant can be written
as

6(G) =
∑
i∈Φ

(
Φ(-)−1H

)
i
i(G) = Φ(G)) Φ(-)−1H. (1.4)

4Numerical computations in the real world cannot get enough structure if they are supposed to
work well.

5We write vectors as column vectors and inner products in the form 0) 1.
6And therefore the interpolation problem.

6 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

The identity (1.4) is of purely theoretical use, it is not a numerically safe or rec-
ommendable way to compute the interpolant, not even in the simplest situations.
Moreover, even if it perfectly captures the behavior on H, the function 6 is not
a discriminant function since its values do not restrict to {±1}; however, we can
simply define the discriminant function as7

5 (G) = sgn 6(G) =
{

1, 6(G) ≥ 0,
−1, 6(G) < 0.

(1.5)

Note that

1. 5 is discontinuous, and behaves erratical if 6(G) ∼ 0, i.e., if the interpolant is
“undecided”,

2. the handling of 6(G) = 0 is arbitrary,

so that this discriminant function will have jumps as soon as the interpolant is at
least continuous and not all training data belongs to one class.

Example 1.4 (“Learning” by interpolation). Themost common interpolation method
for 3 = 1 is to use polynomials of degree < #-, setting Φ = {1, G, . . . , G<},
< = #- − 1. It is well–known, cf. [10, 23, 49, 59], that there always exists a unique
solution that can be computed in a mostly stable way. Let us look at di�erent
configurations:

1. Two training values, one from (−∞, 0) with label −1 and one from (0,∞) with
label +1. As shown in Fig. 1.1, the discriminant function changes its sign in
the middle.

2. The points 1
4 ,

1
2 ,

3
4 , 1 and their negatives labeled according to sign. The in-

terpolant still does the job quite well, but the interpolant grows dramatically
outside the interval, see Fig. 1.2.

3. With su�ciently many randomly chosen points, we quite easily see in Fig 1.3
that the approach is of no use any more.

Exercise 1.2 Find out what happens in one of the good cases if one element of
the training is mislabeled. ♦

What we learn from Example 1.4 is obvious: polynomial interpolation is not a
good choice. The question, of course, is “why” and there are quite a few reasons:

1. polynomials of high degree oscillate very strongly and should be avoided in
numerical applications in general. This carries over to the interpolant and
leads to the behavior seen in Fig. 1.3.

7Be aware of the fact that the handling of zero by the sign function sgn can vary in literature
and software libraries, the most common choices being sgn 0 = 0 and sgn 0 = 1.

1.2 An simple classi�cation problem 7

Figure 1.1: Learning one positive and one negative point. But the discriminant
function changes with the choice of points.

Figure 1.2: Several points on the left and on the right, looks quite OK on
[−1, 1] (left) but the interpolant becomes large outside (right). Still, the result-
ing discriminant function is perfect.

2. Even if this can be overcome by choosing other types of functions for interpo-
lation, for example splines, see [7, 53], there is a more fundamental problem
with interpolation that we already mentioned in Proposition 1.3, 1): The
number of functions, #Φ, has to be greater than or equal to the number of
training points#- . In other words, we need at least as much information8 to
explain the data as we need for the data itself, and this is the main problem.

Remark 1.5 (Occam’s razor, overlearning). Occam’s razor or lex parsimoniae
is a scientific principle formulated as “Non sunt multiplicanda entia sine necessitate” 9

by William of Ockham10. It can be rephrased as that among all explanations of
a phenomenon the simplest, i.e., the one with the smallest number of parameters

8Coe�cients with respect to Φ.
9“Entities must not be multiplied beyond necessity”
10∼ 1287–1347, English monk and philosopher.

8 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

Figure 1.3: Random choices of the G values, labeled according to their sign.
Three negative and two positive abscissas (left) yield a strange behavior, but
typical for interpolation of an odd number of points, seven random points on
the left and eight on the right together with ±1 yield a totally erratic behavior
(right).

should be chosen. In view of that principle, interpolation is as complicated as the
data itself and therefore a bad interpretation. In Learning Theory such a solution
is called overlearning.

1.2.2 Simpler models

In linear regression, a common principle in statistics, the discriminant function
is modeled as

5 (G) = q(G, 0) = 00 +
∑
i∈Φ

0i i(G) (1.6)

for a given set Φ of real valued11 functions. The constant o�set 00 is called bias
and can be dropped by assuming that 1 ∈ Φ. Hence, we consider functions of the
form

q(G, 0) =
∑
i∈Φ

0i i(G) = Φ(G)) 0 (1.7)

where the coe�cient vector 0 describes the discriminant function completely. Note,
however, that the quality of the model clearly depends on the set Φ. Since we can-
not guarantee any more that q(G, 0) = HG, G ∈ -, we can only try to fit the function
as good as possible. To describe “good”, we use a concept from information the-
ory which slightly weakens the notion of a norm known from Analysis and Linear
Algebra.

De�nition 1.6 (Loss function). A function Λ : R→ R is called loss function if

1. Λ(C) ≥ 0, C ∈ R,

2. Λ(−C) = Λ(C), C ∈ R,
11For simplicity! This can be easily generalized.

1.2 An simple classi�cation problem 9

3. Λ(C) = 0 i�12 C = 0.

Standard examples for loss functions are Λ(C) = C2 and Λ(C) = |C |.

Give a loss function Λ we can now define the average loss13

Λ(Φ, 0, -, H) = Λ0 (Φ, 0, -, H) :=
1

#-

∑
G∈-

Λ (q(G, 0) − HG) , (1.8)

and the maximal loss

Λ(Φ, 0, -, H) = Λ∞(Φ, 0, -, H) := max
G∈-

Λ (q(G, 0) − HG) (1.9)

The best explanation is then the coe�cient vector 0 that solves the minimization
problem

min
0
Λ(Φ, 0, -, H). (1.10)

We will have a closer look at optimization problems, which form a fundamental
part of Learning Theory, later, for now we set Λ(C) = C2 and obtain by substituting
(1.7) into (1.8), that

Λ(Φ, 0, -, H) =
∑
G∈-
(q(G, 0) − HG)2 =

∑
G∈-

(
Φ(G))0 − HG

)2
=

∑
G∈-

(
0)Φ(G)Φ(G))0 − 2HGΦ(G))0 + H2G

)
= 0)

(∑
G∈-

Φ(G)Φ(G))
)
0 − 2

(∑
G∈-

HGΦ(G)
))
0 +

∑
G∈-

H2G

=: 0) �0 − 21)0 + 2,

which is a quadratic form in 0 with a symmetric square matrix � ∈ R#Φ×#Φ, the
vector 1 ∈ R#Φ and 2 ∈ R.

Lemma 1.7. � is a positive semide�nite matrix, i.e., 0) �0 ≥ 0, and the function

� (0) := 0) �0 − 21)0 + 2

assumes its minimum at 0 if and only if

�0 = 1 ⇔ Φ(-))Φ(-)0 = Φ(-)) H (1.11)

Proof: Positive semidefiniteness of � follows directly by

0) �0 =
∑
G∈-

0)Φ(G)Φ(G))0 =
∑
G∈-

(
Φ(G))0

)2
≥ 0

12A common abbreviation for “if and only if” invented by Paul Halmos, see [17].
13It becomes average by normalizing, but we could also consider it an ℓ1–like loss function

by dropping the 1/#- factor. For the optimization that follows, the constant factor is irrelevant
anyway.

10 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

with equality if and only Φ(G))0 = 0 for all G ∈ - which is equivalent to14

0 =
[
Φ(G)) : G ∈ -

]
0 = Φ(-)0.

Since the first and second derivatives, that is, the gradient and the Hessian, of
�, see [52], are of the form

∇� (0) = 2(�0 − 1), ∇2� (0) = �,

the function has a unique local, hence global minimum at any point 0 such that
�0 = 1. To derive the normal form equations on the right hand side of (1.11), we
only have to note again that in “stacked” notation we have Φ(-) =

[
Φ(G)) : G ∈ -

]
and therefore15

Φ(-))Φ(G) =
∑
G∈-

Φ(G)Φ(G)) and Φ(-)) H =
∑
G∈-

Φ(G)HG .

In particular, this implies that the quadratic loss takes the form

Λ(Φ, 0, -, H) = 0)Φ(-))Φ(-)0 − 2Φ(-)) H + ‖H‖22 , (1.12)

which we record for later use. �

Therefore, given any basis Φ for a model space and training data (-, H), we can
compute the best model Φ)0 by solving (1.11), i.e.,

0 =

(
Φ(-))Φ(-)

)−1
Φ(-)) H, (1.13)

and the use the discriminant function

5 (G) = sgn q(G, 0) = sgn
(
Φ(-))Φ(-)

)−1
Φ(-)) H.

Remark 1.8.

1. To use the explicit formula (1.13) is numerical suicide, even solving the sys-
tem (1.11) directly is not the best idea. There are numerically more stable
methods.

2. The quality of the method depends on the choice of Φ, on the number and
type of functions. Here a priori knowledge on the problem to be solved can
be helpful. We will consider some methods and ideas for choosing good
bases.

3. If #Φ = #- and Φ(-) is nonsingular, then we immediately get that

0 = Φ(-)−1Φ(-)−)Φ(-)) H = Φ(-)−1H

and we are back to interpolation which therefore is a special case.

14We simply stack all conditions into a vector and recognize the resulting matrix as the collocation
matrix.

15This is purely formal and notational!

1.2 An simple classi�cation problem 11

4. To avoid overlearning, it is recommendable to keep#Φ small, but if it is too
small the discrimination power of the model space will of course be limited.

Example 1.9. We apply the least squares approach to the data considered be-
fore and use as model space the polynomials of degree ≤ < spanned by Φ< :=
{1, G, . . . , G<}.

1. For the data - = {±1} we can interpolate whenever < ≥ 1 and thus get the
same result as in Fig 1.1. In the case of “overoverfitting”, < ≥ 2, the solution
of (1.11) is not unique any more but Matlab automatically picks the simplest
one which is the linear function, so that the implementation16 behaves the
same for all < ≥ 2.

2. For the second example, ±
{
1
4 ,

1
2 ,

3
4 , 1

}
, the results are shown in Fig. 1.4. For

< = 1, 5 the discriminant function is what we expect, for < = 3 it is at least
reasonable in the region covered by the training data.

3. The biggest di�erence occurs when we face many unstructured points as
shown in Fig. 1.5 where we get no visible di�erence to the four points con-
sidered before.

The clear observation is: simple models help, at least for simple data. In all exam-
ples the linear discriminant seems to be the best choice.

Figure 1.4: The four points of Fig. 1.2, this time with < = 1 (left), < = 3
(middle) and < = 5 (right).

1.2.3 A “different” concept: likelihood

Next, we approach our problem from a more statistical perspective. To that end,
we recall some very basic notions from probability.

16Mathematics says that there are many solution, an implementation always has to pick one. And
it is not always easy to tune the implementation in such a way that this choosing process behaves
reasonably.

12 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

Figure 1.5: The same choices as in Fig 1.4, this time however with the random
abscissas. The “randomness” and the larger number of these points visibly
does not really play a role.

De�nition 1.10. A probability density function ? : R→ R is any measurable17

function with

?(C) ≥ 0, C ∈ R,
∫
R
?(C) 3C = 1. (1.14)

The Gaussian distribution with mean ` and variance f2 is defined as

(C |`, f2) :=
(
2cf2

)−1/2
4
− 1
2f2
(C−`)2

. (1.15)

Exercise 1.3 Verify that the Gaussian distribution is a probability distribution. ♦

We return to our model q(·, 0), but now we assume that training data stems from
inexact measurements of that model and that the errors are distributed at G ∈ -
as #

(
·|q(G, 0), V−1

)
. This means that each single measurement or training datum

has the largest probability at the “exact” q(G, 0) but varies around this value with
nonzero probability. This deviation is, however, independent of the location G and
describe by V−1, V > 0, where the situation becomes more unpredictable if V
becomes smaller18.

We also assume19 that the measurements are independent, so that the likeli-
hood of the measurement H takes the form

?(H |-, 0, V) =
∏
G∈-

#

(
HG |q(G, 0), V−1

)
. (1.16)

To understand what this function means, let us recall that we know the measure-
ments - and H, that V is a procedural parameter that we can choose freely and that
we want to determine the model parameters 0 that best explain the measurements
in the sense that they maximize the likelihood.

17All integrals over reasonable subsets must be well–defined. Since a careful definition needs
some terminology, we remain deliberately informal here.

18Therefore, V measures how predictable the measurement is.
19Even if they are sometimes hard to justify in practice, these are standard assumptions in all

these approaches.

1.2 An simple classi�cation problem 13

Since the location20 of a maximum is not a�ected by monotonic functions, we
can as well maximize the function log ?(H |-, 0, V) or minimize the function

− log ?(H |-, 0, V) = −
∑
G∈-

log #
(
HG |q(G, 0), V−1

)
= −

∑
G∈-

(
1

2
log V − 1

2
log 2c − V

2
(HG − q(G, 0))2

)
=

V

2

∑
G∈-
(HG − q(G, 0))2 −

#-

2
log V + #-

2
log 2c (1.17)

with respect to 0. The same computations as in the quadratic loss function then
yield that

− log ?(H |-, 0, V) = 2

V
Λ(Φ, 0, -, H) + #-

2
log

2c

V
(1.18)

and since constants do not change anything in optimization problems, the solution
of our quadratic loss problem is the same as in the maximal likelihood one.

There is, however, a nice twist in this approach: we can play with the parameter
V that regulates the width of the Gaussian distribution and we can choose V such
that the explanation becomes optimal. To that end, we simply di�erentiate (1.17)
with respect to V and get

3

3V
(− log ?(H |-, 0, V)) = 1

2

∑
G∈-
(HG − q(G, 0))2 −

#-

2V
,

hence the minimum is assumed for

V =

(
1

#-

∑
G∈-
(HG − q(G, 0))2

)−1
which can be seen as a (reciprocal) variance of the model. In fact, V−1 was exactly
chosen as the variance parameter in the model (1.16). The better the model fits,
the wider the distribution can be chosen.

1.2.4 Hilbert spaces

We take yet another approach, this time from Functional Analysis or Approxima-
tion Theory which is based on norming vector spaces. To do this in a really nice
and general way, we introduce some more terminology.

De�nition 1.11 (Inner product). Let + a vector space21 over R. An inner product
or scalar product 〈·, ·〉 : + × + → R is a symmetric22 and definite bilinear form
which satisfies the following requirements:

20But not the value!
21Defined in Linear Algebra. Essentially it means that we can add elements and multiply them

by reals and all that in a reasonable way.
22We restrict ourselves to R! Over the complex numbers, the story is di�erent.

14 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

1. (Bilinearity) For U, V ∈ R and E, E′, F, F′ ∈ + ,

〈UE + VE′, F〉 = U 〈E, F〉 + V 〈E′, F〉 (1.19)

and
〈E, UF + VF′〉 = U 〈E, F〉 + V 〈E, F′〉 . (1.20)

2. (Symmetry) For E, F ∈ + ,

〈E, F〉 = 〈F, E〉 . (1.21)

3. (De�niteness) For E ∈ + \ {0},

〈E, E〉 > 0. (1.22)

Example 1.12 (Inner products). The classical inner products on R3 or on function
spaces23 are

〈E, F〉 =
3∑
9=1

E 9F 9 and 〈 5 , 6〉 =
∫

5 (G)6(G) 3G,

respectively, but there are many more examples of useful inner products.

Exercise 1.4 Show that 〈E, F〉 := E) �F is an inner product on R3 for any sym-
metric positive definite matrix � ∈ R3×3 . ♦
Inner products can be used to define geometric quantities like “length” of vec-
tor space elements and “angles” between elements. The mathematical concept of
“length” is as follows.

De�nition 1.13 (Norm). A mapping ‖ · ‖ : + → R is called a norm on + if it
satisfies the following conditions:

1. (Nonnegativity) ‖E‖ ≥ 0 and ‖E‖ = 0 i� E = 0.

2. (Positive homogeneity) For E ∈ + and U ∈ R,

‖UE‖ = |U | ‖E‖. (1.23)

3. (Triangle inequality) For E, E′ ∈ + ,

‖E + E′‖ ≤ ‖E‖ + ‖E′‖. (1.24)

Example 1.14 (Norms). The “standard” norm on R3 is the Euclidean norm

‖E‖2 :=

√√√ 3∑
9=1

E2
9
,

a member of the family of ?–norms

‖E‖? :=
(
3∑
9=1

|E 9 |?
)1/?

, 1 ≤ ? < ∞, ‖E‖∞ := max
9=1,...,3

|E 9 |.

1.2 An simple classi�cation problem 15

Figure 1.6: Three grayscale images. How can we measure their similarity? For
example by taking a norm of the di�erence.

Example 1.15 (PSNR). In digital image processing, pictures are often compared,
for example after performing operations like denoising. The standard approach is
to interpret pictures G and H as pixel sequences, that is, as vectors in R# , # = #
pixels, and to consider the distance24 ‖G − H‖2 or, more precisely, the reciprocal of
it25, resulting in the PSNR (Peak Signal to Noise Ratio) defined as

PSNR(G, H) = 20 log10
�G
√
#

‖G − H‖ , �G := max
9=1,...,#

��G 9 �� ,
where �G denotes the intensity of G. If PSNR is really a good similarity measure is
up to discussion, see Fig 1.7.

Figure 1.7: The strips in these two images are shifted in such a way that one is
black where the other is white, hence the PSNR is 0. So much about measuring
similarity

The next fundamental result, given without proof26 here, connects inner products

23Vector spaces are not only collections of arrows or directed whatsoever-s.
24The mathematical concept for distances is themetric and the related concept of a metric space.
25Large PSNR means similarity, a PSNR of 0 expresses dissimilarity.
26It’s not too hard and very elementary. The only point that needs a bit of work is the triangle

inequality, see [51, Lemma 8.46]

16 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

and norms.

Theorem 1.16. If 〈·, ·〉 : + ×+ → R is an inner product on + , then

‖E‖ =
√
〈E, E〉 (1.25)

is a norm, induced by the scalar product.

De�nition 1.17 (Hilbert space). A complete27 normed vector space whose norm
is induced by an inner product is called a Hilbert space.

Example 1.18 (R3). The simplest example for a Hilbert space is R3 with the
Euclidean norm which is induced by the standard inner product on R3 .

Optimization or best approximation problems in Hilbert spaces are quite simple as
the next result shows which we will fully prove as it introduces us to some concepts
and ideas that we will need in the sequel anyway.

Proposition 1.19 (Subspace approximation in Hilbert spaces). Let , ⊆ + be a
subspace of the Hilbert space + .

1. For each E ∈ + there exists a unique F ∈ , such that ‖E − F‖ is minimal, i.e.

‖E − F‖ = min
F′∈,

‖E − F′‖.

2. F is the minimizing element if and only if28

{0} = 〈,, E − F〉 = {〈F′, E − F〉 : F′ ∈ ,} (1.26)

Proof: The proof consists of recording some elementary but important properties
of Hilbert space norms emerging from the Cauchy–Schwarz inequality

|〈E, F〉| ≤ ‖E‖ ‖F‖, E, F ∈ +, (1.27)

with equality i� E = F, which holds for any norm induced by an inner product29

1. The norm ‖ · ‖ is strictly convex, i.e., for any E, E′ ∈ + and 0 < U < 1, the
inequality (1.27) yields

‖UE + (1 − U)E′‖2 = U2〈E, E〉 + 2U(1 − U)〈E, E′〉 + (1 − U)2〈E′, E′〉
≤ U2 ‖E‖2 + (1 − U)2 ‖E′‖2 + 2U(1 − U) ‖E‖ ‖E′‖
= (U ‖E‖ + (1 − U) ‖E′‖)2 ,

and since equality occurs in (1.27) only if E = E′, we can conclude that

‖UE + (1 − U)E′‖ < U ‖E‖ + (1 − U) ‖E′‖ , E ≠ _E′. (1.28)

This yields the strict convexity30.

27Any Cauchy sequence has a limit; this is a topological property where the topology is induced
by the norm.

28Geometrically this is the orthogonal projection.
29This is really a general and quite powerful approach even it is not too hard to prove.
30Recall that a real valued function 5 is called convex if 5 (UG + (1 − U)G ′) ≤ U 5 (G)+(1−U) 5 (G ′).

1.2 An simple classi�cation problem 17

2. There exists a best approximation from , since the continuous function31 ‖ ·
−E‖ is bounded from below by zero, hence has an infimum and therefore a
minimum since any subspace is closed.

3. The best approximation is unique: for any E ∈ + there is exactly one F∗ ∈ ,
such that

‖E − F∗‖ < ‖E − F‖ , F ∈ , \ {F∗},
which follows from strict convexity. Supposing that F1 ≠ F2 ∈ , were two
best approximations, we set F := 1

2F1 + 1
2F2 ∈ , and obtain

‖E − F‖ =

E − 1

2
(F1 + F2)

 =

12 (E − F1) +
1

2
(E − F2)

<

1

2
(‖E − F1‖2 + ‖E − F2‖) = min

F∈,
‖G − F‖ ,

which is a contradiction because of “<” and proves statement 1).

4. The best approximation F has the property that for any F′ ∈ ,

0 < ‖E − F′‖2 − ‖E − F‖2

= ‖E‖2 − 2〈E, F′〉 + ‖F′‖2 − ‖E‖2 + 2〈E, F〉 − ‖F‖2

= 〈F′, F′〉 − 〈F, F〉 + 2〈E, F − F′〉 = 2〈E, F − F′〉 − 〈F + F′, F − F′〉
= 〈(E − F) + (E − F′), F − F′〉

Since F′ was arbitrary in this inequality, we can replace it32 by the convex
combination UF′ + (1 − U)F, U ∈ (0, 1), and get

0 < 〈(E − F) + (E − UF′ − (1 − U)F) , F − UF′ − (1 − U)F〉
= 〈2E − UF′ − (2 − U)F, UF − UF′〉
= U 〈U(E − F′) + (2 − U) (E − F), F − F′〉.

We divide this expression by 2U and let U → 0, which directly brings us to
the Kolmogoro� criterion33

0 ≤ 〈E − F, F − F′〉. (1.29)

Now we are practically done since we can replay F′ in (1.29) by 2F − F′ yielding

0 ≤ 〈E − F, F − (2F − F′)〉 = 〈E − F, F′ − F〉 = −〈E − F, F − F′〉 ≤ 0,

which implies that 〈E − F, F′ − F〉 = 0 for any F′ ∈ , from which (1.26) and
therefore statement 2) follow. �

Exercise 1.5 Prove that the norm is a continuous function. Find the definition of
a topological vector space and show that any subspace of a finite dimensional
topological vector space is closed. ♦

31See Exercise 1.5.
32Yes, that’s a trick!
33Attention: strict inequalities loose their strictness in the limit.

18 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

Now suppose we have a �nite dimensional subspace , of + , again generated by
Φ ⊂ + , so that any element of , can now be written as

F = q(0) =
∑
i∈Φ

0i i.

The Hilbert space elements can be functions X → R, but they do not have to,
which allows for di�erent structural approaches.

By Proposition 1.19, the best approximation F to a given E is characterized by

0 = 〈E − F, F′〉 = 〈E − q(0), q(0′)〉

=

〈
E −

∑
i∈Φ

0i i,
∑
i′∈Φ

0′i′ i
′
〉
=

∑
i′∈Φ

0′i′〈E, i′〉 −
∑
i,i′∈Φ

0i 0
′
i′ 〈i, i′〉

=: 6)Φ,E0
′ − 0)�Φ0′ =

(
6Φ,E − �Φ0

))
0′,

holding for any coe�cient vector 0′, which is in turn equivalent to

[〈E, i〉 : i ∈ Φ] = [〈i, i′〉 : i, i′ ∈ Φ] 0. (1.30)

This is again a rule that allows us to compute the best approximation or the mini-
mizer of ‖E − q(0)‖ by simply34 solving a linear system.

De�nition 1.20 (Gram matrix). The square matrix

�Φ := [〈i, i′〉 : i, i′ ∈ Φ] ∈ R#Φ×#Φ (1.31)

is called the Gram matrix or Gramian of the generating system Φ of , .

Remark 1.21 (Gram matrix). The Gramian has some interesting properties:

1. it is a symmetric and positive semidefinite matrix.

2. the rank of the Gramian is the dimension of spanΦ = , .

3. it takes the role of the matrix Φ(-))Φ(-) known from the normal form
equations (1.11).

4. if Φ is an orthonormal basis, that is

〈i, i′〉 = Xi,i′, i, i′ ∈ Φ, (1.32)

then �Φ = � and vice versa.

We can recover our quadratic loss function also in terms of Hilbert spaces if we
make the following simple setup:

Space: + = { 5 : - → R}.
34Of course, this is not simple, otherwise an area like Numerical Linear Algebra would not exist.

1.3 Separating hyperplanes and support vector machines 19

Inner product:

〈 5 , 6〉 =
∑
G∈-

5 (G) 6(G).

Model space: Φ.

Approximation target: E ∈ + defined by E(G) := HG, G ∈ - .

Then we indeed have

[〈E, i〉 : i ∈ Φ] =
[∑
G∈-

HGi : i ∈ Φ
]
= Φ(-)) H

and

[〈i, i′〉 : i, i′ ∈ Φ] =
[∑
G∈-

i(G)i′(G) : i, i′ ∈ Φ
]
= Φ(-))Φ(-).

and the best approximation in the Hilbert space is exactly our quadratic loss mini-
mizer.

1.2.5 Summary

In this section we encountered three35 seemingly di�erent approaches to the prob-
lem of determining a discriminant function and always ended up with the same
thing: Solve a linear system36 to obtain the solution of a least squares problem. So
it appears that the whole e�ort is pointless and that there is only one thing: Sim-
ple least squares. This is, of course not the case and even if the three approaches
indeed coincide for a certain configuration of parameters, the allow for generaliza-
tions in di�erent directions which then lead to significantly di�erent methods:

Model Space: use a di�erent loss function to obtain a di�erent and for example
more robust behavior.

Maximal Likelihood: use a di�erent probability density to reflect di�erent per-
turbation models.

Hilbert Space: use di�erent spaces and di�erent inner products.

All this we will consider in greater detail later.

1.3 Separating hyperplanes and support vector machines

Now we get to a separation method for clusters based on hyperplanes that in fact
works in any Hilbert space.

35Even four if we count interpolation, but it is included in the least squares approach.
36How this should be done reasonably is well–known in Numerical Linear Algebra, see [16, 49].

20 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

De�nition 1.22 (Hyperplane). A hyperplane with normal = ∈ H , ‖=‖ = 1, and
o�set 2 ∈ R in a Hilbert space37 H is the set of all elements given as38

� (=, 2) := {G ∈ H : 〈=, G〉 = 2} . (1.33)

It is the intersection and separation of the two half spaces �±(=, 2) defined as

�+(=, 2) = {〈=, G〉 − 2 > 0} and �−(=, 2) = {〈=, G〉 − 2 < 0} .

Returning to the classification problem (-, H) from the preceding chapter, H ∈
{±1}- , where now - ⊂ H is a finite subset of the Hilbert space H , we can form
the barycenter of the sets -± := {G ∈ - : HG = ±1} as

G± :=
1

#-±

∑
G∈-±

G. (1.34)

Again this is the solution of a least squares problem.

Lemma 1.23. Given a �nite set + ⊂ H , we have that

F = argmin
∑
E∈+
‖E − F‖2 ⇔ F =

1

#+

∑
E∈+

E. (1.35)

Proof: We consider the derivative of∑
E∈+
‖E − F‖2 =

∑
E∈+
〈E − F, E − F〉 =

∑
E∈+
〈E, E〉 − 2〈E, F〉 + 〈F, F〉

with respect to F in terms of directional39 or Fréchet derivative

�D 5 = lim
ℎ→0

5 (· + ℎD) − 5 (·)
ℎ

.

For our functions under consideration we find that40

�D〈E, ·〉(F) = lim
ℎ→0

1

ℎ
(〈E, F + ℎD〉 − 〈E, F〉) = 〈E, D〉

and

�D〈·, ·〉(F) = lim
ℎ→0

1

ℎ
(〈F + ℎD, F + ℎD〉 − 〈F, F〉)

= lim
ℎ→0

1

ℎ

(
〈F, F〉 + 2ℎ〈F, D〉 + ℎ2〈D, D〉 − 〈F, F〉

)
= lim

ℎ→0
(2 〈F, D〉 + ℎ〈D, D〉) = 2〈F, D〉.

37From now on, we use the letter H for Hilbert spaces, moving away from the general vector
space + .

38For those who are interested in it: it is an a�ne subspace, for 2 = 0 even a subspace.
39In a generic Hilbert space we do not have unit vectors like in R3 which may define partial

derivatives.
40This means that in any Hilbert space, as abstract as it may be, we can define linear and quadratic

functions as di�erentiable functions and compute their derivatives.

1.3 Separating hyperplanes and support vector machines 21

Hence, the unique minimum is characterized by

0 = �D

∑
E∈+
‖E − ·‖2(F) = −2

∑
E∈E
〈E, D〉 + 2#+ 〈F, D〉 = −2

〈∑
E∈E

E −#+ F, D
〉

holding for all D ∈ H which is equivalent to the right hand side of (1.35). �

Remark 1.24. The equivalence (1.35) can also be used to define an average on
nonlinear structures as long as these are normed or equipped with a reasonable
metric, like the surface of a sphere. The average is simply the minimizer of a
certain sum of distances.

The simplest classifier we can build on the basis of G± is based on taking the
midpoint G0 = 1

2 (G+ + G−) and checking the in which of the half planes defined
by the hyperplane with normal G+ − G− passing through G0 the point lies. Let us
compute its o�set 2 first. We have that = = G+−G−

‖G+−G−‖ and obtain 2 by requiring that

2 =

〈
G+ − G−
‖G+ − G−‖

, G0

〉
=

1

‖G+ − G−‖

〈
G+ − G−,

1

2
(G+ + G−)

〉
=

1

2‖G+ − G−‖
〈G+ − G−, G+ + G−〉 =

1

2‖G+ − G−‖
(〈G+, G+〉 − 〈G−, G−〉)

=
‖G+‖2 − ‖G−‖2
2‖G+ − G−‖

The resulting discriminant function is then

5 (G) = sgn (〈=, G〉 − 2) = sgn
(〈

G+ − G−
‖G+ − G−‖

, G

〉
‖G+‖2 − ‖G−‖2
2‖G+ − G−‖

)
= sgn

(
〈G+ − G−, G〉 −

‖G+‖2 − ‖G−‖2
2

)
. (1.36)

A very simple insight from this formula is that we do not have to normalize the
vector = since we are only interested in signs at the end and can capture this in the
o�set or threshold 2.

If we drive the “separating hyperplane” idea a little bit further, we already
get an idea of some of the classics of supervised learning, namely support vector
machines. Here, we try to find a hyperplane 〈=, ·〉 + 2 that separates the two sets -+
and -− determined by the labeling. The distance of a point G ∈ - to the hyperplane
is41

min{‖G − E‖ : 〈=, E〉 = 2}.
To solve this constraint optimization we deal with Lagrange multipliers by for-
mally forming 42 the Lagrangian43

6(E) := ‖G − E‖2 + 2U (〈=, E〉 − 2) = 〈G, G〉 − 2〈G, E〉 + 〈E, E〉 + 2U (〈=, E〉 − 2)
41Another optimization problem. This is not with the intention to bore the reader by repetition,

but to slowly make the reader acquainted with the main concepts and the need for optimization.
42The norm square is no accident, it makes things computationally easier by avoiding the square

root as well as the factor 2 in front of the U
43We will get to this in the next chapter.

22 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

and taking its formal derivative with respect to E,

�D6(E) = −2〈G, D〉 + 2〈E, D〉 + 2U〈=, D〉 = 2〈(E − G) + U=, D〉

which is zero for all D i� E = G − U= and we can determine U from

2 = 〈=, E〉 = 〈=, G − U=〉 = 〈=, G〉 − U‖=‖2 ⇒ U =
〈=, G〉 − 2
‖=‖2

,

which yields

E = G − 〈=, G〉 − 2
‖=‖2

= ⇒ ‖G − E‖ =

 〈=, G〉 − 2‖=‖2

=

 = |〈=, G〉 − 2 |‖=‖ (1.37)

and holds even if the normal vector = for the hyperplane is not normalized, i.e.,
if we only require44 that ‖=‖ ≠ 0.

We now want to choose the hyperplane in such a way that it o�ers optimal
separation by maximizing the distance to the closest point, i.e., by solving

max
=,2

min
G∈-

min
〈=,E〉=2

‖G − E‖ = max
=,2

min{‖G − E‖ : 〈=, E〉 = 2, G ∈ -}

In addition, however, we have to maintain the side condition that

HG = 5 (G) = sgn (〈=, G〉 − 2) , G ∈ -,

for the linear discriminant function defined by the hyperplane. As in [54], the
optimization problem can be written as

min
=∈H ,2∈R

1

2
‖=‖2 = 〈=, =〉

2
subject to HG (〈=, G〉 − 2) ≥ 1, G ∈ -. (1.38)

The side condition ensures that 5 behaves as wanted and the constant 1 on the
right hand side of the inequality is arbitrary: any other positive constant would do
the job as well, we would only have to multiply = and 2 accordingly and make the
almost trivial observation that � (=, 2) and � (U=, U2), U ∈ R \ {0}, are the same.

To derive the form (1.38) we first write the side condition as

HG (〈=, G〉 − 2) = 0, G ∈ -, (1.39)

and set
Y := min

G∈-
HG (〈=, G〉 − 2) ,

which is well-defined as long as #- < ∞. Thus, (1.39) takes the form

HG (〈=, G〉 − 2) ≥ Y, G ∈ - ⇔ HG

(〈=
Y
, G

〉
− 2
Y

)
≥ 1, G ∈ -. (1.40)

The margin Y becomes maximal if =
Y
becomes minimal among all non-normalized

normals that satisfy the right hand side of (1.40); replacing =
Y
by = and 2

Y
by 2, this

leads precisely to the optimization problem (1.38).

44‖=‖ = 0 or = = 0, which is the same, cannot define a valid hyperplane.

1.3 Separating hyperplanes and support vector machines 23

The Lagrangian45 of (1.38) is

6(=, 2) = 〈=, =〉
2
−

∑
G∈-

UG (HG (〈=, G〉 − 2) − 1)

which has to be di�erentiated with respect to = and 2. The first one is

�=6(·, 2) (D) = 〈=, D〉 −
∑
G∈-

UGHG 〈G, D〉 =
〈
= −

∑
G∈-

UGHGG, D

〉
(1.41)

and
m

m2
6(=, 2) =

∑
G∈-

UGHG . (1.42)

Setting them equal to zero leads to

= =
∑
G∈-

UGHGG and
∑
G∈-

UGHG = 0. (1.43)

In addition, the UG have to satisfy the KKT conditions46

UG (HG (〈=, G〉 − 2) − 1) = 0, G ∈ -, (1.44)

which say that either UG = 0 or the respective side condition is satisfied with equal-
ity. Hence, the points with UG ≠ 0 are the ones where G is closest to the separating
hyperplane and the ones that decide about the hyperplane which is the reason why
they are named support vector.

To determine the parameters = and 2, we substitute the expression for = from
(1.43) into 6 and get

6(=, 2) = 1

2

〈∑
G ′∈-

UG ′HG ′G
′,
∑
G∈-

UGHGG

〉
−

∑
G∈-

UG

(
HG

(∑
G ′∈-
〈UG ′HG ′G′, G〉 − 2

)
− 1

)
=

1

2

∑
G,G ′∈-

UGHGUG ′HG ′〈G, G′〉 −
∑
G,G ′∈-

UGHGUG ′HG ′〈G, G′〉 − 2
∑
G∈-

UGHG︸ ︷︷ ︸
=0

+
∑
G∈-

UG

=
∑
G∈-

UG −
1

2

∑
G,G′∈-

UGUG ′〈HG G, HG ′ G′〉 =: 1)U −
1

2
U)�H·-U.

This dual form of the problem (1.38) has to be maximized subject to U ≥ 0,

max
U

1)U − 1

2
U)�H·-U subject to U ≥ 0, H)U = 0, (1.45)

and the two solutions are equivalent. The resulting system is
1
...

1

 = �H·-U − _ − `H,

0 = _)U,

0 = H)U,

0 ≤ U, _ ∈ R#- , ` ∈ R.

45We still do not know precisely what we are doing here, but we will find out quite soon.
46To be introduced soon.

24 1 INTRODUCTION – WHAT IS IT ALL ABOUT?

This is a nonlinear problem and we will have to learn some methods and principles
from optimization to solve it, see, for example [42]. After having determined U and
therefore =, we obtain 2 by means of (1.44) as 2 = HG−〈=, G〉 for some G with UG ≠ 0.

The advantage of Hilbert space methods is their application in kernel learning:
if X is an unstructured space, for example images, we can pick a suitable47 Hilbert
space H and a function k : X →H and replace the Gramian-s above by

[〈k(G), k(G′)〉 : G, G′ ∈ -]

leading to the discriminant function

5 = sgn

(∑
G∈-

HGUG 〈k(·), k(G)〉 − 2
)
.

The kernel : : X ×X → R is then the function

: (G, G′) = 〈k(G), k(G′)〉, G, G′ ∈ X , (1.46)

that will play a fundamental role in support vector machines.

47This has to be exploited in more detail.

25

I have the simplest tastes. I am always
satis�ed with the best.

O. Wilde

Introduction to
Optimization 2

We have seen that optimization is obviously an important issue in learning as in
most cases we had to determine parameters or configurations in an optimal way,
minimizing loss functions, for example. Since optimization is a lecture of its own,
we can only give some of the basic ideas and some elementary proofs.

In optimization, one considers functions 5 : � → R and is interested in finding
a location G such that

5 (G) = min
G ′∈�

5 (G′), G := argmin
G ′∈�

5 (G′). (2.1)

The following distinctions are common:

Smooth vs. nonsmooth: Once we can take derivatives, high school math tells us
that finding an extremum implies finding a zero of the derivative.

Constrained vs. non-constrained: Is the domain � a region without boundaries
or do we have to take care of side conditions? In the latter case, what are the
points that satisfy these conditions and do they exist at all?

Convex vs. nonconvex: Convex functions must have a unique local minimum48

while nonconvex ones can behave “as they want”.

We will explore some of these facts in the sequel and see how to deal with them.

2.1 Basic observations

Remark 2.1. Looking for minima as in (2.1) is su�cient since any minimum of 5
is a maximum of − 5 and vice versa.

De�nition 2.2. G ∈ � is called a local minimum of 5 : � → R if there exists a
neighborhood49 * of G such that

5 (G) ≤ 5 (G′), G′ ∈ *, (2.2)

and it is called a global minimum if we can choose * = �. A minimum is called
strict if the strict inequality holds in (2.2) for all G′ ≠ G.

48And concave functions a local maximum. This is taking into account the second derivative in
our high school math.

49A set that contains an open set containing G. This requires a topology on �, but how else
could one talk about “local” e�ects.

26 2 INTRODUCTION TO OPTIMIZATION

Next we introduce di�erentiability in a way that works for function on arbitrary
vector spaces50, which we already needed in our Hilbert space context.

De�nition 2.3 (Derivative). Let + be a vector space and 5 : + → R.

1. A function 5 is called directionally di�erentiable in E ∈ + if for all D ∈ +
the limit

�D 5 (E) := lim
ℎ→0+

5 (E + ℎD) − 5 (E)
ℎ

(2.3)

exists.

2. The function is called di�erentiable in E if the Gateaux variation of 5 at
E,

� (5 , E) : + → R, D ↦→ � (5 , E) (D) := �D 5 (E) (2.4)

is linear.

3. If + is a Hilbert space, and 5 is di�erentiable at E, then the derivative
� 5 (E) ∈ + is the unique vector51 such that

�D 5 (E) = 〈� 5 (E), D〉, D ∈ +. (2.5)

Exercise 2.1 Show that any directionally di�erentiable function is continuous. ♦

Remark 2.4. Keep in mind that the directional derivative is the classical one sided
univariate derivative of the function

6(C) = 5 (E + CD), C ∈ [0, Y)

at the position C = 0. Hence, we can use the standard theory to compute, for
example,

�D‖ · ‖(E) =
3

3C

√
〈E + CD, E + CD〉

����
C=0

=
1

2
√
〈E, E〉

�D〈·, ·〉(E) =
〈E, D〉
‖E‖ . (2.6)

Remark 2.5 (Di�erentiabilities in R3). In the “standard case” + = R3 , the Gateaux
variation of a di�erentiable function is the D)∇ 5 (E) with the gradient ∇ 5 which is
formed by vectorizing the partial derivatives. Moreover, the gradient is the unique
vector that defines the linear function by means of an inner product.

Note that directional di�erentiability does not imply di�erentiability as one
should learn in basic calculus, see Fig 2.1.

Exercise 2.2 Show that on R3, 3 > 1, the function 5 (G) = ‖G‖∞ is directionally
di�erentiable at G = 0, but the Gateaux variation is not linear. ♦

50Where we do not necessarily have a basis of unit vectors like in R3 .
51This uses the fact that any Hilbert space is re�exive, which means that any vector also takes

the role of a functional and vice versa and that all bounded functionals can be expressed as inner
products, see [28, 64].

2.2 Convexity and its consequences 27

Figure 2.1: The function

5 (G, H) =


GH2

G2 + H2 , (G, H) ≠ (0, 0),

0, (G, H) = (0, 0),
(2.7)

shown here from two perspectives, is directionally di�erentiable, but not dif-
ferentiable at the origin, which can be seen quite nicely from the plots.

Proposition 2.6. If 5 : + → R is directionally di�erentiable and has local minimum
at E ∈ + , then

�D 5 (E) ≥ 0, D ∈ +. (2.8)

If 5 is di�erentiable, then �D 5 (E) = 0, D ∈ + .
Proof: If E is local minimum, then 5 (E) ≤ 5 (E+ℎD) for all D ∈ + and all su�ciently
small values of ℎ. This yields

0 ≤ 5 (E + ℎD) − 5 (E)
ℎ

→ �D 5 (E).

If 5 is di�erentiable, then �D 5 (E) is linear and we have for any D ∈ + that

0 ≤ �−D 5 (E) = −�D 5 (E) ≤ 0,

hence �D 5 (E) = 0. �

2.2 Convexity and its consequences

Convex functions play a fundamental role in optimization and it is no surprise that
Optimization and Convex Analysis have a lot in common, cf. [46, 60].

De�nition 2.7 (Convexity). A function 5 : + → R is called convex if

5 ((1 − U)G + UG′) ≤ (1 − U) 5 (G) + U 5 (G′), U ∈ [0, 1], (2.9)

holds for any G, G′ ∈ + . A subset - of + is called convex52 if

G, G′ ∈ - ⇒ (1 − U)G + UG′ ∈ -, U ∈ [0, 1] . (2.10)
52The same word for two di�erent concepts which are, however, closely related.

28 2 INTRODUCTION TO OPTIMIZATION

The boundary m- of a convex set - consists of all points H ∈ - that cannot be
written as a convex combination H = (1 − U)G + UG′, U ∈ [0, 1], G, G′ ∈ - \ {H}.

Exercise 2.3 Show that 5 : H → R is convex if and only if for any �nite subset
- ⊂ H we have

5

(∑
G∈-

UG G

)
≤

∑
G∈-

UG 5 (G) , UG ≥ 0,
∑
G∈-

UG = 1.

♦

We already know two important types of convex functions on vector and Hilbert
spaces.

Proposition 2.8 (Norms are convex).

1. The function ‖ · ‖ is convex on any vector space.

2. The function ‖ · ‖2 is convex on any Hilbert space.

Proof: For 1) we simply use the norm axioms triangle inequality and positive
homogeneity:

‖(1 − U)G + UG′‖ ≤ ‖(1 − U)G‖ + ‖UG′‖ = (1 − U)‖G‖ + U‖G′‖,

while (2.10)) is exactly the argument that we used in step 1. of the proof of Propo-
sition 1.19. �

Interesting local extrema of convex functions have to be minima. The proof is
simple and gets us acquainted to the concept.

Lemma 2.9. Let 5 : + → R be a convex function and - ⊆ + a convex subset53 of + .

1. If G∗ ∈ - a strict local maximum of 5 , then G∗ ∈ m- .

2. Any local minimum of 5 on - is also a global minimum on -

Proof: 1): Suppose that G∗ ∉ m-, then there are G, G′ ∈ - and U ∈ [0, 1] such
that G∗ = (1 − U)G + UG′. By moving G, G′ closer to G∗ along the line through that
points, we can ensure that 5 (G) < 5 (G∗) and 5 (G′) < 5 (G∗) since G∗ is a strict local
maximum. It then follows from convexity that

5 (G∗) = 5 ((1 − U)G + UG′) ≤ (1 − U) 5 (G)︸︷︷︸
< 5 (G∗)

+U 5 (G′)︸︷︷︸
< 5 (G∗)

< (1 − U) 5 (G∗) + U 5 (G∗) = 5 (G∗)

which is a contradiction.
53Since vector spaces are trivially convex, - = + is well included, even if statement 1) becomes

meaningless then since m+ = ∅.

2.2 Convexity and its consequences 29

For 2) assume that G ∈ - is a local minimum and G′ ∈ - the global minimum
with 5 (G′) < 5 (G). Since - is convex, all the points

GC := (1 − C)G + CG′, C ∈ [0, 1], G0 = G, G1 = G
′,

are contained in - and we have that

5 (GC) = 5 ((1 − C)G + CG′) ≤ (1 − C) 5 (G) + C 5 (G′)︸︷︷︸
< 5 (G)

< ((1 − C) + C) 5 (G) = 5 (G)

holds for any C ∈ [0, 1] and contradicts the assumption that G is a local minimum
if we let C → 0. �

Exercise 2.4 Show that a convex function has to be constant on the convex hull
of its minima. ♦
For convex functions on Hilbert spaces there exists a slightly more involved but
very powerful concept, see [46].

De�nition 2.10 (Subgradient). Let 5 : H → R. An element E ∈ H is called a
subgradient of a convex function 5 : H → R at G ∈ H if

5 (G′) ≥ 5 (G) + 〈E, G′ − G〉, G′ ∈ H . (2.11)

The set m 5 (G) of all subgradients at G is called the subdi�erential and 5 is said
to be subdi�erentiable at G if m 5 (G) ≠ ∅.

Example 2.11. Let us consider the subdi�erential of the convex function ‖ · ‖ :
H → R. In the case G = 0 a vector E belongs to the subgradient if and only if

〈E, G′〉 = 〈E, G′ − 0〉 ≤ ‖G′‖ − ‖0‖ = ‖G′‖, G′ ∈ H ,

which happens if and only if ‖E‖ ≤ 1. This is easy to see: if ‖E‖ ≤ 1 then the
Cauchy–Schwarz inequality yields

〈E, G′〉 ≤ |〈E, G′〉| ≤ ‖E‖‖G′‖ ≤ ‖G′‖, G′ ∈ H ,

while for ‖E‖ > 1 the choice G′ = E gives

〈E, G′〉 = 〈E, E〉 = ‖E‖2 > ‖E‖ = ‖G′‖

and establishes the converse.
The case G ≠ 0 follows from a more general principle as the norm is di�eren-

tiable there with derivative54 ‖G‖−1G as shown in (2.6).

Proposition 2.12. Suppose that 5 : H → R is convex.

1. If 5 is directionally di�erentiable at G then

E ∈ m 5 (G) ⇔ �D 5 (G) ≥ 〈E, D〉. (2.12)
54Keep in mind: The derivative is a linear form!

30 2 INTRODUCTION TO OPTIMIZATION

2. If 5 is di�erentiable at G then m 5 (G) = {� 5 (G)}.

3. G is a local minimum of 5 if and only if 0 ∈ m 5 .

Proof: For 1) we set G′ = G + ℎD for ℎ > 0 and D ∈ H . Then, for any E ∈ H

5 (G′) − 5 (G) − 〈E, G′ − G〉 = 5 (G + ℎD) − 5 (G) − ℎ〈E, D〉

= ℎ

(
5 (G + ℎD) − 5 (G)

ℎ
− 〈E, D〉

)
.

Since E ∈ m 5 (G) i� the above expression is nonnegative for all D ∈ H and ℎ ≥ 0,
we have E ∈ m 5 (G) i�

〈E, D〉 ≤ 5 (G + ℎD) − 5 (G)
ℎ

, D ∈ H , ℎ ≥ 0,

and (2.12) follows from passing to the limit ℎ→ 0+.
For 2) we use (2.12) and note that in the case of di�erentiability we get for any

D ∈ H that
〈E, D〉 ≤ �D 5 (G) = 〈� 5 (G), D〉

as well as

−〈E, D〉 = 〈E,−D〉 ≤ �−D 5 (G) = 〈� 5 (G),−D〉 = −〈� 5 (G), D〉

which implies 〈E, D〉 ≥ 〈� 5 (G), D〉 and hence

〈E, D〉 = 〈� 5 (G), D〉, D ∈ H ,

which is equivalent to E = � 5 (G).
For 3) we recall Lemma 2.9 that allows us to assume that G is a global minimum

so that 5 (G + D) ≥ 5 (G) for all D ∈ H . This means that

5 (G + D) − 5 (G) ≥ 0 = 〈0, D〉, D ∈ H ,

which is equivalent to 0 ∈ m 5 (G). �

Example 2.13 (Example 2.11, continued). The subdi�erential of the norm func-
tion ‖ · ‖ = 〈·, ·〉 on a Hilbert space H is

m‖ · ‖(G) =
{
{E : ‖E‖ ≤ 1}, G = 0,
{‖G‖−1G}, G ≠ 0,

with exactly one minimum at G = 0 since 0 ∈ {E : ‖E‖ ≤ 1}.

2.3 Constrained optimization

So far we mainly considered unconstrained optimization problems which were
characterized by a “ 5 ′(G) = 0” type of argument55. In many cases however, for
example in the support vector machine, a certain function had to be optimized
subject to certain side conditions or constraints, and one even uses these con-
straints to model the optimization problem appropriately.

55Indeed, most optimization tries to determine optima by checking where the derivative equals
zero in some sense.

2.3 Constrained optimization 31

De�nition 2.14 (Constrained optimization problem). Given 5 : + → R, 6 : + →
R?, ℎ : + → R@, the constrained optimization problem is

min 5 (G) subject to 6(G) = 0, ℎ(G) ≥ 0, (2.13)

with the ? equality constraints 6 and the @ inequality constraints ℎ. The feasi-
ble set of this problem is

� := {G ∈ + : 6(G) = 0, ℎ(G) ≥ 0} (2.14)

and the problem (2.13) is called feasible if � ≠ ∅.

Remark 2.15. Feasibility of an optimization problem is not easy to verify in gen-
eral. As we will see, equality constraints are relatively easy to handle but very
restrictive while inequality constraints are less restrictive for the prize of a more
complex treatment.

As already mentioned, the “standard” way to treat di�erentiable constraint opti-
mization problems is by means of Lagrange multipliers which we will formulate
in the next theorem in the context of Hilbert spaces.

To that end, recall that for 6 : H → R the derivative �6 : H → H is a
Hilbert space valued function56 and therefore

6 =


61
...

6?

 : H → R? ⇒ �6 =


�61
...

�6?

 : H →H =.

Would we write the derivatives with respect to a basis of H , for example when
H = R= for some =, then the derivative �6 is most conveniently written as matrix,
called the Jacobian of 6, cf. [52].

To formulate our main theorem, we need some more insight into the geometry
of the feasible set � which again we can do in arbitrary Hilbert spaces.

De�nition 2.16 (Tangent cone).

1. For " ⊂ H und G ∈ H the (closed) tangent cone to " in G is the set

) (", G) :=
⋂
Y>0

{(H − G) R+ : H ∈ ", ‖H − G‖ ≤ Y}.

2. For " ⊂ H the set

"′ = {H ∈ H : 〈H, "〉 ≥ 0}

is called positive normal cone to " .

The tangent cone plays a fundamental role in constrained optimization.

56In general, the derivative maps + to the algebraic dual +∗, the space of all continuous linear
functionals, but we do not want to do so much Functional Analysis here.

32 2 INTRODUCTION TO OPTIMIZATION

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Figure 2.2: Illustration of the tangential cones of several shapes.

Proposition 2.17. If G ∈ " ⊂ H is a local minimum of the di�erentiable function
5 : " → R with continuous derivative � 5 , then

� 5 ∈) (", G)′ = {H : 〈H,) (", G)〉 ≥ 0} (2.15)

Proof: For H ∈) (", G) there exist sequences57 " 3 G: → G and U: ∈ R+, : ∈ N,
such that U: (G: − G) → H which in particular implies that U: →∞ or, equivalently,
U−1
:
→ 0.

Since G: → G and since G is a local minimum, we get for su�ciently large : ∈ N
that

0 ≤ 5 (G:) − 5 (G) = 5 (G + (G: − G)) − 5 (G) = 5

(
G + U−1: (U: (G: − G))

)
− 5 (G)

=: 5

(
G + U−1: H:

)
− 5 (G),

hence

0 ≤
5
(
G + U−1

:
H:

)
− 5 (G)

U−1
:

→ �H 5 = 〈� 5 (G), H〉,

since H: → H and 5 has a continuous derivative. Thus, the assumption of a mini-
mum yields

H ∈) (", G) ⇒ 〈� 5 (G), H〉 ≥ 0 or 〈∇ 5 (G),) (", G)〉 ≥ 0,

which is (2.15). �

Two more definitions and we are ready to go.

De�nition 2.18 (Active constraints and linearizing cones).

1. For a feasible point G ∈ � where � is defined by (2.14), we denote by

� (G) =
{
1 ≤ 9 ≤ @ : ℎ 9 (G) = 0

}
⊆ {1, . . . , @}

the set of active constraints.
57This is essentially the definition of the tangent cone plus the fact that we took the closure.

2.3 Constrained optimization 33

2. Der linearizing cone of the constraint functions 6, ℎ is defined as

! (G) = ! (G, 6, ℎ)
=

{
H ∈ H :

〈
�6 9 (G), H

〉
= 0, 〈∇ℎ: (G), H〉 ≥ 0, 9 = 1, . . . , ?, : ∈ � (G)

}
.

The geometric intuition of the linearizing cone is to approach the tangent cone by
means of tangents of the functions that determine it implicitly. For H = R= one
always has) (Ω, G) ⊆ ! (G) while the converse is not true in general. However, the
respective sets are “academic”, in most practical cases both agree.

Theorem 2.19. If G ∈ � is a local minimum of the continuously di�erentiable function
5 : H → R on a �nite dimensional58 Hilbert space H with

! (G)′ =) (�, G)′ , (2.16)

then there exist _ ∈ R? und ` ∈ R@+ such that

� 5 (G) − �6(G)) _ − �ℎ(G))` = 0 (2.17)

`)ℎ(G) = 0 (2.18)

Remark 2.20. The vectors _, ` are called Lagrange multipliers and the inner
products are to be understood in the sense

�6(G)) _ =
?∑
9=1

_ 9 �6 9 ∈ H , �ℎ(G)) ` =
@∑
9=1

` 9 �ℎ 9 ∈ H .

The conditions (2.17) and (2.18) are known as the Kuresh–Kuhn–Tucker condi-
tions or KKT conditions; note that (2.17) is a Hilbert space identity while (2.18)
is concerned with real numbers.

The main tool for the proof is a nice lemma from Linear Algebra that we do not
want to prove here. It can be found in [63, Theorem 1.9, S. 17] oder [55, A2.1.4,
S. 40] or in [42].

Lemma 2.21 (“Farkas–Lemma”). For � ∈ R<×= and 1 ∈ R< there exists 0 ≤ G ∈ R=
with �G = 1 i�

�) H ≥ 0 =⇒ 1) H ≥ 0. (2.19)

Proof of Theorem 2.19: If H is finite dimensional, we can introduce an or-
thonormal basis � and represent the derivative as a gradient

∇ 5 (G) := [〈ℎ, � 5 (G)〉 : ℎ ∈ �] ∈ R� ' R#� .

If G ∈ � is a local minimum of 5 we know, by Proposition 2.17 and our assumption
(2.16) that

� 5 (G) ∈) (�, G)′ = ! (G)′ , ⇒ 〈I, � 5 (G)〉 ≥ 0, I ∈ ! (G).
58We will use a tool from Linear Algebra soon and this works better with a matrix.

34 2 INTRODUCTION TO OPTIMIZATION

If we define the matrix � ∈ R�×<, < := 2? +#� (G) as

� := �(G) =
[
∇6(G),−∇6(G),

[
∇ℎ 9 (G) : 9 ∈ � (G)

]]
then the definition of ! (G) yields

I ∈ ! (G) ⇔ �) I ≥ 0,

and we can rephrase the condition ∇ 5 (G) ∈ ! (G)′ into59

�) I ≥ 0 ⇒ I)∇ 5 (G) ≥ 0. (2.20)

Now the Farkas–Lemma, Lemma 2.21 says that the set

{W ∈ R< : �W = ∇ 5 (G), W ≥ 0}

is nonempty and therefore there exists

W =

[
W
(1)
9
, W
(2)
9
, W
(3)
:

: 9 = 1, . . . , ?, : ∈ � (G)
]
∈ R2?+#� (G)+ ,

such that

∇ 5 (G) =

?∑
9=1

W
(1)
9
∇6 9 (G) −

?∑
9=1

W
(2)
9
∇6 9 (G) +

∑
9∈� (G)

W
(3)
9
∇ℎ 9 (G)

=

?∑
9=1

(
W
(1)
9
− W (2)

9

)
︸ ︷︷ ︸

=:_ 9

∇6 9 (G) +
∑
9∈� (G)

W
(3)
9︸︷︷︸

=:` 9

∇ℎ 9 (G),

and with ` 9 = 0, 9 ∈ {1, . . . , @} \ � (G), we get (2.17). The second conclusion 2.18,
is obtained via

`)ℎ(G) =
∑
9∈� (G)

` 9 ℎ 9 (G)︸︷︷︸
=0

+
∑
9∉� (G)

` 9︸︷︷︸
=0

ℎ 9 (G) = 0.

�

There is a simple interpretation of Theorem 2.19 which we already used before. If
one defines the Lagrangian

L : H × R? × R@ → R, L (G, _, `) := 5 (G) − _)6(G) − `)ℎ(G), (2.21)

then the requirement (2.17) becomes

�L (·, _, `) = 0, (2.22)

a condition that is satisfied at anyminimum ormaximum60 of L (·, _, `). We will
consider this problem more carefully in the next section for particular choices of
5 , 6, ℎ.

59Now with respect to basis and coordinates.
60Which may or may not exist for some choice of _, ` as G is also constrained by 6(G) = 0 and

ℎ(G) ≥ 0.

2.4 Convex problems and duality 35

2.4 Convex problems and duality

To obtain more structure and stronger statements in that particular situation, we
follow [42] and restrict the constrained optimization problem in the following way:

1. 5 is a convex function on H ,

2. we only have inequality constraints ℎ,

3. the functions ℎ 9 are concave, i.e., −ℎ 9 is convex, 9 = 1, . . . , @.

Remark 2.22 (Normal forms). Requirement 2) is not really a restriction as any
equality constraint 6(G) = 0 can be rewritten as 6(G) ≥ 0 and −6(G) ≥ 0 and there-
fore is encoded in two inequality constraints61. Conversely, one can also rephrase
inequality constraints as equality constraints by introducing slack variables H 9
and

ℎ 9 (G) → ℎ̃ 9 (G, H) := ℎ 9 (G) − H29
and ℎ(G) ≥ 0 i� 0 = ℎ(G) − H2 = ℎ̃(G, H). However, the optimization runs over G
and H now and the free variable H only enters the optimization problem indirectly
via the constraint.

Nevertheless, these two operations can be used to transform62 optimization
problems between di�erent normal forms used, for example, by di�erent software63

packages.

Exercise 2.5 Compare the KKT conditions for the optimization problem

min
G

5 (G) subject to 6(G) = 0, ℎ(G) ≥ 0,

and the modified, equivalent problem

min
G,H

5 (G) subject to
[
6(G)
ℎ̃(G, H)

]
= 0

after the introduction of slack variables. ♦
For G, G′ ∈ � and U ∈ [0, 1] the concave functions satisfy

ℎ 9 ((1 − U)G + UG′) ≥ (1 − U) ℎ 9 (G)︸︷︷︸
≥0

+U ℎ 9 (G′)︸︷︷︸
≥0

≥ 0,

it follows that the set � is convex and also that

L (G, `) = 5 (G) −
@∑
9=1

` 9 ℎ 9 (G)

61A cheap trick, but frequently used in optimization.
62At least formally, the computational performance can di�er.
63This is particularly true in the case of linear optimization where a lot of di�erent programs

with di�erent normal forms are available.

36 2 INTRODUCTION TO OPTIMIZATION

is convex as long as ` ≥ 0.

Exercise 2.6 Show that if 5 , 6 are convex then so is 5 + 6. ♦
Consequently, for ` ≥ 0 it is relatively easy to compute the function

@(`) := inf
G∈�

L (G, `). (2.23)

The value @(`) is finite if � is bounded but in general we have @ : R
@
+ → R∪ {−∞},

so that the definition
�@ := {` ∈ R@+ : @(`) > −∞} (2.24)

makes sense.

Proposition 2.23. The function @ from (2.23) is concave and �@ is convex.

Proof: Since L is linear in `, we have that

L (G, (1 − U)` + U`′) = (1 − U)L (G, `) + UL (G, `′)

so that

@ ((1 − U)` + U`′) = inf
G∈�

L (G, (1 − U)` + U`′)

≥ (1 − U) inf
G∈�

L (G, `) + U inf
G∈�

L (G, `′)

= (1 − U)@(`) + U@(`′),

showing that @ is concave. If `, `′ ∈ �@ then

@ ((1 − U)` + U`′) ≥ (1 − U) @(`)︸︷︷︸
>−∞

+U @(`′)︸︷︷︸
>−∞

> −∞

also verifies the convexity of the set �@. �

De�nition 2.24 (Dual problem). For the primal problem

min
G

5 (G) subject to ℎ(G) ≥ 0, (2.25)

its associated dual problem is defined as

max
`
@(`) subject to ` ≥ 0. (2.26)

Lemma 2.25 (Weak duality). For each feasible choice of G and ` we have

@(`) ≤ 5 (G). (2.27)

Proof: Almost trivial:

@(`) = inf
G ′

(
5 (G′) − `)ℎ(G′)

)
≤ 5 (G) − `)ℎ(G)︸ ︷︷ ︸

≥0

≤ 5 (G)

holds as long as ` ≥ 0 and ℎ(G) ≥ 0, which are the feasibility conditions. �

2.4 Convex problems and duality 37

Hence, the weak duality means that the function to be maximized is always bounded
from above by the function to be minimized. We will see that the optimal solutions
coincide and yield the optimal parameters.

The first result closes the gap we left with the optimization problem (1.45) in the
support vector machine and says that indeed we can derive the proper multipliers
by maximizing that dual problem64

Theorem 2.26 (Duality, “⇒”). Suppose that G solves the minimization problem (2.25)
and that 5 and −ℎ 9 , 9 = 1, . . . , @ are convex functions and di�erentiable at G. Then any
` that satis�es the primal KKT conditions

� 5 (G) − �ℎ(G))` = 0
`)ℎ(G) = 0
ℎ(G) ≥ 0
` ≥ 0

(2.28)

is a solution of the dual problem (2.26).

Proof: Since L (·, `) is convex and di�erentiable65, its subgradient satisfies

mL (·, `) (G) = {�L (·, `) (G)}

and (2.11) yields together with the fact that �L (·, `) (G) = � 5 (G) − �ℎ(G))` = 0
by (2.28) the estimate

L (G′, `) ≥ L (G, `) + 〈�L (·, `) (G), G′ − G〉︸ ︷︷ ︸
=0

= L (G, `), ℎ(G′) ≥ 0,

hence, again by (2.28),

@(`) = inf
ℎ(G ′)≥0

L (G′, `) = L (G, `) = 5 (G) − `)ℎ(G)︸ ︷︷ ︸
=0

= 5 (G).

Since @(`′) < 5 (G′) for all `′ ≥ 0 and ℎ(G′) ≥ 0 by the weak duality (2.27), it
follows that the above ` indeed maximizes @. �

The converse is slightly trickier and requires some more assumptions and notions.
The first is a nonsingularity condition on the constraints.

De�nition 2.27 (LICQ). The constraints ℎ : H → R@ are said to satisfy the linear
independence constraint quali�cation66 (LICQ) or simply are called nonsingular67

at G ∈ � if the set {
�ℎ 9 (G) : ℎ 9 (G) = 0

}
(2.29)

of active constraint derivatives is linearly independent.

64Keep in mind that we computed the dual there by substituting the minimum of the expression!
65To be di�erentiable at a point is always a property of the function in some small neighborhood

of the point.
66Terminology from [42].
67Terminology from [60].

38 2 INTRODUCTION TO OPTIMIZATION

Exercise 2.7 Show that the LICQ condition implies that ! (G)′ =) (�, G)′ in the
sense of (2.16). ♦

Exercise 2.8 Show that if the constraint functions are continuously di�erentiable
and the LICQ holds at G, then there exists an open set * with G ∈ * such that the
LICQ holds for

{G′ : G′ ∈ *, � (G′) = � (G)}, � (G) = {G : ℎ 9 (G) > 0},
i.e. for any point from the neighborhood with the same active set. ♦
The “converse” result is only a partial converse with more assumptions68

Theorem 2.28 (Duality, “⇐”). Suppose that 5 and −ℎ 9 , 9 = 1, . . . , @, are convex and
continuously di�erentiable and that G is a solution of the primal problem (2.25) where
LICQ is satis�ed.

If ` is a solution of the dual problem (2.26) for which L (·, `) is a strictly convex
function that assumes its in�mum69 at G′, then G′ = G and 5 (G) = L (G′, `).
Proof: Assume, for the contrary, that G ≠ G′. Since G is a minimum and since
LICQ guarantees70 (2.16), we can apply Theorem 2.19 to obtain the existence of
some `′ ≥ 0 that satisfies the KKT conditions (2.28). From Theorem 2.26 we can
then conclude that71

L (G, `′) = @(`′) = @(`) = L (G′, `)
Since G′ minimizes L (·, `), di�erentiability yields �L (·, `) (G) = 0 and the strict
convexity of L (·, `) yields that

L (G, `) −L (G′, `) > 〈�L (·, `) (G′), G − G′〉 = 0,

hence
L (G, `) > L (G′, `) = L (G, `′)

or, by (2.28),

5 (G) − ℎ(G))` > 5 (G) − ℎ(G))`′ ⇒ 0 ≤ ℎ(G))` < ℎ(G))`′ = 0

which is a contradiction. Hence G = G′ as claimed. �

More on convex optimization, the duality in convex constraint optimization and
the saddle point interpretation of duality can be found in [46, 60].

2.5 How to compute optimizers?

After having had plenty of fun with the theory of optimization, convexity and
duality, we return to the more realistic issue of how to really compute solutions
of optimization problems. In fact, we will briefly recall the main algorithms for
unconstrained optimization, the ones for constraint approximation usually com-
bine those with feasibility checks.

Moreover, we assume that 5 is di�erentiable and that � 5 can be computed. If
this is not the case, derivative free methods have to be applied, see [50].

68Including the existence of a solution of the primal problem.
69It could be negative infinite.
70See or better do Exercise 2.7.
71` and `′ are both locations of maxima of @, the first by duality, the second by assumption.

2.5 How to compute optimizers? 39

2.5.1 Descent algorithms

The standard method in smooth nonlinear optimization are so called descent
methods that approach a local minimum by always walking “downhill”. Mathe-
matically, this is based on the following concept.

De�nition 2.29. An element D ∈ H is called a descent direction for 5 : H → R
at G if �D 5 (G) < 0; if 5 is di�erentiable this is equivalently described by 〈� 5 (G), D〉 <
0.

If D is a descent direction, we can consider the function 5D (C) := 5 (G + CD), C ≥ 0,
which satisfies

5 ′D (0) = �D 5 (G) = 〈� 5 (G), D〉.
If 5 has a continuous72 derivative, then there exists g > 0 such that the continuous
function 5 ′D (C) is negative for C ∈ [0, g]

5 (G + CD) = 5 (G) +
∫ C

0
5 ′D (B) 3B = 5 (G) +

∫ C

0
〈� 5 (G + BD), D〉︸ ︷︷ ︸

<0

3B < 5 (G) (2.30)

This is the basic iterative algorithm:

1. Choose any initial G0.

2. For 9 = 1, 2, . . .

(a) determine a descent direction D 9 for 5 at G 9−1,

(b) determine C 9 > 0 such that 5 (G 9−1 + C 9D 9) < 5 (G 9−1),
(c) set G 9 = G 9−1 + C 9D 9 .

The argument stops if there is no descent direction any more, i.e., if �D 5 (G) ≥ 0,
D ∈ H , which is the necessary condition for a minimum considered (2.8). If 5
is continuously di�erentiable, the algorithm stops if � 5 (G) = 0. Such a point G is
called critical, and finding critical points is usually the best optimization can do.

Practically, there is a fundamental question: How to choose D 9 and C 9? The
“natural”, but at least naive choice for D 9 is the steepest descent, D 9 = −� 5 (G 9−1).
Indeed, it is the solution of a minimization problem:

min
‖D‖=1

〈� 5 (G), D〉 ⇒ D =
−� 5 (G)
‖� 5 (G)‖ . (2.31)

Nevertheless, steepest descent is not always a good idea as it can lead to direc-
tions that do not lead to the minimum very fast but circle around and result in
algorithms that converge slowly if at all. This gives rise to other search directions
like conjugate gradients or Newton directions, cf. [50].

For the stepsize C 9 there are some rules available which we briefly list next.

72It does not make much sense to consider seriously discontinuous functions as then derivative is
not really useful information. In practice, little can be done without continuity and even continuity
alone is too weak when looking carefully. We will see this in the context of neural networks.

40 2 INTRODUCTION TO OPTIMIZATION

Figure 2.3: The reason why steepest descent is not always a good idea: in “flat
ellipses” like here (height lines), the steepest direction is almost perpendicular
to the best direction that would point directly to the minimum.

De�nition 2.30 (Stepsize conditions). For two given constants73 0 < 21 < 22 < 1
and a descent direction D the stepsize C is said to satisfy

1. the Armijo condition if

5 (G + CD) − 5 (G) ≤ C 21 〈� 5 (G), D〉. (2.32)

2. the Wolfe conditions74, also called Powell conditions75, if

5 (G + CD) − 5 (G) ≤ C 21 〈� 5 (G), D〉,
〈� 5 (G + CD) , D〉 ≥ 22 〈� 5 (G), D〉.

(2.33)

3. the strong Wolfe conditions if

5 (G + CD) − 5 (G) ≤ C 21 〈� 5 (G), D〉
|〈� 5 (G + CD), D〉| ≤ 22 |〈� 5 (G), D〉|

(2.34)

These requirements can be met.

Lemma 2.31. If 5 is continuously di�erentiable, D a descent direction and

inf { 5 (G + CD) : C ∈ R+} > −∞,

then there exist, for any choice 0 < 21 < 22 < 1, values C ∈ R+ that satisfy (2.33) or
(2.34), respectively76.

Proof: Denote by ℓ(C) = 5 (G) + C 21�D 5 (G), C ∈ R+, the linear function ℓ : H → R,
that interpolates 5D and 5 ′D at C = 0. Since

lim
C→∞

ℓ(C) = −∞ < inf
C∈R+

5D (C),

there exist a minimal C′ > 0, such that

5 (G) + C′ 21�D 5 (G) = ℓ (C′) = 5D (C′) = 5 (G + C′D)
73This are “process parameters” to be chosen by a user.
74Due to [62].
75Due to [45].
76And therefore also (2.32).

2.5 How to compute optimizers? 41

and 21 < 1 yields ℓ(C) ≥ 5D (C), C ≤ C′. In other words,

5 (G + CD) − 5 (G) ≤ C 21〈� 5 (G), D〉, C ∈ (0, C′)

which is (2.32). By the mean value theorem there exists C∗ ∈ (0, C′) such that

5D (C′) − 5D (0) = (C′ − 0) 5 ′D (C∗) ,

hence

C′〈� 5 (G + C∗ H) , D〉 = 5 (G + C′D) − 5 (G) = C′ 21︸︷︷︸
<22

〈� 5 (G), D〉︸ ︷︷ ︸
<0

> C′ 22 〈� 5 (G), D〉.

Dividing by C′ > 0, we obtain the second conditions in (2.33) and also in (2.34) for
C in some neighborhood of C∗. �

If the stepsizes are chosen according to Definition 2.30, one can prove that descent
methods converge in quite general situations. An example, without proof, is as
follows.

Theorem 2.32. Suppose that 5 ∈ �1 (H) has a Lipschitz continuous derivative and
is bounded from below:

inf { 5 (G) : G ∈ H } > −∞.
If for an arbitrary starting value G0 one constructs the sequence

G 9 = G 9−1 + C 9 D 9 , 9 ∈ N,

with descent directions D 9 and C 9 satisfying (2.33), then

∞∑
9=0

cos2 \ 9

� 5 (G 9)

22 < ∞, (2.35)

for any starting value G0, where

cos \ 9 :=

〈
� 5 (G 9), D 9

〉

� 5 (
G 9

)

D 9

 , 9 ∈ N.

2.5.2 Variants of Newton’s method

Another approach to localizing extrema for di�erentiable functions is to find zeros
of the derivative. This needs methods to compute zeros of nonlinear functions and
the most prominent one is Newton’s method. In one variable this corresponds to
the iteration

G 9+1 = G 9 −
5 (G 9)
5 ′(G 9)

, 9 ∈ N0, (2.36)

with the geometric interpretation of intersecting the tangent of 5 at G 9 with the
G–axis. Newton’s method is the “one point variant” of the secant method

G 9+1 = G 9 −
G 9 − G 9−1

5
(
G 9

)
− 5

(
G 9−1

) 5 (
G 9

)
, (2.37)

42 2 INTRODUCTION TO OPTIMIZATION

that intersects the secant between two preceding points with the G–axis.
If 5 : H → H is a function between Hilbert spaces and � is a basis of H ,

then we can still77 define a directional derivative

�D 5 := lim
ℎ→0+

5 (· + ℎD) − 5 (·)
ℎ

and if 5 is di�erentiable, then the function D ↦→ �D 5 is linear mapping from
H →H . If � ⊂ H is a basis of H , we can write D

D =
∑
ℎ∈�
〈ℎ∗, D〉 ℎ, 〈ℎ∗, ℎ′〉 = Xℎ,ℎ′, ℎ, ℎ′ ∈ �, (2.38)

where ℎ∗ ∈ H denotes the dual or biorthogonal element78 for ℎ which must exist
due to the re�exivity of the Hilbert space. If � is an orthonormal basis, then
ℎ∗ = ℎ. Consequently, linearity and an application of the decomposition (2.38)
yield for any E ∈ H

〈�D 5 , E〉 =
∑
ℎ∈�
〈ℎ∗, D〉 〈�ℎ 5 , E〉

∑
ℎ,ℎ′∈�

〈ℎ∗, D〉 〈�ℎ 5 , ℎ
′〉〈ℎ′∗, E〉

Hence,

� 5 =

[
〈ℎ′, �ℎ 5 〉 :

ℎ′ ∈ �
ℎ ∈ �

]
(2.39)

describes a bilinear form or the counterpiece of a matrix.

Example 2.33. If H = R3 and 4 9 are the canonical standard basis, then〈
4 9 , �4: 5

〉
=
m 5 9

mG:

and � 5 is the well known Jacobian of 5 : R3 → R3 .

Based on (2.39) we can define the linear system in the weak form

〈 5 (G), E〉 = 〈� 5 (G) H, E〉 =
〈
�H 5 (G), E

〉
, E ∈ H ,

which leads to

0 =
∑
ℎ′∈�
〈 5 (G), ℎ′〉〈ℎ′∗, E〉 −

∑
ℎ,ℎ′∈�

〈ℎ∗, H〉 〈�ℎ 5 (G), ℎ′〉〈ℎ′∗, E〉

=
∑
ℎ′∈�

〈
5 (G) −

∑
ℎ∈�
〈ℎ∗, H〉〈�ℎ 5 (G), ℎ′〉, E

〉
〈ℎ′∗, E〉

and therefore to

5 (G) =
∑
ℎ∈�
〈ℎ∗, H〉〈�ℎ 5 (G), ℎ′〉 = (� 5 (G)〈�, H〉)ℎ′ , ℎ′ ∈ �, (2.40)

which is a linear system in coe�cients of H with respect to � with respect to the
Jacobian of 5 at G.

77These are all Hilbert space operation.
78In this notation, the ∗ is an operator like transposition for matrices.

2.5 How to compute optimizers? 43

De�nition 2.34. The solution H of (2.40) is called the Newton direction of 5 at
G.

The strategy for optimization methods based on Newton directions corresponds to
finding critical points of the derivative:

1. Given 5 : H → R and the problem minG 5 (G)

2. use the derivative � : H →H , i.e. � (G) = � 5 (G) and a starting point G0.

3. For : = 1, 2, . . .

(a) compute the Newton direction H: = �� (G:−1)−1� (G:−1) by solving
(2.40),

(b) compute a stepsize C: , for example79 C: = 1,

(c) set G: = G:−1 − C: H: .

Under certain circumstances80 Newtons method provides local convergence, i.e.,
it converges if the starting value is close enough to the zero. Since computing zeros
of a derivative cannot distinguish between minima and maxima, the quality of the
starting value is fundamental for the success of the method.

A typical theorem in this regard looks as follows, formulated for H = R3 .

Theorem 2.35. If 5 ∈ �2
(
R3

)
and ∇2 5 is Lipschitz continuous in a neighborhood of

a strict minimum G∗ of 5 . Then there exists a neighborhood * of G∗, such that for all
G0 ∈ * the Newton iteration with stepsize 1

1. converges to G∗:
lim
:→∞

G: = G
∗. (2.41)

2. is quadratically convergent:

sup
:∈N0

‖G:+1 − G∗‖
‖G: − G∗‖2

< ∞. (2.42)

3. has quadratically convergent gradients with limit zero:

lim
:→∞
‖∇ 5 (G:)‖ = 0, sup

:∈N0

‖∇ 5 (G:+1)‖
‖∇ 5 (G:)‖2

< ∞. (2.43)

Remark 2.36. Another computational problem is that in each iteration the matrix
�� has to be recomputed which is a #�×#� “matrix” which can be a substantial
e�ort for larger spaces. Moreover, in many cases it is not so easy to compute
the derivatives explicitly and numerical di�erentiation methods of limited accuracy
have to be applied.

To overcome that problem, people in Optimization have developed a lot of
algorithms which only apply a partial rank one update to the matrix; this leads
to the huge family of quasi Newton methods that are well documented in the
literature.

79That would be Newton’s method.
80Essentially some smoothness of � 5 and boundedness of certain expressions, see [49, 50].

44 2 INTRODUCTION TO OPTIMIZATION

2.6 Penalty and regularization

In the last part of this section we return to constraint optimization problems but
now with “soft” constraints. One immediate reason is explained quite easily

Remark 2.37 (Sensitivity of equality constraints). In the presence of equality
constraints the feasible set {G : 6(G) = 0} is usually a “thin” set and often very
sensitive to perturbation. In fact, if �6(G) ≠ 0 for some feasible G with 6(G) = 0,
then there exist points arbitrarily close to G with 6(G) ≠ 0, hence these points are
not feasible any more.

De�nition 2.38 (Penalty). The penalty function for 5 and the equality con-
straints 6 is

5_ = 5 (G) + _‖6(G)‖2 = 5 (G) + _
?∑
9=1

629 (G), _ ∈ R+, (2.44)

and for equality and inequality constraints

5_,` = 5 (G) + _‖6(G)‖2 + `‖ℎ−‖2 = 5 (G) + _
?∑
9=1

629 (G) + `
@∑
9=1

(ℎ 9)2−(G), _, ` ∈ R+,

(2.45)
where for 5 : H → R

5−(G) :=
1

2
(| 5 (G) | − 5 (G)) =

{
0, 5 (G) ≥ 0,

− 5 (G), 5 (G) < 0.

Remark 2.39.

1. At first view, the penalty function looks quite like a Lagrangian, but first it
is not the function that appears but its square81 and the parameters are only
scalar ones82.

2. Since we are still considering minimization problems, this approach penalized
violation of the constraints and the e�ect of this penalty is controlled by the
variable _ or the variables _, `, respectively. If they are set to zero, the
constraint is ignored, the larger they get, the more relevant the constraints
become.

3. In any way, the minimization problem minG 5_,` (G) is an unconstrained one
now, hence could, in the case of (2.44) be solved in the “usual” manner by
solving

0 = � 5_ (G) = � 5 (G) + 2_
?∑
9=1

6 9 (G) �6 9 (G)

with respect to G for the fixed parameter _.
81The absolute value would do as well, in fact any even function R → R that is monotonically

increasing on R+ and zero at the origin would do the job, in other words, any loss function.
82Even if one could model the influence of any side condition by a separate factor as well.

2.6 Penalty and regularization 45

Penalty methods in optimization approximately solve the unconstrained minimiza-
tion problems with respect to (2.44) or (2.45) and at the same time increase the
parameters _, `. More precisely, in the case of (2.44), one choose two sequences
Y: , g: converging to zero and computes83, in the :th iteration, a point G: such that

� 5Y−1

:
5 (G:)

 ≤ g: . (2.46)

A typical result then looks as follows, again in the context of finite dimensional
Hilbert spaces.

Theorem 2.40. For 6 ∈ �1 (R=), and nonnegative sequences Y: , g: , : ∈ N, converging
to zero let G∗ be an accumulation point of a sequence G: ∈ H , satisfying 2.46. If the
derivatives ∇6 9 (G∗), 9 = 1, . . . , ?, are linearly independent then there exists a Lagrange
multiplier _ ∈ R? such that

∇ 5 (G∗) − _)∇6 (G∗) = 0 (2.47)

and we have

_ = lim
9→∞
−
6

(
G: 9

)
Y: 9

, G∗ = lim
9→∞

G: 9 . (2.48)

There is di�erent interpretation of this approach as the regularization of a linear
system which in fact brings us back to where we started in learning and is actu-
ally used quite a bit in the context of learning which makes it a nice end to the
optimization chapter.

Let us return to the problem of approximating data E ∈ H by a finite dimen-
sional model space , ⊂ H spanned by a finite set Φ. We now explicitly drop
the assumption that Φ were a basis of , , it only has to be a generating set84.
Nevertheless, note that the coe�cient vector 0 ∈ RΦ such that

q(0) =
∑
i∈Φ

0ii

is the best approximant to E in the sense

min
0∈RΦ
‖E − q(0)‖

i� it is the solution of the linear system (1.30), which we recall to be

[〈E, i〉 : i ∈ Φ] = [〈i, i′〉 : i, i′ ∈ Φ] 0. (2.49)

If rank�Φ < #Φ, then (2.49) has infinitely many solutions85 and we have to choose
among them, so why not take the best. To that end, we consider (2.49) only as a
constraint, pick any 5 : RΦ → R and solve

min
0

5 (0), subject to [〈E, i〉 : i ∈ Φ] = [〈i, i′〉 : i, i′ ∈ Φ] 0. (2.50)

83Mostly by the methods described above, i.e., Newton or descent.
84In the context of dictionaries and basis pursuit this will become relevant.
85This is sometimes called small data: We have a lot of possible explanations but not enough

data to really verify or falsify them which a unique solution 0 would.

46 2 INTRODUCTION TO OPTIMIZATION

This could either be solved by means of Lagrange multipliers or be turned into
the penalized optimization problem

min
0

5 (0) + _‖�Φ0 − 6Φ,E ‖2, _ ∈ R+.

Replacing _ by _−1 and multiplying with _, we get the more common form

min
0
‖�Φ0 − 6Φ,E ‖2 + _ 5 (0), _ ∈ R+, (2.51)

where, depending on the field of application 5 is called regularizer, cost function,
loss function or energy functional while ‖�Φ0−6Φ,E ‖2 is often referred to as the
data �delity term.

The most classical regularizer is

5 (0) = ‖0‖22 =
∑
i∈Φ

02i

which leads to the minimization of

‖�Φ0 − 6Φ,E ‖22 + _‖0‖
2
2 = 0)�)Φ�Φ0 − 2(�)Φ6Φ,E))0 + ‖6Φ,E ‖22 + _ 0

)0

= 0)
(
�)Φ�Φ + _�

)
0 − 2(�)Φ6Φ,E))0 + ‖6Φ,E ‖22

with respect to 0 which is done by the solution of(
�)Φ�Φ + _�

)
0 = �)Φ6Φ,E .

Since �)
Φ
�Φ is positive semidefinite, the matrix �)

Φ
�Φ + _� is invertible for any

_ > 0 since

H)
(
�)Φ�Φ + _�

)
H = ‖�ΦH‖2︸ ︷︷ ︸

≥0

+ ‖H‖22︸︷︷︸
>0

> 0, 0 ≠ H ∈ RΦ.

Another possible regularizer is

5 (0) = ‖q(0)‖2 = 〈q(0), q(0)〉 = 0)�Φ0

and we can either consider the expression

‖E − q(0)‖2 + _ ‖q(0)‖2 = 〈E − q(0), E − q(0)〉 + _ 〈q(0), q(0)〉
= ‖E‖2 − 2〈E, q(0)〉 + (1 + _)‖q(0)‖2 = ‖E‖2 − 26)Φ,E0 + (1 + _)0)�Φ0

which is minimized by the solution of

�Φ0 =
1

1 + _6Φ,E

giving a86 rescaled version of the solution of the original problem, or we can con-
sider

‖�Φ0 − 6Φ,E ‖22 + _‖Φ(0)‖
2
2 = 0

)
(
�)Φ�Φ + _�Φ

)
0 − 2(�)Φ6Φ,E))0 + ‖6Φ,E ‖22

86Quite boring . . .

2.6 Penalty and regularization 47

which, however, su�ers from the same problem as the original minimizer: the
matrix is only positive semidefinite as any H with �ΦH = 0 also satisfies �)

Φ
�ΦH = 0.

This simple example already shows that the choice of the loss function strongly
influences the optimization process. A really interesting one happens to be

‖�Φ0 − 6Φ,E ‖22 + _‖0‖1 = ‖�Φ0 − 6Φ,E ‖
2
2 +

∑
i∈Φ

��0i��
which often leads to a sparse solution with only very few nonzero components of
0. We’ll get to this later when considering sparsity.

48 3 KERNELS

Which is probably one of the reasons
those of us who love contemporary
�ction love it as we do. We’re alone
with it. It arrives without references,
without credentials we can trust.

M. Cunningham, The New Yorker
Online, 10.7.2012

Kernels 3
Now we will switch to one of the most important concepts in Learning Theory,
namely kernel methods. There are several ways to introduce this concept: We could
start with an intuitive definition of the SVM and then define the tools like kernels
as it is done in the “learning” literature. On the other hand, kernels are much
more classical from Functional Analysis, cf. [64], and even used in the theory of
continuous games [24]. So I prefer to follow the historical track and first introduce
the theory that was available at the time when kernel learning was born87.

Again we consider the problem of learning labels HG obtained on a �nite training
set - ⊂ X , where X can be a fairly unstructured metric space88. For complete-
ness, let us recall the definition.

De�nition 3.1 (Metric). A metric on a set X is a mapping 3 : X ×X → R
such that

1. 3 (G, G′) ≥ 0 and 3 (G, G′) = 0 i� G = G′.

2. 3 (G, G′) = 3 (G′, G), G, G′ ∈ X .

3. 3 (G, G′) ≤ 3 (G, H) + 3 (H, G′),G, G′, H ∈ X .

A set X endowed with a metric 3 is called a metric space.

We want to learn functions 5 : X → R such that 5 (G) = HG, G ∈ -, and we want
to use Hilbert space structures, even if X does not allow for integration or inner
products. Fortunately, there is a tool for that.

3.1 Reproducing kernel Hilbert spaces

Our goal is to construct a Hilbert space H whose elements can be considered as
functions X → R. The trick is based on the following concept.

87So much for the disclaimer.
88This is not even a restriction since any set can be equipped with the discrete metric 3 (G, G ′) =

1 − XG,G′ .

3.1 Reproducing kernel Hilbert spaces 49

De�nition 3.2 (Kernels). Let X be a metric space.

1. A kernel is a function : : X ×X → R.

2. A kernel is called symmetric if : (G, G′) = : (G′, G).

3. A kernel is called positive semide�nite if for any �nite subset - ⊂ X the
matrix

 (-) =
[
: (G, G′) : G ∈ -

G′ ∈ -

]
is positive semidefinite.

4. A kernel is called a Mercer kernel if it is continuous89, symmetric and pos-
itive semidefinite.

On the “classical” Hilbert space X = !2(R), kernels are used to define bilinear
forms X ×X → R as

(5 , 6): :=
∫
R

∫
R
5 (G): (G, G′)6(G′) 3G′3G

which is the continuous counterpart of (G, H)� = G) �H. The generalization is to
define a linear operator �: : X → X as �:6(G) = 〈: (G, ·), 6〉 and (5 , 6): =
〈 5 , �:6〉. Like matrices, kernels can play an ambiguous role, namely as the linear
operator �: or as the bilinear form (·, ·): .

Remark 3.3 (Mercer kernels).

1. Any Mercer kernel is nonnegative since the positive semidefiniteness of (-)
with - = {G} implies : (G, G) ≥ 0.

2. Since any symmetric positive semidefinite matrix � ∈ R=×= satisfies

029 : ≤ 0 9 9 0:: , 9 , : = 1, . . . , =, (3.1)

we also have that : (G, G′)2 ≤ : (G, G) : (G′, G′), G, G′ ∈ X .

Exercise 3.1 Prove (3.1). ♦
Mercer kernels always define very interesting Hilbert spaces in a natural and unique
way.

Theorem 3.4. If : : X ×X → R is aMercer kernel then there exists a unique Hilbert
space H of functions on X such that

1. For all G ∈ X we have that : (G, ·) ∈ H .

2. The vector space span {: (G, ·) : G ∈ X } is dense in H .

3. One has
5 (G) = 〈 5 , : (G, ·)〉, 5 ∈ H , G ∈ X . (3.2)

89This is a metric property on X and trivially satisfied for the discrete metric.

50 3 KERNELS

Moreover,
| 5 (G) | ≤

√
: (G, G) ‖ 5 ‖. (3.3)

These special Hilbert spaces that are defined by the Mercer kernel are so important
that they have a name of their own.

De�nition 3.5 (Reproducing kernel Hilbert space). A Hilbert space H of func-
tions on a metric space X is called90 a reproducing kernel Hilbert space or
RKHS, for short, if there exists a kernel : : X ×X → R such that

: (G, ·) ∈ H and 5 (G) = 〈 5 , : (G, ·)〉, G ∈ -.

Remark 3.6. In summary, Theorem 3.4 says that any Mercer kernel defines a
reproducing kernel Hilbert space.

Proof of Theorem 3.4: We construct H by building the inner product91 for the
Hilbert space. To that end, we start on the linear space � := span {: (G, ·) : G ∈ X }.
For any function ℎ ∈ � there exists a finite subset92 - ⊂ X such that

ℎ =
∑
G∈-

ℎG : (G, ·).

We now de�ne an inner product 〈·, ·〉 on � as

〈ℎ, ℎ′〉 :=
∑
G∈-

∑
G ′∈- ′

ℎGℎ
′
G ′: (G, G′) ℎ, ℎ′ ∈ �. (3.4)

This is obviously symmetric in ℎ and ℎ′ and bilinear. Definiteness is a bit trickier:
suppose that 〈ℎ, ℎ〉 = 0 and let G ∈ X then the positive semidefiniteness93 of
 (- ∪ {G}) tells us that for all 0 ≠ C ∈ R

0 ≤
[
ℎ)- , C

]
 (- ∪ {G})

[
ℎ-
C

]
=

[
ℎ)- , C

] [
 (-) : (-, G)
: (-, G)) : (G, G)

] [
ℎ-
C

]
= ℎ)- (-)ℎ- + 2Cℎ)- : (-, G) + C2: (G, G)
=

∑
H,H′∈-

ℎHℎH′: (H, H′)︸ ︷︷ ︸
=〈ℎ,ℎ〉=0

+2C
∑
G ′∈-

ℎG ′: (G′, G)︸ ︷︷ ︸
=ℎ(G)

+C2: (G, G),

hence

ℎ(G) + C : (G, G)
{
≥ 0, C > 0,
≤ 0, C < 0,

which implies ℎ(G) = 0 by letting C → 0. Hence 〈ℎ, ℎ〉 = 0 implies that ℎ(G) = 0,
G ∈ X , and therefore ℎ is the zero function on X .

90There are slightly varying definitions, this one is taken from [64].
91No surprising idea as this is what makes the Hilbert space. No inner product, no Hilbert space!
92We are talking about “real” bases here, not Schauder bases, so we only consider �nite linear

combinations of the possibly infinitely many elements of X .
93Even if already G ∈ - the semidefiniteness is not a�ected as just one row and one column are

repeated in the matrix.

3.1 Reproducing kernel Hilbert spaces 51

The reproducing property is immediate from (3.4): just consider

〈ℎ, : (G, ·)〉 =
∑
G ′∈-

ℎG ′: (G′, G) = ℎ(G).

Having defined the appropriate inner product, we have a norm, hence a metric,
and can form the metric completion H of � by adding the limits of all Cauchy
sequences and considering equivalence classes with respect to limits94, so that H
is automatically a complete inner product space, hence a Hilbert space.

To prove uniqueness, we assume that H ′ is another Hilbert space with 〈·, ·〉′
that also has all the above properties. Then clearly � ⊂ H ′ and for G, G′ ∈ X we
have that

〈: (G, ·), : (G′, ·)〉′ = : (G, G′) = 〈: (G, ·), : (G′, ·)〉
so that

〈ℎ, ℎ′〉′ =
∑
G∈-

∑
G ′∈- ′

ℎGℎ
′
G ′〈: (G, ·), : (G′, ·)〉

′
=

∑
G∈-

∑
G ′∈- ′

ℎGℎ
′
G ′〈: (G, ·), : (G′, ·)〉

= 〈ℎ, ℎ′〉

and therefore H and H ′ are both completions of � and thus must be the same.
Finally, (3.3) is verified by means of the Cauchy–Schwarz inequality

| 5 (G) | = |〈 5 , : (G, ·)〉 | ≤ ‖ 5 ‖ ‖: (G, ·)‖

and the observation that

‖: (G, ·)‖2 = 〈: (G, ·), : (G, ·)〉 = : (G, G)

completes the proof. �

Equation (3.3) is even more important than one might think as it actually is a
characterization of the RKHS as the following famous theorem shows.

Theorem 3.7 (Aronzajn/Bergmann). A metric space X has a reproducing kernel if
and only if for each G ∈ X there exists a constant �G such that

| 5 (G) | ≤ �G ‖ 5 ‖. (3.5)

Proof: We have just shown that the existence of a reproducing kernel implies
(3.5) and that �G can be chosen as

√
: (G, G). For the converse, we apply the Riesz

representation theorem95 to the functional XG : 5 ↦→ 5 (G) which ensures the
existence of a uniquely defined element ℎG ∈ H such that

5 (G) = 〈 5 , ℎG〉

and the function : (G, ·) := ℎG is the desired reproducing kernel and even unique. �

De�nition 3.8. The reproducing kernel Hilbert space with respect to a kernel
: : X ×X → R will be denoted by H: and, if necessary, we will use 〈·, ·〉: and
‖ · ‖: for the resulting inner product and the norm.

94This process should be known from basic calculus, it is exactly the process that generates R
from Q, cf. [51].

95See [28, 64] or any other good book on Functional Analysis.

52 3 KERNELS

3.2 Examples of Mercer kernels

The main result from Theorem 3.4 can be summarized as “whenever there is a
Mercer kernel, there is a reproducing kernel Hilbert space”, but of course we have
to make sure that we are not talking about the empty set. Fortunately, there is even
a large variety of candidates for Mercer kernels in R3 or compact subsets thereof.

The simplest mercer kernels are the so called dot product kernels. Let, for
' > 0, denote

�' :=
{
G ∈ R3 : ‖G‖ ≤ '

}
the ball of radius ' in R3 and set X = �' (R3), so that now X is a compact
metric space.

De�nition 3.9 (Dot product kernel). For a sequence 0 : N0 → R with the proper-
ties

0= ≥ 0,
∞∑
==0

0= '
2= < ∞, (3.6)

the dot product kernel :0 : X ×X → R is defined as96

:0 (G, G′) =
∞∑
==0

0= (G · G′)=, G, G′ ∈ X . (3.7)

The task of property (3.6) is to ensure that the kernel in (3.7) is well defined as the
series converges absolutely97:

∞∑
==0

|0= (G · G′)= | ≤
∞∑
==0

0= (‖G‖ ‖G′‖)=︸ ︷︷ ︸
≤'2=

< ∞, G, G′ ∈ X ,

which works because we picked X = �' (R3). Note, however, that we can choose
' = ∞ if 0= decays fast enough, for example 0= ≤ d= for some 0 < d < 1, and
especially for sequences with only finitely many nonzero entries.

Proposition 3.10. Any dot product kernel is a Mercer kernel.

Proof: By the multinomial theorem we have

(G · G′)= =
(
3∑
:=1

G:G
′
:

)=
=

∑
|U |==

(
=

U

)
GU G′U,

96The inner product G) G ′ =
∑
G 9G
′
9
on R3 is often written as G ·G ′ and then called the dot product.

97Again Cauchy–Schwarz.

3.2 Examples of Mercer kernels 53

and therefore, for any - ⊂ X and any 2 ∈ R- ,

2) (-)2 =
∑
G,G′∈-

2G2G ′: (G, G′) =
∑
G,G ′∈-

2G2G ′

∞∑
==0

0= (G · G′)=

=
∑
G,G ′∈-

2G2G ′

∞∑
==0

0=

∑
|U |==

(
=

U

)
GU G′U =

∞∑
==0

0=

∑
|U |==

(
=

U

) ∑
G,G ′∈-

2G2G ′G
U G′U

=

∞∑
==0

0=

∑
|U |==

(
=

U

) (∑
G∈-

2GG
U

)2
︸ ︷︷ ︸

≥0

≥ 0,

which shows that the kernel is positive semidefinite. The other properties are easily
verified. �

Exercise 3.2 Prove the multinomial theorem(
3∑
9=1

G 9

)=
=

∑
|U |==

(
=

U

)
GU, GU := GU11 · · · G

U3
3
,

(
=

U

)
=

=!

U1! · · · U3!
.

♦
If the sequence 0 from Definition 3.9 is finite, i.e., 0= = 0 for = su�ciently large,
then we can choose ' arbitrarily and therefore the kernel works globally.

Corollary 3.11. Any �nite dot product kernel

:0 (G, G′) = 00 + 01 (G · G′) + · · · + 0= (G · G′)=

is a Mercer kernel for any X ⊆ R3 .

The simplest dot product kernel even works on arbitrary Hilbert spaces, namely
:00,01 (G, G′) = 00 + 01〈G, G′〉. Here we have∑

G,G ′∈-
2G2G ′: (G, G′) =

∑
G,G′∈-

2G2G ′ (00 + 01〈G, G′〉)

= 00

∑
G,G′∈-

2G2G ′ + 01
∑
G,G′∈-

2G2G ′〈G, G′〉 = 00

(∑
G∈-

2G

)2
+ 01

∑
G∈-

2G G

2 ≥ 0.

This allows for a very peculiar kernel trick: For an arbitrary metric space X let
k : X →H be a continuous mapping to an intermediate Hilbert space H on which
the linear kernel :00,01 is well–defined. Then

:00,01 (G, G′) := 00 + 01 〈k(G), k(G′)〉, 00, 01 ≥ 0,

is a family of nontrivial Mercer kernels on X since we do not need any multinomial
theorem here. As a consequence, we can record that we are definitely not talking
about an empty set.

54 3 KERNELS

Corollary 3.12. For any metric space X there exists a reproducing kernel Hilbert space.

There is another famous dot product kernel, namely the one obtained if we choose
0= =

1
=! , i.e.

: (G, G′) =
∞∑
==0

1

=!
(G · G′)= = 4G·G ′, G, G′ ∈ R3 ,

giving the exponential ridge function98 and proving that the matrices

� (-) :=
[
4G·G

′ G ∈ -
G′ ∈ -

]
, - ⊂ R3 , #- < ∞,

are positive semidefinite. Since this implies that det � (-) ≥ 0 and since the prop-
erty carries over to any subset -′ ⊆ - of -, it also follows that

det � (-′) ≥ 0, -′ ⊆ -, (3.8)

which means that any such matrix � (-) is totally nonnegative, quite a special
property among matrices, see [25, 49]. Another proof of this fact can be found in
[38].

This approach can easily be extended to arbitrary analytic functions 5 : R→ R
with nonnegative Taylor coe�cients and the resulting : (G, G′) = 5 (G · G′). We will
encounter functions of this form later.
The second class of kernels will be shift invariant kernels or stationary kernels.
They will be defined on all of R3 but need other properties of the function.

De�nition 3.13. A stationary kernel is a kernel defined as

: (G, G′) := :6 (G, G′) := 6(G − G′), G, G′ ∈ R3 , (3.9)

where 6 ∈ � (R3) is a continuous even function, i.e., 6(−G) = 6(G), G ∈ R3 .

To understand stationary kernels, we need another definition.

De�nition 3.14 (Fourier transform). The Fourier transform of a function 5 ∈
!1(R3), i.e., a function such that∫

R3
| 5 (G) |3G < ∞,

is defined as

5̂ (b) := 5 ∧(b) :=
∫
R3
5 (G)4−8b ·G 3G, b ∈ R3 , (3.10)

and the inverse Fourier transform as

5 ∨(G) := 1

(2c)3

∫
R3
5 (b)48b ·G 3b, G ∈ R3 . (3.11)

98Once again: most of the objects that we are considering have been discovered or developed in
various fields of mathematics.

3.2 Examples of Mercer kernels 55

Remark 3.15 (Fourier transform). We will not consider details of the Fourier trans-
form99 here, but some remarks are nevertheless necessary.

1. The definitions (3.10) and (3.11) of the Fourier transform and its inverse are
one choice of many. In particular, the constant (2c)−3 can quite arbitrarily
distributed over the two transforms and is handled di�erently in the literature.

2. The name “inverse Fourier transform” is justified since (5̂)∨ = 5 for any
function 5 such that 5 , 5̂ ∈ !1(R3).

3. The Fourier transform and its inverse can be extended to !2(R3) and the
extension can be applied in a rather naive way.

Proposition 3.16 (Stationary kernels). If 6 ∈ !2(R3) ∩� (R3) is an even function100
with nonnegative Fourier transform, i.e. 6̂ ≥ 0, then the stationary kernel :6 is a Mercer
kernel.

Proof: Since 6 is real and even, it follows that

6̂(b) =
∫
R3
6(G) 4−8b ·G 3G =

∫
R3
6(G) 48b ·G 3G =

∫
R3
6(−G) 4−8b ·G 3G = 6̂(b)

hence 6̂ is real and therefore 6̂ ≥ 0 makes sense101. Now consider, again for a finite
- ⊂ R3 and 2 ∈ R- ,∑
G,G ′∈-

2G2G ′: (G, G′) =
∑
G,G′∈-

2G2G ′6(G − G′)

=
∑
G,G ′∈-

2G2G ′ (6̂)∨(G − G′) =
∑
G,G′∈-

2G2G ′
1

(2c)3

∫
R3
6̂(b) 48b ·(G−G ′)︸ ︷︷ ︸

=48 b ·G 4−8 b ·G′

3b

=
1

(2c)3

∫
R3
6̂(b)

(∑
G∈-

2G4
8b ·G

) (∑
G ′∈-

2G ′4
−8b ·G ′

)
︸ ︷︷ ︸

=
∑
G ...

3b =
1

(2c)3

∫
R3
6̂(b)︸︷︷︸
≥0

�����∑
G∈-

2G4
8b ·G

�����2︸ ︷︷ ︸
≥0

3b

≥ 0.

The other properties of the Mercer kernel are easy to check. �

The appealing point about this approach is that it immediately provides a really
large class of kernel functions, among them some really well–known functions.

The concept needed here is that of a convolution which is defined, for 5 , 6 ∈
!2(R3) as

(5 ∗ 6) (G) =
∫
R3
5 (G − C)6(C) 3C. (3.12)

99See, for example, [26, 33, 48] for some information.
100We assume continuity to guarantee that the point evaluation at G − G ′ are well–defined.
101Of course, this is a standard argument and fact from Fourier Analysis.

56 3 KERNELS

De�nition 3.17 (B–Splines). The (centered) cardinal tensor product B–Spline
#< of degree < is defined as the < + 1–fold of the characteristic function

j := j[− 1
2 ,

1
2]3
(G) =


1, −1

2 ≤ G 9 ≤
1
2 , 9 = 1, . . . , 3,

0, otherwise,
(3.13)

of the centered unit cube102 as

#< (G) = (j ∗ #<−1) (G) = (j ∗ · · · ∗ j)︸ ︷︷ ︸
<+1

(G). (3.14)

Based on the two observations

(5 ∗ 6)∧(b) = 5̂ (b) 6̂(b) and ĵ(b) =
3∏
9=1

sin b 9/2
b 9/2

, b ∈ R3 , (3.15)

we can explicitly give a family of stationary Mercer kernels.

Exercise 3.3 Prove (3.15). ♦

Proposition 3.18. The kernels : (G, G′) := #< (G − G′) are stationary Mercer kernels for
any odd < ∈ 2N0 + 1.

Proof: By (3.15),

#̂< (b) =
3∏
9=1

(
sin b 9/2
b 9/2

)<+1
which is ≥ 0 if < is odd. Since #0 = j is an even function and since for even
functions 5 , 6 one has

(5 ∗ 6) (−G) =
∫
R3
5 (−G − C)︸ ︷︷ ︸
= 5 (G+C)

6(C)︸︷︷︸
=6(−C)

3C =

∫
R3
5 (G − C)6(C) 3C = (5 ∗ 6) (G), G ∈ R3 ,

the splines are even functions even for any < ∈ N0. �

The last and almost most popular example of Mercer kernels is a restriction of the
stationary and chooses 6 = 60

(
‖ · ‖2

)
. Since now 6(G) only depends on ‖G‖, it is

constant on spheres which is the reason why such a functions is called a radial
function.

De�nition 3.19 (Radial kernel). A radial kernel is a kernel of the form

: (G, G′) = 60
(
‖G − G′‖22

)
, G, G′ ∈ R3 , (3.16)

with 60 : R+ → R.

The proof of the fact that these are Mercer kernels is based on yet another classical
and very interesting concept.

102“Unit” because it has volume 1.

3.2 Examples of Mercer kernels 57

De�nition 3.20 (Complete monotonicity). A function 5 : R+ → R is called com-
pletely monotonic103 if 5 ∈ � (R+) ∩ �∞ (R+ \ {0}) and

(−1) 9 5 (9) (G) ≥ 0, 9 ∈ N0, G ∈ R+. (3.17)

Hence, a completely monotonic function is nonnegative (5 (G) ≥ 0), monotonically
decreasing (5 ′(G) ≤ 0), convex (5 ′′(G) ≥ 0), and so on.

The location of this definition suggests that completely monotonic functions
are the property class of kernels and indeed there is the following result due to
Micchelli [37] in the context of radial basis function104 interpolation.

Proposition 3.21. If 60 : R+ → R is completely monotonic, then the radial kernel :
from (3.16) is a Mercer kernel for X = R3 .

The proof is based on yet another classical theorem that we only state here without
proof.

Theorem 3.22 (Bochner’s theorem). A function 5 : R+ → R is completely monotonic
if and only if there exist a �nite nonnegative Borel measure105 ` such that106

5 (G) =
∫ ∞

0
4−GC 3`(C), G ∈ R+. (3.18)

Proof of Proposition 3.21: The proof is an application of Theorem 3.22. By
(3.18), the kernel takes the form : (G, G′) = 6(G − G′) with

6(G) =
∫ ∞

0
4−C‖G‖

2
3`(C), G ∈ R3 . (3.19)

Since (
4−C‖·‖

2
2

)∧
(b) =

(c
C

)3/2
4−‖b‖

2
2/(4C) , C > 0, b ∈ R3 , (3.20)

it follows like in the proof of Proposition 3.16 that∑
G,G ′∈-

2G2G ′: (G, G′) =
∑
G,G′∈-

2G2G ′

∫ ∞

0
4−C‖G−G

′‖2 3`(C)

=

∫ ∞

0

∑
G,G ′∈-

2G2G ′
(c
C

)3/2 1

(2c)3

∫
R3
4−‖b‖

2
2/(4C)48b (G−G

′)3b 3`(C)

=
1

(2c)3

∫ ∞

0

(c
C

)3/2 ∫
R3
4−‖b‖

2
2/(4C)

�����∑
G∈-

2G4
8b ·G

�����2 3b 3`(C) ≥ 0

which again verifies the positive semidefiniteness of the kernel. �

Exercise 3.4 Prove (3.20). What happens for C = 0? ♦
103A completely monotone. i.e. boring, function is for example 5 = 0.
104Usually abbreviated as RBF
105Essentially this is a nonnegative measure, like probability densities without proper normal-

ization.
106This, in turn, is essentially the Laplace transform of the measure. The Laplace transform is

a concept of independent interest, especially in Signal Processing.

58 3 KERNELS

Example 3.23 (Radial kernels). Famous examples of a radial Mercer kernel on
R3 are the following functions:

1. Gaussian : (G, G′) = 4−‖G−G ′‖22/22 , 2 ∈ R.

2. inverse multiquadrics : (G, G′) =
(
22 + ‖G − G′‖22

)−U, 2 ∈ R, U > 0.

3.3 Mercer’s theorem

Finally, a very simple construction of Mercer kernels that we should almost have
given in the beginning. Let Φ be a set of continuous functions from X → R and
let 0 ∈ RΦ be a nonnegative sequence, i.e., 0i ≥ 0, i ∈ Φ.

Proposition 3.24 (Yet another Mercer kernel). If the function

: (G, G′) =
∑
i∈Φ

0ii(G)i(G′), G, G′ ∈ X , (3.21)

is well–de�ned107, it is a Mercer kernel.

Proof: For finite - ⊂ X and 2 ∈ R- we get∑
G,G′∈-

2G2G ′: (G, G′) =
∑
G,G ′∈-

2G2G ′
∑
i∈Φ

0ii(G)i(G′)

=
∑
i∈Φ

0i

∑
G,G′∈-

2Gi(G) 2G ′i(G′) =
∑
i∈Φ

0i︸︷︷︸
≥0

(∑
G∈-

2Gi(G)
)2

︸ ︷︷ ︸
≥0

≥ 0,

which is almost too simple to be true. �

Remark 3.25. Proposition 3.24 defines Mercer kernels, hence reproducing kernel
Hilbert spaces for anymetric space X . All we need is a continuous, real valued108

function on X . Equation (3.21) defines the kernel by separation of variables or
as a tensor product function on X ×X . We will see later that this seemingly
simple approach is surprisingly general.

Nevertheless, the above concrete examples of admissible Mercer kernels are valu-
able because they include classical functions with well understood properties.

The kernels of the type (3.21) are the reason for the name “Mercer kernels”. If we
define a Hilbert space !2(X , `) with the inner product

〈 5 , 6〉X :=

∫
X
5 (G)6(G) 3`(G)

107That means, if the above series converges in the case of infinite Φ which may make it necessary
to restrict the size of G, G ′ like in the case of the dot product kernel.
108Complex valued if one wants a complex RKHS.

3.4 Learning with kernels 59

based on a positive Borel measure109 `, the kernel : defines the integral trans-
form

 5 :=

∫
X
: (G, ·) 5 (G) 3`(G).

Since the symmetry of : implies

〈 5 , 6〉X =

∫
X

∫
X
5 (G): (G, G′)6(G) 3`(G) 3`(G′) = 〈 5 , 6〉X ,

the operator is self adjoint. If moreover : is continuous and X is compact and
bounded110, then

| 5 (G) − 5 (G′) | =
����∫

X
(: (G, C) − : (G′, C)) 5 (C) 3`(C)

����
≤

∫
X
|: (G, C) − : (G′, C) | | 5 (C) | 3`(C) ≤ ‖: (G, ¤) − : (G′, ·)‖!2 (X ,`) ‖ 5 ‖!2 (X ,`)

≤
√
`(X)max

C∈X
|: (G, C) − : (G′, C) | ‖ 5 ‖!2 (X ,`) ,

so that 5 is a continuous function. By the spectral theorem, cf.[9] there exists
an orthonormal basis Ψ of !2(X , `) such that

 k = _k k, k ∈ Ψ, and 〈k, k′〉X = Xk,k′ . (3.22)

These eigenfunctions can then be used to expand the kernel itself, showing that
in this sense under certain circumstances every Mercer kernel is of the simple form
(3.21). This is Mercer’s theorem.

Theorem 3.26 (Mercer’s theorem). If ` is a nondegenerate Borel measure on X , : :
X ×X → R a Mercer kernel and Ψ ⊂ !2(X , `) a basis of nonnegative eigenfunctions
of , then

: (G, G′) =
∑
k∈Ψ

_k k(G)k(G′), (3.23)

and the convergence of the series is absolute and uniform.

A fully detailed proof of Mercers theorem would need too many requirements from
Functional Analysis for which reason we only refer to [9].

3.4 Learning with kernels

Now that we have the RKHS mechanism available, the learning problems with
training data - ⊂ X and labels H ∈ R- can be written by means of a model
space Φ as the penalized or smoothened quadratic functional

min
0

∑
G∈-
(HG − 〈: (G, ·), q(0)〉)2 + _0)0, _ ≥ 0. (3.24)

109We need positivity of the measure for the definiteness of the inner product.
110Metrically and in measure, i.e. 3 (X) := sup{G − G ′ : G, G ′ ∈ X } < ∞ and `(X) < ∞

60 3 KERNELS

The functional ∑
G∈-
(HG − 〈: (G, ·), q(0)〉)2 (3.25)

is often called the empirical error, cf. [9], or square loss. The target function can
be rewritten in the usual way as∑

G∈-
(HG − 〈: (G, ·), q(0)〉)2 + _0)0

=
∑
G∈-

H2G − 2HG [〈: (G, ·), i〉 : i ∈ Φ]︸ ︷︷ ︸
=:Φ(G)

0 + (Φ(G)0)) (Φ(G)0) + _0)0

= H) H − 2H)Φ(-)0 + 0)
(
Φ(G))Φ(-) + _�

)
0

which once more leads to(
Φ(G))Φ(-) + _�

)
0 = Φ(-)) H, (3.26)

as before. So what’s new with this approach? It still appears unnecessary111 to
define all these abstract spaces, but we haven’t discussed the model space yet,
where we could also take kernels as generating functions for the model space, i.e.,

i = ib = : (b, ·), b ∈ Ξ ⊆ X ,

where Ξ can depend on the test set - or not. We then have that the Gramian

�Φ =

[
〈: (b, ·), : (b′, ·)〉 : b ∈ Ξ

b′ ∈ Ξ

]
=

[
: (b, b′) : b ∈ Ξ

b′ ∈ Ξ

]
= (Ξ) (3.27)

is the kernel collocation matrix with respect to Ξ while

Φ(-) =
[
: (G, b) : G ∈ -

b ∈ Ξ

]
=: (-,Ξ)

is a “mixed collocation” between - and Ξ, and (3.26) becomes(
 (-,Ξ)) (-,Ξ) + _�

)
0 = (-,Ξ)) H. (3.28)

The prediction function then takes the form112

q(0) =
∑
b∈Ξ

0b: (b, ·) = (·,Ξ))
(
 (-,Ξ)) (-,Ξ) + _�

)−1
 (-,Ξ)) H (3.29)

and only depends on the behavior of : on (- ∪ Ξ) × (- ∪ Ξ).

Remark 3.27. The most frequently used case, motivated by its use in the theory
of radial basis functions is to choose - = Ξ, which makes all the matrices square
matrices and simplifies (3.29) to

qH = (·, -). ((-) + _�)−1 (-)) H (3.30)
111Even if it may be mathematically pleasant.
112This is not the way to compute this function, of course, never compute inverses of matrices!

3.5 Make your own kernel 61

In the special case Ξ = -, the orthogonal projection % 5 of 5 ∈ H to spanΦ =

span {: (G, ·) : G ∈ -}, defined by

0 = 〈 5 − % 5 ,Φ〉 ⇔ 0 = 〈 5 − % 5 , : (G, ·)〉, G ∈ -,

satisfies 5 (G) = % 5 (G), G ∈ -, and the empirical error (3.25) takes the same value
for 5 and % 5 . This already proves the following observation from [9].

Proposition 3.28. If H ′ ⊂ H satis�es %(H ′) ⊆ H ′ and the empirical error can be
minimized on H ′, then the minimizer can be chosen from %(H ′).

We could also do a “direct” approximation in the RKHS space by modeling a label
function

H =
∑
b∈Ξ

2b: (b, ·), H : X → R,

and rewrite the side conditions

HG = H(G) =
∑
b∈Ξ

2b: (b, G), G ∈ -,

as H = (-,Ξ)2. As long as the kernel is a Mercer kernel and thus the RKHS is
well–defined, we then minimize

‖H − q(0)‖2 + _0)0 =

∑b∈Ξ(2b − 0b) : (b, ·)

2

+ _0)0

=
∑
b,b ′
(0b − 2b) (0b ′ − 2b ′) 〈: (b, ·), : (b′, ·)〉︸ ︷︷ ︸

=: (b,b ′)

= (0 − 2)) (Ξ) (0 − 2) + _0)0

subject to the equality constraint (-,Ξ)2 = H. Since the constraint is indepen-
dent of 0, we have to solve

0 = 2 (Ξ) (0 − 2) + 2_0 = 2((Ξ) + _�)0 − 2 (Ξ)2

subject to H = (-,Ξ)2 which leads to the augmented system[
 (Ξ) + _� − (Ξ)

0 (-,Ξ)

] [
0

2

]
=

[
0
H

]
(3.31)

which has a unique solution provided that (-,Ξ) is of maximal rank, otherwise
it is to be solved in the least square sense again113

3.5 Make your own kernel

Once a Mercer kernel has been determined, there is a lot of methods, some listed in
[6], to build new kernels. The trick is usually to use properties of positive semidef-
inite matrices. Let us list and prove at least one example.

113Matlab does this almost automatically.

62 3 KERNELS

Proposition 3.29. If :, :′ are Mercer kernels on X then

U: + V:′, U, V ≥ 0, and : :′ (3.32)

are Mercer kernels as well.

Proof: The first result is quite obvious:∑
G,G′∈-

2G2G ′ (U : (G, G′) + V :′(G, G′))

= U
∑
G,G′∈-

2G2G ′ : (G, G′)︸ ︷︷ ︸
≥0

+V
∑
G,G ′∈-

2G2G ′ :
′(G, G′)︸ ︷︷ ︸

≥0

≥ 0,

while the second one follows from the property that any symmetric matrix has
an orthonormal basis of eigenvectors, i.e.,

� =

=∑
9=1

E 9E
)
9 , � = �) ∈ R=×=, E 9 ∈ R=, E)9 E: = X 9 :_ 9 ≥ 0.

Then the Hadamard product

� � �′ =
[
0 9 :0

′
9 : : 9 , : = 1, . . . , =

]
of two symmetric matrices takes, for A, B ∈ {1, . . . , =}, the form

(� � �′)AB =

=∑
9=1

(
E 9E

)
9

)
︸ ︷︷ ︸
=E 9A E 9B

=∑
:=1

(
F:F

)
:

)
︸ ︷︷ ︸
=F:AF:B

=

=∑
9 ,:=1

E 9AF:AE 9 BF:B

=

=∑
9 ,:=1

(E 9 � F:)A (E 9 � F:)B,

hence

� � �′ =
=∑

9 ,:=1

(E 9 � F:) (E 9 � F:))

is a sum of positive definite rank 1 matrices and therefore positive semidefinite.
Since ::′(-) = (-) � ′(-), this completes the proof of the second claim. �

Exercise 3.5 Prove that �� �′ is positive definite if � and �′ are positive definite.
♦
Some more simple properties which are proved in a straightforward way are listed
in the following proposition.

Proposition 3.30 (Kernel building). If :, :′ are Mercer kernels, then the following
kernels are Mercer kernels as well:

3.6 Nodal functions and packing 63

1. @(: (G, G′)) where @(C) = @0 + · · · + @=C=, @ 9 ≥ 0.

2. 4: (G,G
′) .

3. q(G)) �q(G′) with q : X → R3 and � ∈ R3×3 positive semide�nite.

4. any decomposition of the form

: (G, G′) =
=∑
9=1

: 9 (G 9 , G′9), G = (G1, . . . , G=)

and : 9 a Mercer kernel on the “part” of the variable G.

Exercise 3.6 Prove Proposition 3.30. ♦

3.6 Nodal functions and packing

This section lists some results on kernels that can be used to derive quantitative
results of the following sort:

1. how many training values does one need to reliably learn a certain function?

2. can learning be guaranteed if the function is sampled on a denser and denser
set of points to provide training data?

3. are there quantitative statements about the rate of decay of the approximation
error?

Many of these questions are considered in [9], but require a somewhat sophisticated
interplay between Statistics and Approximation Theory that exceeds the scope of
this lecture and would be a lecture of its own. However, we will aim for Theo-
rem 3.39 in this subsection that can and will be interpreted as a first estimate how
well kernels can distinguish between di�erent labelings.

In many cases, kernels should be able to interpolate on the training set - ⊂ X .
This leads to the following concept in the the context of an RKHS H .

De�nition 3.31 (Nodal functions). A vector Ψ ∈ H - , Ψ = (kG : G ∈ -) is called
a set of nodal functions for a finite set - if

kG ∈ span {: (G′, ·) : G′ ∈ -} (3.33)

and
XG,G ′ = kG (G′) = 〈kG , : (G′, ·)〉. (3.34)

In other words, nodal functions are the ones that vanish at all points except one
where they are one; in polynomial interpolation, these functions are often called
Lagrange functions since the interpolant to 5 : X → R can be simply written as

!Ψ 5 =
∑
G∈-

5 (G) kG ⇒ 5 (-) = !Ψ 5 (-).

The existence of nodal functions can be characterized as follows.

64 3 KERNELS

Theorem 3.32 (Existence of nodal functions). For a Mercer kernel : : X ×X → R
and - ⊆ X , #- < ∞, the following statements are equivalent:

1. There exists a vector Ψ of nodal functions.

2. The functions : (G, ·), G ∈ - , are linearly independent.

3. The collocation matrix (-) is invertible.

4. There exists � ∈ H such that 5G (G′) = XG,G ′, G, G′ ∈ - .

In that case the nodal functions are given as

kG =

(
 (-)−1 (-, ·)

)
G
=

∑
G ′∈-

(
 (-)−1

)
G,G ′

: (G′, ·) (3.35)

Proof: “1)⇒ 2)”: The nodal functions are linearly independent since

0 = k :=
∑
G∈-

2G kG ⇒ 0 = k(G′) =
∑
G∈-

2G kG (G′)︸ ︷︷ ︸
=XG,G′

= 2G ′, G′ ∈ -,

and Ψ ⊂ span : (-, ·) gives

#- = dim spanΨ ≤ dim span : (-, ·) ≤ #-

yields dim span : (-, ·) = #-, hence the functions are linearly independent.
“2) ⇒ 3)”: If (-) were not invertible, there exists 2 ∈ R- \ {0} such that

 (-)2 = 0 and therefore

∑
G∈-

2G: (G, ·)

2 =

〈∑
G∈-

2G: (G, ·),
∑
G∈-

2G: (G, ·)
〉
=

∑
G,G ′∈-

2G2G ′〈: (G, ·), : (G′, ·)〉

=
∑
G,G′∈-

2G2G ′: (G, G′) = 2) (-)2︸ ︷︷ ︸
=0

= 0,

hence
∑
G 2G: (G, ·) = 0 which contradicts the linear independence of : (-, ·).

“3)⇒ 4)”: Just define

5G =
∑
H∈-

(
 (-)−1

)
G,H
: (H, ·),

as in (3.35), then

5G (G′) =
∑
H∈-

(
 (-)−1

)
G,H
: (H, G′) =

(
 (-)−1 (-)

)
G,G ′

= XG,G ′ .

“4) ⇒ 1)”: Let % denote the orthogonal projection from H to span : (-, ·),
then the same argument as the one for Proposition 3.28 tells us that % 5 (G) = 5 (G),
G ∈ -, hence kG = % 5G has the desired properties. �

We want to use nodal functions to get an idea how large the training set must be
if we want to be able to distinguish features. This will be related to the operator
norm ‖ (-)−1‖2. The respective formal object is as follows.

3.6 Nodal functions and packing 65

De�nition 3.33. Let (be a compact metric space and [> 0. The packing
number ?((, [) is defined as

?((, [) = max #{- ⊂ (: 3 (G, G′) > [, G, G′ ∈ -}. (3.36)

The covering number114 2((, [) is defined as

min#

{
G ⊂ (: (⊆

⋃
G∈-

�[(G)
}
, (3.37)

where
�[(G) := {G′ ∈ (: 3 (G, G′) ≤ [}

denotes the closed ball of radius [around G.

Remark 3.34. Intuitively, packing and covering numbers for [0, 1]3 grow like [−3

when [becomes smaller and smaller. Of course, the precise numbers are a more
di�cult thing.

Clearly, ?((, [) and 2((, [) are monotonically decreasing with respect to [. Another
interesting relationship is the following that shows that covering and packing are
essentially the same.

Lemma 3.35. ?((, 2[) ≤ 2((, [) ≤ ?((, [).
Proof: Let - ⊂ (be such that 3 (G, G′) > 2[for G, G′ ∈ - . Then �[(G) ∩�[(G′) = ∅,
hence 2((, [) ≥ #- ; this holds in particular for some - with ?((, [) = #- and
therefore ?((, 2[) ≤ 2((, [)

For the other inequality, let - ⊂ (be such that 3 (G, G′) > [and #- = ?((, [).
Then

(⊆
⋃
G∈-

�[(G) ⇒ 2((, [) ≤ ?((, [)

as otherwise there would exist G′ ∈ (such that 3 (G, G′) > [, G ∈ -, and that would
yield the contradiction ?((, [) ≥ #- + 1. �

The next theorem needs a slightly strange space which we are going to define first.

De�nition 3.36. For an RKHS H defined on a compact metric space X , we
define the metric space

�' (H)∞ := { 5 ∈ H : ‖ 5 ‖H ≤ '} , 3 (5 , 5 ′) = ‖ 5 − 5 ′‖∞ = max
G∈X
| 5 (G) − 5 ′(G) |

(3.38)
obtained by the '–ball in H , equipped with the ‖ · ‖∞–norm used for continuous
functions.

Remark 3.37. If the kernel : for the RKHS is a Mercer kernel and in particular
continuous, then (3.3) yields that

‖ 5 − 5 ′‖∞ = max
G∈X

√
: (G, G) ‖ 5 − 5 ′‖H

which is uniformly bounded as long as : is continuous and X is compact115.
114This is why we need compactness as then this number is finite.
115It would be su�cient to guarantee that : (G, G) is uniformly bounded, but that is not so easy for

“classical” kernels.

66 3 KERNELS

De�nition 3.38. The 2 operator norm of a matrix � ∈ R=×= is defined as

‖�‖2 := sup
G≠0

‖�G‖2
‖G‖2

= max
‖G‖2=1

‖�G‖2.

Theorem 3.39 (Packing with kernels). If : : X ×X → R is a Mercer kernel for
the compact metric space X and - ⊂ X is a �nite set such that (-) is invertible, then

? (�' (H)∞, [) ≥ 2#- − 1 whenever

 (-)−1

2
<

1

#-

(
'

[

)2
(3.39)

and [> 0.

The condition on [can be rephrased as

[≤ '
√

1

#-

 (-)−1

2

,

hence, the larger

 (-)−1

2
, i.e., the more di�cult it is to solve the optimization

problem, the smaller we must choose [to have the optimal separation of the func-
tions in the ball

�' (H) = { 5 ∈ H : ‖ 5 ‖H ≤ '} .

Proof: For ∅ ≠ . ⊂ - and W > [define

k. =
∑
H∈.

W kH,

where kG, G ∈ -, are the nodal functions with respect to - . The 2#- −1 functions
k. satisfy116

[< ‖k. − k. ′‖∞ := max
G∈X
|k. (G) − k. ′ (G) | (3.40)

since for any . ′ ≠ . there exists H ∈ . \ . ′ and therefore

‖k. − k. ′‖∞ ≥ | k. (H)︸︷︷︸
=W

−k. ′ (H)︸ ︷︷ ︸
=0

| = W > [.

116Again we use compactness of X to be able to apply the maximum.

3.6 Nodal functions and packing 67

To show that k. ∈ �' (H) for any . , we compute

‖k. ‖2H =

∑
H∈.

W kH

2
=

W∑
H∈.

∑
G∈-

(
 (-)−1

)
H,G
: (G, ·)

2
= W2

∑
H,H′∈.

∑
G,G ′∈-

(
 (-)−1

)
H,G

(
 (-)−1

)
H′,G ′
〈: (G, ·), : (G′, ·)〉︸ ︷︷ ︸

= (-)G,G′

= W2
∑
H,H′∈.

∑
G ′∈-

(
 (-)−1

)
H′,G ′

∑
G∈-

(
 (-)−1

)
H,G
 (-)G,G ′︸ ︷︷ ︸

=((-)−1 (-))H,G′=�H,G′=XH,G′

= W2
∑
H,H′∈.

(
 (-)−1

)
H,H′

= W2
∑
H∈.

(
 (-)−11.

)
H
≤ W2

∑
H∈.

����((-)−11.)
H

����
≤ W2

√
#.

(∑
H∈.

((
 (-)−11.

)
H

)2)1/2
= W2

√
#.

 (-)−11.

2
≤ W2

√
#. ‖1. ‖2︸︷︷︸

=
√
#.

 (-)−1

2
= W2#.

 (-)−1

2
,

where 1. ∈ R- is the vector with

(1.)G =
{
1, G ∈ .,
0, G ∉ . .

Since this has to hold for any W > [, it follows that k. ∈ �' (H) if

[2#.

 (-)−1

2
≤ '2 ⇔

 (-)−1

2
≤ 1

#.

'2

[2
.

Since #. < #- this is satisfied whenever the second condition in (3.39) is fulfilled.
�

Remark 3.40. Theorem 3.39 is not only a statement on packing numbers. The
proof shows that if the ‖ (-)−1‖2 is su�ciently small, then the characteristic func-
tions for di�erent labelings, here in {0, 1}- are separated everywhere on [0, 1]3 by
the prescribed quantity [.

For any stationary kernel we can now bound the norm of the inverse explicitly.

Theorem 3.41 (Stationary kernels). If : (G, G′) = 6(G − G′) is a stationary Mercer
kernel on X = [0, 1]3 and if 6̂(b) > 0, b ∈ R3 , then

 (-=)−1

2 ≤ =−3 (

inf
b∈[−=c,=c]3

6̂(b)
)−1

(3.41)

68 3 KERNELS

where

-= :=

(
{0, 1, . . . , = − 1}

=

)3
. (3.42)

Remark 3.42. The point set -= in (3.42) is the regular grid of width 1/= in the
unit cube. Any such point can be written as

G =
U

=
, U < =13 .

Proof: The inverse Fourier transform yields

6(G) = 1

(2c)3

∫
R3
6̂(b)48b ·G 3b

and therefore, for 2 ∈ R-= ,

2) (-=)2 =
∑

G,G ′∈-=
2G2G ′ 6(G − G′)︸ ︷︷ ︸

=: (G,G′)

=
∑

G,G ′∈-=
2G2G ′

1

(2c)3

∫
R3
6̂(b)48b ·(G−G ′) 3b

=
∑

U,U′≤=13
2U2U′

1

(2c)3

∫
R3
6̂(b)48b ·(U−U′)/= 3b

=
1

(2c)3

∫
R3
6̂(b)

����� ∑
U<=13

2U4
8(b ·U)/=

�����2 3b = =3

(2c)3

∫
R3
6̂(=b)

����� ∑
U<=13

2U4
8b ·U

�����2 3b
≥ =3

(2c)3

∫
[−c,c]3

6̂(=b)
����� ∑
U<=13

2U4
8b ·U

�����2 3b
≥ =3

(2c)3
inf

b∈[−=c,=c]3
6̂(b)

∫
[−c,c]3

����� ∑
U<=13

2U4
8b ·U

�����2 3b
=

=3

(2c)3
inf

b∈[−=c,=c]3
6̂(b)

∑
U,U′<=13

2U2U′

∫
[−c,c]3

48b ·(U−U
′) 3b︸ ︷︷ ︸

=(2c)3 XU,U′

= =3 inf
b∈[−=c,=c]3

6̂(b)
∑
U<=13

22U = =
3 inf
b∈[−=c,=c]3

6̂(b)
∑
G∈-=

22G

which bounds the smallest eigenvalue _− of (-) from below by

=3 inf
b∈[−=c,=c]3

6̂(b).

Therefore the largest eigenvalue and hence the 2–norm of (-)−1 is bounded from
above by

=−3
(

inf
b∈[−=c,=c]3

6̂(b)
)−1

,

which is (3.41). �

Combining Theorem 3.39 with Theorem 3.41 and taking into account that #-= =
=3, we get the following observation.

3.7 Kernel support vector machines 69

Corollary 3.43 (Packing with stationary kernels). If : : X ×X → R is a stationary
Mercer kernel for compact metric space X = [0, 1]3 then

? (�' (H)∞, [) ≥ 2=
3 − 1 whenever 0 < [<

(
inf

b∈[−=c,=c]3
6̂(b)

)1/2
. (3.43)

Remark 3.44. The problem with (3.43) is the fact that whenever the kernel is
smooth117, its Fourier transform decays118 rapidly and therefore large training sets
become troublesome.

3.7 Kernel support vector machines

We finally apply the kernel approach to define a more complex support vector
machine than the linear one in the introduction section where one considered
separating hyperplanes119 from (1.33) which was of the form 5 (G) = = · G + 2 and
actually is a dot product kernel itself. Now the nonlinear separation function
takes the form120

q(0) + 2 =
∑
b∈Ξ

0b : (b, ·) + 2 = 0) (Ξ, ·) + 2,

where we explicitly define the bias 2 ∈ R. So far, we leave it open whether we set
Ξ = - or not. The separation function defines a margin

"0,2 := {G ∈ X : q(0) (G) + 2 = 0}

and the positive and negative regions

"±0,2 := {G ∈ X : (±1) (q(0) (G) + 2) ≥ 0} .

The decision function will eventually be

5 (G) = sgn (q(0) (G) + 2) = sgn

(∑
b∈Ξ

0b : (b, G) + 2
)

(3.44)

and we have to recall the construction process for 0. This coe�cient vector now
replaces the normal = in (1.38) and we face the primal problem

min
0,2

1

2
‖0‖22 subject to HG (q(0) (G) + 2) ≥ 1, G ∈ -, (3.45)

117Like di�erentiable, possibly of higher order.
118Functions with compactly supported Fourier transform, so called bandlimited function that

appear in the Shannon sampling theorem, cf. [33], fail in this theorem whenever the sampling rate
gets beyond the Nyquist frequency.
119We slightly change the notation here and use the one developed for the dot product kernels.
120In contrast to the earlier theory, we replace 2 by −2. Anyway, the sign of the o�set does not

matter.

70 3 KERNELS

with the Lagrangian121

6(0, 2) =
0)0

2
−

∑
G∈-

UG (HG (q(0) (G) + 2) − 1)

=
0)0

2
−

∑
G∈-

UG

(
HG

(∑
b∈Ξ

0b: (b, G) + 2
)
− 1

)
and its partial derivatives

m6

m0b
= 0b −

∑
G∈-

UGHG: (b, G), b ∈ Ξ, (3.46)

−m6
m2

=
∑
G∈-

UGHG . (3.47)

Hence, the resulting KKT conditions are

 (Ξ, -) (U � H) − 0 = 0,

1) (U � H) = 0,

UG

(
0) (Ξ, G) + 2 − HG

)
= 0, G ∈ -,

U ≥ 0,

which we again solve by switching to the dual problem that is obtained by substi-
tuting 0 = (Ξ, -) (U � H) =: (Ξ, -)Û into 6(0, 2), giving

6(0, 2) =
Û) (Ξ, -)) (Ξ, -)Û

2
−

∑
G∈-

UG

(
HG

(
Û) (Ξ, -)) (Ξ, G) + 2

)
− 1

)
=

1

2
Û) (Ξ, -)) (Ξ, -)Û − Û) (Ξ, -)) (Ξ, -)Û − 2 1) Û︸︷︷︸

=0

+1)U

= 1)U − 1

2
U) . (Ξ, -)) (Ξ, -). U,

where
. = diag [HG : G ∈ -] .

We can summarize that observation in the following way.

Lemma 3.45. Instead of solving the primal problem (3.45), we can solve the dual
problem

max
U

1)U − 1

2
U) . (Ξ, -)) (Ξ, -). U subject to U ≥ 0, H)U = 0, (3.48)

and set

0b =
∑
G∈-

UGHG : (b, G), b ∈ Ξ, (3.49)

2 = HG −
∑
b∈Ξ

0b: (b, G), UG > 0. (3.50)

121We take the “intuitive” approach here, but of course we could also use Theorem 2.19. But keep
in mind that this is always only the necessary condition for a minimum.

3.7 Kernel support vector machines 71

The disadvantage of (3.48) is that the matrix (Ξ, -)) (Ξ, -) has to be computed
as the product of two matrices of size #- × #Ξ and #Ξ × #- which is quite an
e�ort for large Ξ and -, even if Ξ = - .

Because of that, one substitutes the kernel directly to the hyperplane method,
sets - = Ξ and solves

max
U

1)U − U). (-).U subject to U ≥ 0, H)U = 0, (3.51)

and uses the discriminant function based on

5 =
∑
G∈-

UGHG : (G, ·),

see e.g. [54]. Since122

‖ 5 ‖2H =

〈∑
G∈-

UGHG : (G, ·),
∑
G∈-

UGHG : (G, ·)
〉
= U). (-).U,

this is the dual problem to the primal problem

min
0,2
‖q (0) ‖2H subject to HG (q(0) (G) + 2) ≥ 1, G ∈ -, (3.52)

with its Lagrangian

6(0, 2) =
‖q (0) ‖2

H

2
−

∑
G∈-

UG (HG (q(0) (G) + 2) − 1)

=
1

2
0)

[
〈: (G, ·), : (G′, ·)〉 : G ∈ -

G′ ∈ -

]
0 −

∑
G∈-

UG

(
HG

(
0) (-, G) + 2

)
− 1

)
=

1

2
0) (-)0 −

(
0) (-) + 1

)
(U · H) + 1)U

yielding the KKT conditions

 (-) ((U � H) − 0) = 0,

1) (U � H) = 0,

0) (-) (U � H) + 2(U � H) = U,

U ≥ 0,

from which the dual problem (3.51) can be deduced.

Lemma 3.46. Instead of solving the primal problem (3.52), we can solve the dual
problem (3.51) and compute 0 = U · H and 2 like in Lemma 3.45.
122We do not have to write down every step of this standard computation, do we?

72 3 KERNELS

3.8 Examples for kernel learning

Let us apply the theory developed before to some labeling problems that we want
to solve by kernel based support vector machines. We will always set Ξ = -, so
that our dual problem takes the form

max
U

1)U − 1

2
U) .� (-). U s.t.

H)U = 0,
U ≥ 0,

� (-) =
{
 (-)) (-),

 (-),
(3.53)

depending on which type of optimization we chose in the preceding subsection.
Let us look at .� (-). first. Since . is a labeling, the respective diagonal element
satisfies

.GG = HG =

{
1, G ∈ -+,
−1, G ∈ -−,

G ∈ -,

and therefore

. (-). =
[

 (-+) − (-+, -−)
− (-−, -+) (-−)

]
if we order - as - = (-+, -−). Similarly, we can apply the sign pattern to the
partitioning

 (-)) (-) = (-)2

=

[
 (-+) (-+) + (-+, -−) (-−, -+) (-+) (-+, -−) + (-+, -−) (-−)
 (-−) (-−, -+) + (-−, -+) (-+) (-−) (-−) + (-−, -+) (-+, -−)

]
Let us start to implement this in octave where we will make use of the built-in
function qp for quadratic programming. The normal form used by qp is of the
form

min
G

1

2
G)�G + @)G s.t.

�G = 1,

ℓ ≤ G ≤ D. (3.54)

This means we have to define

� = .� (-)., @ = −1, � = H) , ℓ = 0.

Moreover, the routine qp needs a feasible initial value G0 which we can choose as
G0 = 0, in particular since the gradient of the target function at G0 = 0 is 1 and
therefore this point cannot be a local extremum. For the solution G of (3.54) we
then get that

0 = H · U = .U.
Let us start with building the matrix � needed in the dual problem. Having at
hand a kernel function like in Prog. 3.1, it is easy to set up the matrix in the “stan-
dard” kernel case, see Prog. 3.2. Then one only has to call qp with the appropriate
parameters as is done in Prog. 3.3. We can use this function to also compute 2 by
first finding an index G ∈ - such that UG > 0 and then setting

2 = HG︸︷︷︸
∈{±1}

−
∑
G ′∈-

: (G, G′)0G ′ = HG − ((-)0)G = HG − (.2︸︷︷︸
=�

 (-).20)G

= HG − (�0)G = HG − .GG︸︷︷︸
=HG

(�.0)G = HG
(
1 − ((� (H � 0))G

)
= HG

(
1 + (� (H � 0))G

)
= HG (1 + (�U)G) ,

3.8 Examples for kernel learning 73

% Kernel learning
% Setup kernel matrix , inefficient implementaion

% Data:
% k : Function handle for kernel
% X,Y : Data sets (column matrices)

function K = SVMKernMat(k,X,Y)
[mX ,nX] = size(X);
[my ,nY] = size(Y);

K = zeros(nX,nY);

for jX = 1:nX
for jY = 1:nY

K(jX ,jY) = k(X(:,jX), Y(:,jY));
end

end

Program 3.1: Computation of the kernel matrix (-, - ′).

which can be implemented very easily in octave.
We begin with a simple example of two well–separated point sets, one centered

around the origin, the other around (1, 1), and we plot them

> X = (rand(2,10) .- .5)/2; Y = 1 .+ (rand(2,10) .- .5)/2;
> hold on; plot(X(1,:),X(2,:),"+"); plot(Y(1,:),Y(2,:),"o");

Next, we define the kernel and to keep it simple we first pick the simple dot product
kernel : (G, G′) = G · G′:

> k = @(x,y) x’*y;

Determining 0 and 2 is now a simple call of our function since X takes the role of
-+ and Y the one of -−:

% Kernel learning
% Setup optimization matrix , uses KernMat

% Data:
% k : Function handle for kernel
% X,Y : Data sets (column matrices)

function K = SVMOptMat(k,X,Y)
KK = -SVMKernMat(k,X,Y); %% labeling!

K = [SVMKernMat(k,X,X), KK ; KK ’, SVMKernMat(k,Y,Y)];

Program 3.2: Computation of the matrix . (-). needed in optimization.

74 3 KERNELS

% Kernel learning
% Solve Dual optimization problem via qp

% Data:
% k : Function handle for kernel
% X,Y : Data sets (column matrices) for +/- labels

function [a,c] = SVMSolveDual(k,X,Y)
[mX ,nX] = size(X);
[mY ,nY] = size(Y);
n = nX + nY;

H = SVMOptMat(k,X,Y);
q = -ones(n,1);
x0 = zeros(n,1);
y = [ones(1,nX), -ones(1,nY)]’;
l = zeros(n,1);
u = [];

a = qp(x0,H,q,y’,0,l,u);
[amx ,j] = max(abs(a)); % find location != 0

c = y(j) * (1-H(j,:)*a);
a = y .* a;

Program 3.3: Computation of 0 and 2 by means of qp.

> [a,c] = SVMSolveDual(k,X,Y);

In the vector 0 we can now look for the support vectors, i.e., the points where
UG ≠ 0

> sv = find(abs(a) > 10*eps)
sv =

7
16

> Z = [X,Y]; plot(Z(1,sv),Z(2,sv),"*");

where we also plotted the points belonging to the active constraints. The rest is
simple, we evaluate the discriminant function on a subgrid of

[
−1
2 ,

3
2

]2
and plot the

contour lines of the function:

> Xs = (-.5:.1:1.5); M = SVMDiscrFun(k,[X,Y],a,c,Xs,Xs);
> contour(Xs,Xs,M);

The result can be seen in Fig. 3.1 and it is quite what one expects it to be. No
surprise: In this case the support vector machine computes exactly the separating
hyperplane.

3.8 Examples for kernel learning 75

Figure 3.1: The results of the first test, showing the points only (left) and the
contour plot as well as the support vectors (right)

What happens if we approach the same problem with a nonlinear SVM. Let us
try another dot product kernel, for example an initial segment of the exponential

: (G, G′) = (G · G′) + 1

2
(G · G′)2 + 1

6
(G · G′)3.

The application is quite the same

> k2 = @(x,y) x’*y + (x’*y)^2/2 + (x’*y)^3/6;
> [a2,c2] = SVMSolveDual(k2,X,Y);
> sv = find(abs(a2) > 10*eps)
sv =

7
16

but gives di�erent support vectors. So let us look what happens:

> clf; hold on;
> plot(X(1,:),X(2,:),"+"); plot(Y(1,:),Y(2,:),"o");
> Z = [X,Y]; plot(Z(1,sv),Z(2,sv),"*");
> Xs = (-.5:.1:1.5); M = SVMDiscrFun(k2,[X,Y],a2,c2,Xs,Xs);
> contour(Xs,Xs,M);

The result can be seen in Fig 3.2.
Next, we make it a bit tougher with a weaker separation of points which we

now choose as perturbed points around the origin and (12 ,
1
2) even with possible

overlap:

> X = (rand(2,20) .- .5); Y = .5 .+ (rand(2,20) .- .5);
> [a,c] = SVMSolveDual(k,X,Y);
> [a2,c2] = SVMSolveDual(k2,X,Y);

76 3 KERNELS

Figure 3.2: The SVM based on the nonlinear kernel (left) whose contour plot
is now slightly curved. This can also be seen from the surface (right).

If we now consider the two support vectors, we find that they even have totally
di�erent length:

> sv = find(abs(a) > 10*eps);
> sv2 = find(abs(a2) > 10*eps);
> [length(sv) length(sv2)]
ans =

12 34

And the plot of the two kernels shows quite a di�erent behavior as can be seen in

Figure 3.3: Classification by the two di�erent kernels

Fig. 3.3. Of course, the result will vary with the random data, but in one test123

the correct classification by the hyperplane method gave 25% for -+ and 70% for
-− while the cubic dot product kernel provided 90% for -+ and 95% for -−. Some
results for 100 tests are shown in table 1.
123The routines are there and can be downloaded on Stud.IP. So test by yourself.

3.8 Examples for kernel learning 77

Kernel -+ min -+ max -+ avg -+ min -+ max -+ avg
Linear 0% 100% 69.1% 0% 100% 67.5%
Cubic 35% 100% 88.3% 30% 100% 84.3%

Table 1: Random points with two di�erent kernels

Of course, we should also try at least one stationary and one radial kernel. For the
stationary kernel we can use, according to Proposition 3.18, odd degree cardinal
B–splines with knots at ±2:+1

2 , : = 0, . . . , <, which we evaluate by the B–spline
recurrence, cf. [7, 8, 53, 49] and use an Octave function from the “spline lecture
toolbox”. From this function, we can build a routine SVMBSplEval (m,x) which is

Figure 3.4: A centered B–spline (left) and a centered tensor product B–spline
(right), both of degree 3. There is no visible di�erence to the degree 5 B–spline.

given the degree m and as x a point G ∈ R3 for which it computes the value "< (G)
of the tensor product B–Spline at G. The setup is as usual

>> X = (rand(2,20) .- .5); Y = .5 .+ (rand(2,20) .- .5);
>> k1 = @(x,y) x’*y;
>> k3 = @(x,y) x’*y + (x’*y)^2/2 + (x’*y)^3/6;
>> ks3 = @(x,y) SVMBSplEval(3,x-y);
>> ks5 = @(x,y) SVMBSplEval(5,x-y);

and for the generation of the plots we use a function SVMPlot (k,X,Y,Xs,Ys) that
plots the data points, support vectors and the contour of the discriminant for the
given parameters. The success rates are

Kernel -+ -−
Linear 55 % 100 %
Cubic 95 % 70 %
"3 70% 75%
"5 40 % 90 %

Keep in mind that there are no real “overlearning” e�ects here as we always con-
sider spaces with the same number of basis functions and matrices of the same
size. What changes is the flexibility of the involved kernel functions.

78 3 KERNELS

Figure 3.5: Points, supports and contours for the (irreproducible) example
The kernels are linear (top left), cubic (top right), cubic spline (bottom left) and
quintic spline (bottom right).

For a slightly more “statistical” approach we again run our test 100 times with
the four kernels, this time with 20 random points in a circle with radius 1

2 around
the origin and 20 random points in a circle with radius 1

2 around [C, C] for di�erent
values of C. The results are listed in Table 2. Finally, we can also try radial kernels,
for example some exponentials

>> ke1 = @(x,y) exp(-norm(x-y,2)^2);
>> ke2 = @(x,y) exp(-norm(x-y,2)^2/10);

or some inverse multiquadrics

>> km1 = @(x,y) (.1 + norm(x-y,2)^2)^(-1/2);
>> km2 = @(x,y) (.1 + norm(x-y,2)^2)^(-1);

Surprisingly enough, the radials methods are not really a�ected by the distance
between the sampling circles, at least not as far as their classification rate is con-
cerned.

3.9 Choosing the kernel

There remains an important question: How to choose the kernel? Normally, this
is just a deliberate choice made by the user of the SVM library, but there exists, of

3.9 Choosing the kernel 79

C = 1 C = .7 C = .5
Kernel -+ -− -+ -− -+ -−
Linear 100 % 100 % 84.35 % 84.05 % 69.10 % 73.55 %
Cubic 100 % 100 % 95.50 % 94.45 % 86.60 % 84.45 %
"3 100 % 100 % 100 % 100 % 97.60 % 98.25 %
"5 100 % 100 % 96.85 % 97.05 % 84.65 % 83.85 %

4−‖G−G
′‖2 65 % 63.75 % 65.1 % 65.9 % 68 % 64.75 %

4−‖G−G
′‖2/10 56.75 % 54.9 % 53.15 % 60 % 56.75 % 58.7 %

2 = 0.1, U = 1
2 99.2 % 98.25 % 98.85 % 97.85 % 99 % 99.2 %

2 = 0.1, U = 1 99.45 % 99.55 % 99.7 % 99.8 % 100 % 100 %

Table 2: Testing di�erent kernels on di�erent distances.

course, also some theory on how to choose the kernel.
The oldest ideas in kernel selection are older than machine learning and were

introduced in Geostatistics in a process called kriging124. In a nutshell, kriging is
exactly our well–known approximation or interpolation process of the form

min
0

∑
G∈-
(q(0) (G) − HG)2 + _0)�0,

or
min
0
0)�0, subject to q(0) (G) = HG , G ∈ -,

where � is a symmetric positive semidefinite matrix describing the energy func-
tional. Also here it is requested that Φ = {: (b, ·) : b ∈ Ξ} and that : is a Mercer
kernel125. The di�erence is that the parameters in the kernel, for example the
ones in the exponential and inverse multiquadric kernels from Example 3.23 are
determined in a data dependent way.

De�nition 3.47 (Variogram). Given a set finite - ⊂ X of a metric space X and
H ∈ R- ,

1. we denote by
R ⊃ 3 (-) = {3 (G, G′) : G, G′ ∈ -} \ {0}

the (finite) set of all distances occurring in - .

2. The (empiric) variogram of H, + (H) : 3 (-) → R is the defined as

E(3) := 1

#-3

∑
(G,G ′)∈-3

(HG − HG ′)2 , -3 := {(G, G′) : 3 (G, G′) = 3}. (3.55)

Given the data, one can compute the empirical variogram and consider this to be
yet another training set: just set � = 3 (-) and H̃3 := E(3), 3 ∈ �. If now the
kernel is a parameterized stationary kernel126 i.e.,

: (G, G′) = 60 (G − G′), 0 ⊂ R=,
124Named after the South African mining engineer D. G. Krige.
125In our terminology, in the kriging context it is just “positive definite”.
126Stationary is important here since stationary kernels depend on a distance only. On the other

hand, stationarity is one of the fundamental assumptions in kriging.

80 3 KERNELS

like the dot product kernel from (3.7) or the radial kernels from Definition 3.23,
we can fix the parameter by another least squares fit

min
0

∑
3∈�

1

#-3

∑
(G,G′)∈-3

(60 (G − G′) − E(3))2 ,

which is supposed to determine the “best” kernel for the problem. In Geostatistics
there often is a distinction between the variogram and the semivariogram 1

2E(3),
which makes some sense from a probabilistic perspective but is not relevant for
our optimization here.

Learning the kernel has also been considered in “native” learning theory, for
example in [39]. There, the regression approach127

min
0

∑
G∈-
(q(0) (G) − HG)2 + _ ‖q(0)‖2H , Φ = span {: (G, ·) : G ∈ -},

is considered and the resulting optimal function q∗ = q(0∗) is now taken to be
a function of the kernel : and denoted by q∗(:). Now, we can minimize this
expression over all Mercer kernels,

min
:∈K

q∗(:) = min
:

(
 (-)) (-) + _ (-)

)−1
 (-)) H,

which looks complicated enough, in particular when taking into account that K
stands for the set of all Mercer kernels here. Alternatively, we can perform the
double minimization

min
0∈R#- ,:∈K

∑
G∈-

(
0) (-, G) − HG

)2
+ _ 0) (-)0. (3.56)

This still looks128 nontrivial, but there are two fundamental observations:

1. the space K of Mercer kernels is convex, see Proposition 3.29 that says that
:, :′ ∈ K implies U: + (1 − U):′ ∈ K as well.

2. The functional in (3.56) is also convex in : under suitable assumptions.

These two observations allow to make conclusions about the existence and unique-
ness of minima, see Lemma 2.9. The rest is a lot of nice and interesting mathe-
matics in [39], including fixpoint theorems and the famous minimax theorem
due to John von Neumann, cf. [40, 41]. Unfortunately, this goes too far for an
introductionary lecture.

127The paper considers this in wider generality
128And also is.

81

Networking is rubbish; have friends
instead.

S. Winwood

Neural networks 4
The basic idea of neural networks is to mimic the human brain that consists of
connected neurons which transfer information forward and react according to this

Figure 4.1: Hippocampus of a rodent, due to Ramón y Cajal (1911), showing
the connection of neurons into a complex network. The hippocampus is one
of the oldest and simplest parts of the brain. (Source: Wikipedia, gemeinfrei)

accumulated information.
The main idea of this concept is that a single neuron is an extremely simple

object and that the combination and interaction of the network finally results in a
system that can handle complicated tasks, in particular in pattern recognition.

4.1 Definition and basic facts

Let us begin with the main concept, the mathematical model of a neuron.

De�nition 4.1 (Neuron). A neuron i : R< → R is a function of the form

i(G) = if,F (G) = f(1 + F · G), (4.1)

82 4 NEURAL NETWORKS

with a weight F ∈ R<, a bias 1 and an activation function f : R→ R. Extending

G and F into Ĝ =
[
1
G

]
∈ R<+1 and F̂ =

[
1

F

]
∈ R<+1, we can also use the more

compact way of writing i(G) = f(F̂ · Ĝ).

A neural network is now a collection of such neurons with varying weights129 and
a single activation function f. Such a network is organized in the following way.

1 2 3 ... n

1 2 3 m. . .

ϕ ϕ ϕ ϕ. . .

Figure 4.2: The layout of a neural network with just one hidden layer and no
output layer. It also illustrates how a single hidden layer works.

De�nition 4.2 (Layers and networks). A neural network of depth 3 ∈ N consists
of several layers of the following types:

1. the input layer consists of =0 neurons i with weights F̂0
1, . . . , F̂

0
=0
∈ R=. Each

neuron of the input layer is a function from R= to R where = is the original
number of variables.

2. A hidden layer on level 9 , 9 = 1, . . . , 3, consists of = 9 neurons with weights
F̂
9

1, . . . , F̂
9
= 9 ∈ R= 9−1 , being able to process the output from level 9 − 1 of the

network.

3. The output layer is a single neuron with weight F̂3+1 ∈ R=3 that has the
purpose of combining the output from the preceding levels into a single value.

Any such combination of layers defines a feedforward neural network130 function

129The weights can and will depend on the respective neuron.
130The “feedforward” is pretty much self explaining.

4.1 De�nition and basic facts 83

5 by setting

G0 :=
[
f(F̂0

9 · Ĝ) : 9 = 1, . . . , =0

]
∈ R=0

G: :=
[
f(F̂:9 · Ĝ:−1) : 9 = 1, . . . , =:

]
∈ R=: , : = 1, . . . , 3,

5 (G) := 5F (G) := F̂3+1Ĝ: = f

(
F3+10 +

=3∑
9=1

F39 G3, 9

)
,

where F =

(
F:
9
: 9 = 1, . . . , =: , : = 1, . . . , 3 + 1

)
denotes the weight vector of the

neural network.

1 2 3 n

1 2 3 . . . n

. . .

ϕ ϕ ϕ ϕ. . .

1 2 3 n. . .

ϕ

Figure 4.3: An input layer whose weights are unit vectors (left) and an output
layer (right).

Remark 4.3. In the beginning, neural networks were usually “flat” with quite few
hidden layers. This was mainly motivated byKolmogorov’s theorem131 that could
be interpreted as the observation that a single layer with a modest number of
neuron can represent any function of almost arbitrary complexity. What is true
and false about this and why this has to be taken with care, will be discussed later.
A the moment, deep learning with more structured networks and several hidden
layers is more popular.

Remark 4.4 (Ridge functions). A function of the form i(G) = f(F̂ · Ĝ), F, G ∈ R=, is
often called a ridge function. Such functions are constant along any hyperplane
of the form

H + F⊥, F⊥ := {G ∈ R= : F · G = 0},

since for any G′ ∈ F⊥

i (G + G′) = f (F0 + F · (G + G′)) = f(F0 + F · G + F · G′︸︷︷︸
=0

)

= f(F0 + F · G) = i(G).
131We will learn about that later.

84 4 NEURAL NETWORKS

Example 4.5 (Activation functions). Typical activation functions for neural net-
works are

1. f(G) = sgn G, i.e.,

i(G) = 1 ⇔ 0 < F̂ · Ĝ = 1 +
=∑
9=1

F 9 G 9 ⇔
=∑
9=1

F 9 G 9 > −1,

and i(G) = 0 if F · G ≤ −1, hence the neuron �res if the inner product F · G
is larger than the threshold −1.

2. f : R→ [0, 1] is any monotonically increasing function, forming a contin-
uous counterpart to the jump function G ↦→ sgn G. Such a function is often
called a sigmoidal function if it has the additional property f(0) = 0 and
f(1) = 1. Note that the two locations 0 and 1 are a totally deliberate choice
here but no loss of generality as any other activation levels can be obtained
by choosing F̂ appropriately.

3. A concrete and frequently used candidate is the sigmoid function of the
form

f(G) = 1

1 + 4−G , (4.2)

see [2] and Fig. 4.4. It has no compact support but satisfies

lim
G→−∞

f(G) = 0 and lim
G→∞

f(G) = 1.

Nevertheless it is close to 0 and 1 quite early as Fig. 4.4 shows.

The notation from Definition 4.2 turns into an index battle quite soon. To avoid
that, we arrange the (row) vectors F:

9
, 9 = 1, . . . , =: , into a matrix

,: :=
[
F:1, . . . , F

:
=:

]) ∈ R=:×=:−1 , ,̂: :=


10
...

1=:

������� ,:

 ,
and extend f : R→ R in a simple “Matlab fashion” into f : R= → R= by setting

f(G) =
[
f(G 9) : 9 = 1, . . . , =

]
and f̂(G) =

[
1

f(G)

]
.

Then we have that

Ĝ0 = f̂(,̂0Ĝ) (4.3)

Ĝ: = f̂(,̂: Ĝ:−1), : = 1, . . . , 3, (4.4)

5F (G) = f̂(,̂3+1Ĝ3) (4.5)

and therefore
5F (G) = f̂

(
,̂3+1f̂

(
· · · f̂

(
,̂1f̂(,̂0Ĝ)

)
· · ·

))
. (4.6)

4.1 De�nition and basic facts 85

Figure 4.4: The sigmoid function (4.2). By rescaling into f (_·), _ > 0, the
slope can be made arbitrarily steep or flat. And although the function never
assumes the values 0 and 1 exactly, it “practically” gets close to them very
soon.

This expression shows that deep learning is a little bit awkward to write down but
also the layered recursion clearly o�ers some intricate nonlinearities.

For a single hidden layer network, the expression is still fairly simple:

5F (G) = f̂
(
,̂2f̂

(
,̂1f̂(,̂0Ĝ)

))
. (4.7)

We will use this simpler identity later when considering how neural networks learn.

It is easy to see that we can implement Boolean functions by means of neurons,
simply setting, for G, H ∈ {0, 1}

G ∨ H = f(G + H), G ∧ H = f(G + H − 1), ¬G = f(1 − G)

where f is any strictly monotonically increasing function with f(0) = 0 and f(1) =
1. Since any Boolean function, i.e., any hard decision can be written in terms
of these three elementary expressions, neural networks are capable, at least in
principle, to learn any function 5 : {0, 1}= → {0, 1} that performs such lists of
decisions. This can even be made more quantitative as the following result from
[2, Theorem 7.1] shows.

Theorem 4.6. Any Boolean function 5 : {0, 1}= → {0, 1} with = parameters can be
realized by a neural network consisting of one hidden layer of 2= neurons and one output
layer with suitable f and weights.

The simple Boolean operations above correspond to the weights [0, 1, 1], [−1, 1, 1],
[1,−1], respectively and f can actually be chosen quite liberal.

86 4 NEURAL NETWORKS

Remark 4.7. Proper piecewise polynomial activation functions for the above con-
struction could be

f(G) =


0, G ≤ 0,

2<−1 G<, 0 ≤ G ≤ 1
2 ,

1 − 2<−1 (1 − G)< , 1
2 ≤ G ≤ 1,

1, G ≥ 1,

where < > 0 is an arbitrary parameter. The construction has the advantage that

f (:) (0+) = f (:) (1−) = 0, : = 0, . . . , < − 1,

so that the sigmoidal function f is really �at at G = 0, 1.

The focus on sigmoidal functions for a neural network seems overly restrictive:
why don’t we use activation functions that range, say, from −1 to 1 and also allow
inhibition in addition to activation. The answer is that the next layer is actually
able to compensate that. To that end, we note that the range of

f̃ := 2f(·) − 1

is [−1, 1] if f is sigmoidal, then, for 9 = 1, . . . , =: ,

G: 9 := (G:) 9 = f̃(F:9 · G:−1 + 1:9) = 2f(F:9 · G:−1 + 1 9) − 1

and132

G:+1, 9 = f̃(F:+19 · G: + 1:+19) = f̃
(
F:+19 · (2f(F: · G:−1 + 1 9) − 1) + 1:+19

)
= f̃

(
2F:+19 · f(F: · G:−1 + 1 9) + 1:+19 − F:+19 · 1

)
=: f̃

(
F̃:+19 · f(F: · G:−1 + 1 9) + 1̃:+19

)
,

so that f̃ can be replaced by f in all levels of the neural network except the output
level.

4.2 What to learn?

The learning problem to be handled by neural networks is again the penalized
quadratic regression one, i.e.,

� (F) := min
F

∑
G∈-
(5F (G) − HG)2 + _ F)�F (4.8)

with a symmetric positive definite regularization matrix �. Hence, we have to
minimize the expression133∑

G∈-
5 2F (G) − 2HG 5F (G) + _F)�F

132We use the Matlab like vectorization of f.
133The constant part

∑
H2G has been dropped already.

4.3 The simplest case: the perceptron 87

which leads to

0 =
1

2

m� (F)
mF

=
∑
G∈-

5F (G)
m 5F (G)
mF

− HG
m 5F (G)
mF

+ _�F, (4.9)

which, however, is hard to solve directly for F. But also if we want to apply a
descent method as introduced in Section 2.5.1, a descent direction is needed,
i.e., a direction H such that

H)∇� (F) = H) m�
mF
(F) < 0.

To that end, we have to evaluate the expression in (4.9) which means that we need
to be to di�erentiate 5 (F, G) with respect to F.

Since we know from basic calculus that the concatenation134 of di�erentiable
functions is again di�erentiable, the heart of the chain rule, we can easily make
the following conclusion, taking into account that the roles of F and G in (4.1) are
actually symmetric.

Proposition 4.8. If the activation function f is di�erentiable, then the function 5 (F, G)
is di�erentiable with respect to F and G.

4.3 The simplest case: the perceptron

To understand how a neural network learns and to get the basic idea of the back-
propagation method that we will encounter in Section 4.4, we will consider the
simplest neural network, namely one that consist of a single neuron; according to
[12], this is the perceptron model introduced by Rosenblatt in [47]. This consists
of

5F,1 (G) = f(F · G + 1), G, F ∈ R=, 1 ∈ R,

where f is again a sigmoidal function, i.e., monotonically increasing with

lim
G→−∞

f(G) = 0, lim
G→∞

f(G) = 1.

We will show that like the simplest support vector machine this approach is capable
of finding a separating hyperplane for labeled data (-, H) with HG ∈ {0, 1}, at least
whenever such a hyperplane exists. Again we have a optimization problem of the
form

� (F, 1) = 1

2

∑
G∈-

(
HG − 5F,1 (G)

)2 + _
2

[F1]

2
2

(4.10)

with a regularizing parameter _, and get

∇� (F) =
∑
G∈-
∇F,1 5F,1 (G)

(
HG − 5F,1 (G)

)
+ _

[
F

1

]
.

134This means 5 ◦ 6 with (5 ◦ 6) (G) := 5 (6(G)).

88 4 NEURAL NETWORKS

Now,

∇F 5F,1 (G) = ∇Ff(F · G + 1) =
[
m

mF 9

f(F · G + 1) : 9 = 1, . . . , =

]
=

[
f′(F · G + 1) G 9 : 9 = 1, . . . , =

]
= f′(F · G + 1) G

and

∇1 5F,1 (G) =
m

m1
f(F · G + 1) = f′(F · G + 1),

so that

∇F,1 5F,1 (G) = f′(F · G + 1)
[
G

1

]
(4.11)

and therefore

∇� (F) =
∑
G∈-

f′(F · G + 1)
(
HG − 5F,1 (G)

) [
G

1

]
+ _

[
F

1

]
. (4.12)

Now we can give a weak form of Rosenblatt’s theorem saying that separating hy-
perplanes can always be computed by a perceptron in a finite number of steps.

Theorem 4.9. If the two sets -+ := {G ∈ - : HG = 1} and -0 := {G ∈ - : HG = 1} can
be separated by a hyperplane, then any optimal solution of (4.10) separates hyperplanes for
su�ciently small _ ∈ R+.
Proof: Suppose that 0 < f(0) < 1, otherwise we can simply shift the bias 1 and
let E ∈ R= and 2 ∈ R define a separating hyperplane, i.e.,

E · -0 < 2 < E · -+ ⇔ (UE) · -0 < U2 < (UE) · -+, U > 0.

Therefore, with FU = UE and 1U = −U2, the continuity of f and the finiteness of -
yield

lim
U→∞

f(FU · -0 + 1U) = f
(
lim
U→∞

U (E · -0 − 2)︸ ︷︷ ︸
<0

)
= 0

and, analogously,
lim
U→∞

f(FU · -0 + 1U) = 1.

Hence, for any Y > 0 there exists U = U(Y) > 0 such that

� (FU, 1U) <
Y

2
+ _ U

2

2

[E2]

2 ,
so that for _ = _(Y) < Y

U2‖(E, 2)‖2
we have that

min
F,1

� (F, 1) ≤ � (FU, 1U) < Y.

On the other hand, any misclassification contributes to the error, namely a factor
of > f(0)2 if an element of -0 is falsely classified as 1 and > (1 − f(0))2 if an
element of -1 is falsely classified as 0. Consequently, for

Y < min
{
f(0)2, (1 − f(0))2

}
and _ < _(Y), no misclassifying choice of F can become minimal. �

4.4 Training by backpropagation 89

Remark 4.10. The proof also shows that whenever 0 < f(G) < 1 for G ∈ R, then
the error will never be exactly zero and ‖F‖ would diverge to infinity. This is why
a regularization term becomes necessary that limits the size of F.

Generally, a perceptron computation consists of fixing _ > 0 and then solving the
optimization problem by a descent algorithm135 with proper stepsize control, see
Setion 2.5.1, but one may also use a coupling of “minimality” and regularization
parameter as described in Section 2.6 on penalized optimization.

4.4 Training by backpropagation

Now it is time to compute the derivative of a general neural network 5F. This is a
little bit more complicated due to the nested structure of the function. Let us recall
the setup

G0 9 = f

(
F0
9
· G + 10

9

)
,

G: 9 = f

(
F:
9
· G:−1 + 1:9

)
, : = 1, . . . , 3 + 1,

5 (F, G) = G3+1 = f
(
F3+1 · G3 + 13+1

) (4.13)

which shows that G: depends on the variables G0, . . . , G:−1 and F0, . . . , F:−1 as well
as of 10, . . . , 1:−1. To take the derivative of 5 (F, G) with respect to F3+1 we have
to consider, like above

m 5

mF3+1
(F, G) = f′

(
F3+1 · G3 + 13+1

)
G3

and
m 5

m13+1
(F, G) = f′

(
F3+1 · G3 + 13+1

)
,

hence, simple and easy,

m 5

mF̂3+1
(F, G) =


m 5

mF3+1
(F, G)

m 5

m13+1
(F, G)

 = f
′
(
F3+1 · G3 + 13+1

) [
G3
1

]
, (4.14)

which can now be evaluated directly. To take a derivative with respect to F3 , we
note that exactly in the same way as above we can compute

mG39

mF3
9

(F, G) = f′
(
F39 · G3−1 + 139

) [
G3−1
1

]
, 9 = 1, . . . , =3 ,

and also

m 5

mG39
(F, G) =

m

mG39
f

(
=3∑
:=1

F3+1: G3: + 13+1
)
= f′

(
F3+1 · G3 + 13+1

)
F3+19 .

135Since f′ is nonlinear, a direct solution of equating (4.12) to zero is not really suitable.

90 4 NEURAL NETWORKS

These two identities call for an application of the chain rule that leads to

m 5

mF̂3
9

(F, G) =
m 5

mG39
(F, G)

mG39

mF̂3
9

(F, G)

= f′
(
F3+1 · G3 + 13+1

)
F3+19 f′

(
F39 · G3−1 + 139

) [
G3−1
1

]
In summary, we have

m 5

mF̂3
(F, G) =

[
m 5

mF̂3
9

(F, G) : 9 = 1, . . . , =3

]

= f′
(
F3+1 · G3 + 13+1

) 
F3+11 f′

(
F31 · G3−1 + 1

3
1

) [
G3−1
1

]
...

F3+1=3
f′

(
F3=3 · G3−1 + 1

3
=3

) [
G3−1
1

]


= f′
(
F3+1 · G3 + 13+1

) (
F3+1 � f′

(
,3G + 13

))
⊗

[
G3−1
1

]
.

Here we use for abbreviation purposes two nonstandard matrix products, see for
example [21, 22].

De�nition 4.11 (Nonstandard matrix products).

1. The Hadamard product136 of two matrices �, � ∈ R<×= is the component-
wise product

� � � :=

[
0 9 :1 9 : :

9 = 1, . . . , <
: = 1, . . . , =

]
∈ R<×=. (4.15)

2. The Kronecker product � ⊗ � of � ∈ R<×= and � ∈ R<′×=′ is the block
matrix

� ⊗ � :=


011� . . . 01=�
...

. . .
...

0<1� . . . 0<=�

 ∈ R
<<′×==′ . (4.16)

Exercise 4.1 Which of the two products is commutative? ♦
The general trick for backpropagation is now relatively easy and mainly bookkeep-
ing with matrices. It is based on the fact that for

G: =
[
G: 9 : : = 1, . . . , =3

]
= f

(
, :G:−1 + 1:

)
∈ R=:

with ,: ∈ R=:×=:−1 we again have

mG: 9

mF̂:
9

= f′
(
F:9 · G:−1 + 1:9

) [
G:−1
1

]
, 9 = 1, . . . , =: ,

136We already used it in the proof of Proposition 3.29.

4.4 Training by backpropagation 91

which we can arrange as columns into the matrix

mG:

mF̂:
=:

[
mG: 9

mF̂:
9

: 9 = 1, . . . , =:

]
=

[
G:−1
1

]
⊗ f′

(
, : · G:−1 + 1:

))
∈ R=:−1+1×=: .

On the other hand,

mG: 9

mG:−1,ℓ
=

m

mG:−1,ℓ
f(F:9 · G:−1 + 1:9) = f′

(
F:9 · G:−1 + 1:9

)
(F:9)ℓ,

hence
mG: 9

mG:−1
= f′

(
F:9 · G:−1 + 1:9

)
F:9

which gives the (transposed) Jacobi matrix137

mG:

mG:−1

)

= diag
(
f′

(
, :G:−1 + 1:

))
, : ∈ R=:×=:−1

whose 9th column is mG: 9
mG:−1

. Here,

�: := diag
(
f′

(
, : · G:−1 + 1:

))
=


f′

(
F:1 · G:−1 + 1

:
1

)
. . .

f′
(
F:=: · G:−1 + 1

:
=:

)
 .

Now we assume that we already computed

m 5

mG:
=

[
m 5

mG: 9
: 9 = 1, . . . , =:

]
∈ R=:

initialized with
m 5

mG3
:= f′

(
F3+1 · G3 + 13+1

)
F3+1, (4.17)

and use the chain rule for

m 5

mF̂:
9

=
m 5

mG: 9

mG: 9

mF̂:
9

=

(
m 5

mG:

)
9

mG:

mF̂:
9

4 9 , 9 = 1, . . . , =: .

Since this is the 9th column of the matrix m 5

mF̂:
, we can group them again and obtain

that

m 5

mF̂:
=

(
1=:−1+1 ⊗

m 5

mG:

)
)
� mG:

mF̂:

=

(
1=:−1+1 ⊗

m 5

mG:

)
)
�

([
G:−1
1

]
⊗ f′

(
, :G:−1 + 1:9

)))
,

137Keep in mind that here we arrange the gradients mG: 9

mG:−1
as rows of a matrix to be compatible

with , : .

92 4 NEURAL NETWORKS

hence, using Exercise 4.2,

m 5

mF̂:
=

[
G:−1
1

]
⊗

(
m 5

mG:
� f′

(
, :G:−1 + 1:9

)))
. (4.18)

Exercise 4.2 Show that for arbitrary vectors 0, 2 ∈ R< and 1, 3 ∈ R= one has(
0 ⊗ 1)

)
�

(
2 ⊗ 3)

)
= (0 � 2) ⊗ (1 � 3)) . (4.19)

♦
Finally, we also get138

m 5

mG:−1
=

mG:

mG:−1

m 5

mG:
=

(
�:,

:
)) m 5

mG:
= (, :))

(
�:

m 5

mG:

)
,

that is,
m 5

mG:−1
= (, :))

(
f′

(
, : · G:−1 + 1:

)
� m 5

mG:

)
. (4.20)

This gives the famous backpropagation algorithm, the “working horse” of neural
network training. In the algorithm we use the abbreviation �: := m 5

mG:
∈ R=: and

,: :=
m 5

mF̂:
.

Algorithm 4.12 (Backpropagation). Given: Coe�cient matrices ,0, . . . ,,3+1

and vectors G0, . . . , G3 computed by (4.13).

1. Set �3+1 = 1.

2. For : = 3, 3 − 1, . . . , 0 set

(a) �: = (, :+1))
(
f′(, :+1G: + 1:) � �:+1

)
,

(b) ,: =

[
G:−1
1

]
⊗

(
f′(, :G:−1 + 1:) � �:

))
.

Result: derivatives ,: =
m 5

mF̂:
, : = 0, . . . , 3.

Remark 4.13. The only additional information needed in the backpropagation al-
gorithm is the derivative f′ of the activation function. In most cases one works with
explicit activation functions whose derivatives can easily be computed explicitly.

Training a neural network now means running ones favorite gradient based min-
imization algorithm on the di�erentiable functional from (4.8), using backpropa-
gation to compute the derivatives. This, of course, means to resolve issues like
finding a proper descent direction139 and an e�cient stepsize. Also it can happen
that there are “flat” regions, especially when the optimal solution is not unique.

138With Jacobi matrices order matters in the chain rule . . .
139Steepest descent, using −∇ 5 is know to fail in many occasions, see, for example [42, 50].

4.5 Kolmorogov’s theorem 93

Remark 4.14. In our perceptron example non–uniqueness of the optimum can be
seen quite easily. Suppose that we use _ = 0 and that the classes can be separated by
a hyperplane with parameters E and 2 and that f satisfies f(−1) = 0 and f(1) = 1.
Then we have that � (FU) = 0 for all su�ciently large U and actually also small
perturbations of E will lead to separation. Therefore, the optimum is by far not
unique. This is another argument in favor of the regularization term . . .

4.5 Kolmorogov’s theorem

Kolmogorov’s theorem is often used as another, more mathematical, justification
why neural networks are so successful140. The starting point here is the question:
“Do there exist truly multivariate functions?” The naive answer is “yes” since
already 5 (G, H) = G + H depends on both the variables G and H but then in a very
simple way, namely by adding them. And addition is a simple operation. But also
the seemingly more “complicated” function

5 (G, H) = GH = 4log G+log H = exp(log G + log H)

is only a sum, however one processed by the univariate function exp.
Let us begin with something completely di�erent, namely Nomography which

is the art of solving mathematical problems by graphical methods, i.e., by drawing.
The simplest example used in technical applications is logarithmic paper as shown

Figure 4.5: Logarithmically scaled sheet for relations of the form H(G) =
�0 + �14

−G , which are used, for example, to determine the charging time of
capacitors.

in Fig. 4.5. To determine a relationship

H(G) = �0 + �14
−G

one only needs two values H (G1) und H (G2) and can then read o� all other values
from the line through these two values. This method has two big advantages:

140They definitely are but it is not really clear why.

94 4 NEURAL NETWORKS

• There is no need to be able to compute, it’s just drawing. And dealing with
more complex functions in the time before electronic calculators involved
huge tables and interpolation, cf. [1].

• The result automatically has the proper relative accuracy and the accuracy
can be improved by drawing more accurately or using more finely gridded
paper.

Do not underestimate Nomography! Such graphical methods can have a very high
complexity for the curve with which one tries to solve the the problem does not
have to be a straight line, see Fig 4.6.

Figure 4.6: A so called Smith chart for the computation of the complex
impedance of a transmission line. Source: Wikipedia.

Curve based Nomography can only work in the bivariate case, i.e., for functions
H = 5 (G). To use it for more complicated H = 5 (G1, . . . , G2) we would have to build
it by cascading univariate functions, using only simple operations like addition.
This brings us to the International Congress of Mathematicians in Paris in the
year 1900 where David Hilbert gave a talk that listed the, in his opinion, 23 most
important problems in mathematics. The 13th problem was as follows141

Wir kommen nun zur Algebra; ich nenne im Folgenden ein Problem aus der
Gleichungstheorie und eines, auf welches mich die Theorie der algebraischen
Invarianten geführt hat.

13. Unmöglichkeit der Lösung der allgemeinen Gleichung 7ten Grades
mittelst Functionen von nur 2 Argumenten.

141This quotes the original text, translate yourself.

4.5 Kolmorogov’s theorem 95

Die Nomographie M. d’Ocagne, Traité de Nomographie, Paris 1899 hat die
Aufgabe Gleichungen mittelst gezeichneter Curvenschaaren zu lösen, die von
einem willkürlichen Parameter abhängen. Man sieht sofort, daß jede Wurzel
einer Gleichung, deren Coe�cienten nur von zwei Parametern abhängen, d.
h. jede Function von zwei unabhängigen Veränderlichen auf mannigfache
Weise durch das der Nomographie zu Grunde liegende Princip darstellbar ist.
Ferner sind durch dieses Princip o�enbar auch eine große Klasse von Func-
tionen von drei und mehr Veränderlichen darstellbar, nämlich alle diejenigen
Functionen, die man dadurch erzeugen kann, daß man zunächst eine Func-
tion von zwei Argumenten bildet, dann jedes dieser Argumente wieder gleich
Functionen von zwei Argumenten einsetzt, an deren Stelle wiederum Func-
tionen von zwei Argumenten treten u. s. f., wobei eine beliebige endliche
Anzahl von Einschachtelungen der Functionen zweier Argumente gestattet
ist. So gehört beispielsweise jede rationale Function von beliebig vielen Argu-
menten zur Klasse dieser durch nomographische Tafeln construirbaren Func-
tionen; denn sie kann durch die Prozesse der Addition, Subtraction, Multi-
plikation und Division erzeugt werden, und jeder dieser Prozesse repräsen-
tirt eine Function von nur zwei Argumenten. Man sieht leicht ein, daß auch
die Wurzeln aller Gleichungen, die in einem natürlichen Rationalitätsbereiche
durch Wurzelziehen auflösbar sind, zu der genannten Klasse von Functionen
gehören; denn hier kommt zu den vier elementaren Rechnungsoperationen
nur noch der Prozeß des Wurzelziehens hinzu, der ja lediglich eine Function
eines Argumentes repräsentirt. Desgleichen sind die allgemeinen Gleichun-
gen 5ten und 6ten Grades durch geeignete nomographische Tafeln auflösbar;
denn diese können durch solche Tschirnhausentransformationen, die ihrer-
seits nur Ausziehen von Wurzeln verlangen, in eine Form gebracht werden,
deren Coe�cienten nur von zwei Parametern abhängig sind.

Wahrscheinlich ist nun die Wurzel der Gleichung 7ten Grades eine solche
Function ihrer Coe�cienten, die nicht zu der genannten Klasse nomographisch
construirbarer Functionen gehört, d. h. die sich nicht durch eine endliche An-
zahl von Einschachtelungen von Functionen zweier Argumente erzeugen läßt.
Um dieses einzusehen, wäre der Nachweis dafür nötig, daß die Gleichung 7ten
Grades

5 7 + G 5 3 + H 5 2 + I 5 + 1 = 0

nicht, mit Hülfe beliebiger stetiger Functionen von nur zwei Argumenten lös-
bar ist. Daß es überhaupt analytische Functionen von drei Argumenten G, H, I
giebt, die nicht durch endlich-malige Verkettung von Functionen von nur zwei
Argumenten erhalten werden können, davon habe ich mich, wie ich noch be-
merken möchte, durch eine strenge Ueberlegung überzeugt.

It may appear strange that Hilbert mentions a problem that can be solved in two,
but not in three variables, but this is not so extraordinary in multivariate polyno-
mials. However, Hilbert was wrong with his conjecture142. In 1957 Kolmogorov
showed143 in [27] that any continuous function can be represented as a superpo-

142And he explicitly say in the last sentence that he did not (yet) prove it!
143This type of publication deserves a footnote of its own. The good old Doklady of the USSR

were a publication instrument to announce results, usually without proof which was given later in a
long publication that appeared somewhere else – or, sometimes, not at all.

96 4 NEURAL NETWORKS

sition of univariate functions using exclusively addition and concatenation. This
was extended and improved shortly later by his student Arnol’d in [3].

Theorem 4.15 (Kolmogorov’s superposition theorem, original version). There exist
B(2B +1) continuous functions q 9 : , 9 = 0, . . . , 2B, : = 1, . . . , B, such that one can �nd for
any function 5 ∈ � ([0, 1]B) continuous functions 60, . . . , 62B, depending on 5 , such that

5 (G1, . . . , GB) =
2B∑
9=0

6 9

(
B∑
:=1

q 9 : (G:)
)

(4.21)

This result was improved in the sequel, especially by G. G. Lorentz in [31] and by
D. Sprecher, [57, 56, 58]. It turned out that there has to be only one function 6
depending on 5 and that the functions q 9 : , : = 1, . . . , B can be chosen as multi-
ples of some universal q 9 , 9 = 0, . . . , 2B, which can even be chosen as Lipschitz
continuous144 functions. A “final” version of the theorem, as it can also be found
in [32] looks as follows.

Theorem 4.16 (Kolmogorov’s theorem of superposition). There exist universal
constants _: ∈ (0, 1], : = 1, . . . , B, and functions q 9 , 9 = 0, . . . , 2B, with the following
properties:

1. The functions q 9 are Lipschitz continuous for some exponent145 U > 0, i.e., there
exists a constant146 � > 0 such that��q 9 (G) − q 9 (G′)�� ≤ � |G − G′| , G, G′ ∈ [0, 1], 9 = 0, . . . , 2B.

Moreover, these functions are strictly monotonically increasing.

2. For each 5 ∈ � ([0, 1]B) there is 6 ∈ � ([0, B]), such that

5 (G1, . . . , GB) =
2B∑
9=0

6
(
_1q 9 (G1) + · · · + _Bq 9 (GB)

)
. (4.22)

Indeed, (4.22) looks like a neural network with one input layer with the universal
functions q 9 and coe�cients _: and an activation function 6 that depends on 5 .
It seems as if everything can be represented by a �at neural network. However,
there are some drawbacks:

1. As already mentioned, the function 6 has to depend on 5 and the proof in
[32] shows that 6 is the limit of an approximation process. On the other hand,
one might consider the optimization process to be exactly this approximation,
adapting 6 as good as possible to the finite knowledge one has about 5 .

144A function 5 is called Lipschitz continuous if | 5 (G) − 5 (H) | ≤ � |G − H |. This is significantly
stronger than continuity and can be interpreted as “controllable” continuity.
145This is often called Hölder continuous, Lipschitz is then Hölder with U = 1.
146These are finitely many functions, so we just take the largest constant and the smallest exponent.

4.6 Ridge functions and universality 97

Figure 4.7: Staircase functions q for a decomposition into 4 (left) and 8 (right)
pieces. The fractal nature of the functions can be recognized quite well.

2. The really di�cult thing is are the universal functions q 9 in Theorem 4.16:
they are monotonically increasing functions with q(0) = 0 and q(1) = 1
that are di�erentiable almost everywhere and satisfy 5 ′(G) = 0 at all such
points. Some functions of that sort are depicted in Fig. 4.7 and it can be
seen quite well that they have a somewhat fractal behavior. In particular, the
di�erential quotients satisfy

sup
G,G′∈[0,1]

q(G) − q(G′)
G − G′ = ∞.

3. This particularly means that there are regions of the function where very
small changes of the parameter lead to significant changes of the function
value which makes it tremendously unstable.

4. The proof of Theorem 4.16 also shows that the universal coe�cients _ 9 have
to be chosen as real numbers that are linearly independent over Q, another
property that is not so easily implemented on a computer, because such num-
bers have an in�nite �–adic expansion for any basis �.

In summary, even if Kolmogorov’s theorem looks a lot like an argument in favor
of neural networks, its components are not realizable in practice.

4.6 Ridge functions and universality

A more realistic approach to neural networks is based on not asking for a represen-
tation as done in Theorem 4.16, but to ask for density only.

De�nition 4.17 (Density). A subset - of a metric space X is called dense in X
if all elements of X can be approximated in arbitrary precision by an element of
G, i.e., for any Y > 0 and any G ∈ X there exists G′ ∈ - such that 3 (G, G′) < Y.

98 4 NEURAL NETWORKS

The functions that describe neurons are also a well-known and well-studied
class of functions and appear in fields like the Radon transform and Computed
Tomography.

De�nition 4.18. A function 5 : R= → R, given as 5 (G) = f(F · G + 1) with sigma
is called a ridge function. The space of all ridge functions is defined as

R = span {f(F · G + 1) : F ∈ R=, 1 ∈ R, f ∈ � (R)} .
Remark 4.19. Note that elements of R are of the form

=∑
9=1

f9
(
F 9 · G + 1

)
(4.23)

and thus represent a single layer feedforward network, so density results for ridge
functions automatically provide density results for neural networks, even with a
very simple topology.

Chosing f = (·): , : ∈ N0, and 1 = 0 already implies that R contains all linear
combinations of functions of the form (F · G): , i.e., all polynomials and is therefore
dense in � (R=) with the topology of uniform convergence on compact sets. This
means that 5= → 6 if and only if for any compact set Ω ⊂ R= we have

0 = lim
=→∞

max
G∈Ω
| 5= (G) − 6(G) | .

The more interesting question in our context is whether this property also holds
true if we fix a single f. Here the answer is “no” in general. Indeed, if f is a
polynomial of some degree =, then so is G ↦→ f(F · G + 1), and polynomials of
a fixed degree are not dense in � (R=) - we need all polynomials according to
Weierstrass’ theorem, cf. [11, 32].

To obtain some more insight we consider for f ∈ � (R) the set
R= (f) := span {G ↦→ f (F · G + 1) : F ∈ R=, 1 ∈ R} (4.24)

of ridge functions in = variables generated by the univariate function f. We follow
[44]147 and first consider density of R1(f) from which we will derive the density
of R= (f) for arbitrary = by making use of the density of R.

Proposition 4.20. If f ∈ �∞(R) is no polynomial, then R1(f) is dense148 in � (R).
Proof: We make use of the fact that for any nonpolynomial function f ∈ �∞(R)
there exists some b ∈ R such that f (:) (b) ≠ 0, : ∈ N0, see [44, p. 156] for references.
Since 1

ℎ
(f ((F + ℎ) · +b) − f (F · +b)) ∈ R1(f), it follows by the limit ℎ → 0 that

3
3F
f(FG + b) belongs to the closure of R1(f). By iteration, we can conclude that

R1(f) 3
3:

3F:
f(FG + b) = G: f (:) (FG + b) ,

and setting F = 0 yields that G:f (:) (b) ∈ R1(f), : ∈ N0. But the polynomials are
dense in � (R), hence R1(f) = � (R). �
147The results there are much more subtle and general, it is worthwhile to read this very accessible

survey.
148“Dense” here always means in the topology of uniform convergence on compact sets, which is

just natural in this context.

4.6 Ridge functions and universality 99

Proposition 4.21. If R1(f) is dense in � (R), then R= (f) is dense in � (R=).
Proof: We use almost standard approximation arguments. Given 5 ∈ � (Ω) for
some compact set Ω ⊂ R= and Y > 0, (4.23) and the density of R implies that there
exist functions149 6 9 ∈ � (R) and weights F 9 ∈ R= such that������ 5 (G) − =∑

9=1

6 9
(
F 9 · G

) ������ < Y

2
, G ∈ Ω.

Noting that the projections F 9 · Ω are compact subsets of R, 9 = 1, . . . , =, there
exist numbers D 9 : , 1 9 : ∈ R and coe�cients 2 9 : such that�����6 9 (G) − = 9∑

:=1

2 9 :f
(
D 9 :G + 1 9 :

) ����� < Y

2=
, G ∈ F 9 · Ω, 9 = 1, . . . , =.

Hence,������ 5 (G) − =∑
9=1

= 9∑
:=1

2 9 :f
(
D 9 :G + 1 9 :

) ������
≤

�����6 9 (G) − = 9∑
:=1

2 9 :f
(
D 9 :G + 1 9 :

) ����� + =∑
9=1

�����6 9 (G) − = 9∑
:=1

2 9 :f
(
D 9 :G + 1 9 :

) �����
≤ Y

2
+ = Y

2=
= Y,

which proves the claim. �

Combining Proposition 4.20 and Proposition 4.21, we finally have shown that
any continuous function can be approximated arbitrarily well by single layer feed
forward networks.

Corollary 4.22 (Universality Theorem). If f ∈ �∞(R) is no polynomial, then
R= (f) is dense in � (R=).

This Universality Theorem is surprisingly classical and has already been proved
in 1993 in [30]. To some extent, it was a reason why for a fairly long time people
considered single shallow networks almost exclusively, the second reason, however,
was the increased training complexity for deep networks. This has changed dra-
matically when the computing power of GPUs and the software frameworks for
training and application of deep networks made them widely accessible.

Remark 4.23. Meanwhile there exist di�erent types of Universality Theorems for
di�erent types of networks and di�erenty acitivation functions, most prominent
among them the now150 popular ReLU function

f(G) = (G)+ =
{
0, G < 0,

G, G ≥ 0,
G ∈ R.

In deep networks often a balance between the number of neurons and the depth
of the network becomes a relevant quantitative factor.
149The bias 1 9 is encoded in the function 6 9 .
150This was written in 2022.

100 4 NEURAL NETWORKS

4.7 Convolutional networks

One of the major fashion trends in recent151 machine learning is the rise of the
deep convolutional neural network (CNN), which combines the ideas of neural
networks with a classic from image processing, namely the �lter or convolution.

De�nition 4.24 (Signal space). The B–dimensional signal space ℓ(ZB) consists of
all sequences with indices in ZB. We interpret 2 ∈ ℓ(ZB) as a function 2 : ZB → R
and write 2(U) for its value at U ∈ ZB. By ℓ0(ZB) we denote the subspace152 of all
sequences whose 0–norm153

‖2‖0 := # {U : 2(U) ≠ 0} (4.25)

is finite.

An example of a one-dimensional signal, 3 = 1, is a sampled audio signal154, typcial
two dimensional examples are images where U ∈ ZB usually stands for an intensity
value of the pixel.

A fundamental concept in signal processing [18, 34, 61] is the following.

De�nition 4.25 (Convolution). Given 5 ∈ ℓ0(ZB) and 2 ∈ ℓ(ZB), the convolution
5 ∗ 2 ∈ ℓ(ZB) of the two is defined as

5 ∗ 2 :=
∑
U∈ZB

5 (U)2(· − U). (4.26)

Remark 4.26. The requirement that the �lter155 5 has finite support ensures that
the sum in (4.26) is locally �nite and hence the convolution is well–defined. A
filter with finite support is called FIR �lter.

The idea for convolutional neuronal networks emerges from the scattering trans-
form introduced in [35] which generalizes the notion of a �lterbank, see [61]. In
a filterbank, a signal 2 is decomposed into = “components” by the application of
filters:

2

51 ∗ 2 =: 21
↗
→ ...

↘
5= ∗ 2 =: 2=

This way however, the filterbank would create a much higher amount of information
or at least data than the original signal. Therefore, each of the signals is next
processed by means of downsampling which just keeps a part of each component
2: . The simplest way of downsampling is to use an expanding dilation matrix
" ∈ Z3×3 with all eigenvalues > 1 in modulus156 an consider 2: (" ·) instead.
151Written in 2018, trends and fashion may change while this lecture is taught.
152Prove that this is really a subspace. Is it closed?
153Is this a norm? The answer, by the way, is “no”.
154For example in a wav file.
155To be precise: the filter is usually the operator � : 2 ↦→ 5 ∗ 2 and 5 is called the impulse

response fo �. Since we do not do signal processing here, we allow ourselves to be a bit generous
with the terminology.
156Alternatively one could request that "−1 is a 157, in other words ‖"−: ‖ → 0 as : →∞.

4.7 Convolutional networks 101

Example 4.27. Setting " = < �, < ∈ N, results in the usual downsampling of an
image that just extracts every <th pixel.

The main idea in convolutional neural networks is now twofold: the role of the
weighted average

F0 +
=∑
9=1

F 9G 9

for the vector input G in a neuron is now taken by a convolution 5 ∗G applied to the
signal data G. The replacement of the activation function f, on the other hand,
is a possibly nonlinear function d that maps the signal to a signal of the same or
di�erent size; usually each layer reduces the size of the signal. The joint application
of downsampling and nonlinearity is usually called pooling in the world of machine
learning.

Example 4.28. A simple nonlinear choice, used in denoising of images, is to replace
any subimage of size < × < by the median of all values in this region.

Mathematically, this idea can be represented quite simply, following [36]. The 9th
level in the network consists of the application of a linear operator, 9 between two
signal spaces158, followed by the nonlinear function d, i.e,

G 9 = d
(
, 9G 9−1

)
, (4.27)

in our case
, 9G =

(
5 9 ∗ G

)
(" 9 ·) =

∑
U∈ZB

5 9 (U) G
(
" 9 · −U

)
, (4.28)

where again G 9−1 can be a vector of signals G 9−1,: and the operators , 9 ,: can be
independent of : or depend on : . The new G 9 is then again a vector of signals,
maybe from another signal space. It is illustrative to write (4.28) as matrix of linear
operators:

, 9G 9−1 =
©­­«
, 9 ,1,1 . . . , 9 ,1,= 9−1
...

. . .
...

, 9 ,= 9 ,1 . . . , 9 ,= 9 ,= 9−1

ª®®¬
©­­«
G 9−1,1
...

G 9−1,= 9−1

ª®®¬ , (4.29)

and then to apply d componentwise. This, of course, looks very much like the
setup in (4.13) and allows for a backpropagation training method where now the
variables are the nonzero filter coe�cients. Normally, CNNs reduce the size of the
images until, at final level 3, the images only consist of single pixels and then can
be processed by a “normal” neural network.

Remark 4.29. If one would use a downsampling of factor 2 and the same coef-
ficients on all levels as well as d(G) = G, one would obtain the standard wavelet
decomposition by filterbanks.

158These can be images of di�erent size.

102 5 UNSUPERVISED LEARNING AND CLUSTERING

Nur wissenschaftlich beweisen läßt es
sich niemals. Und deswegen kann ich
darauf keine Rücksicht nehmen.
(It just can never been proved
scienti�cally. And therefore I cannot
consider it.)

K. Laßwitz, Aspira

Unsupervised learning
and clustering 5

So far we considered methods in supervised learning where the training data
and the labels HG, G ∈ -, were known. In unsupervised learning, on the other
hand, only the data is known and the algorithm has to define the classification
itself. Once the labels are determined, we can then apply our favorite learning
method, for example SVM oder neural networks, to that classification and accept
that or refine the classification in the case of too many misclassifications by the
learning system.

The classical way to treat unsupervised learning is by first clustering that data
and then use the labels obtained from that clustering. Clustering itself usually
combines points that are close to another into a group.

5.1 –means clustering

We begin with the classical problem of decomposing a finite set - ⊂ X into159
clusters -1, . . . , - such that

- =

 ⋃
9=1

- 9 , - 9 ∩ -: = ∅, 1 ≤ 9 < : ≤ ,

where is a user supplied number. As soon as X is a metric space, one can
measure the dissimilarity of a cluster as

3 (- 9) =
∑

G,G′∈- 9
3 (G, G′), 9 = 1, . . . , ,

if X = R= for some =, we can particularly use

3 (- 9) =
∑

G,G′∈- 9
‖G − G′‖22 , 9 = 1, . . . , .

159To use or : for the number of clusters is “historical” and gave the name to the problem and
its major algorithm.

5.1 –means clustering 103

The optimal distribution of the clusters would then solve

min
-1,...,-

 ∑
9=1

3 (- 9) =
 ∑
9=1

∑
G,G ′∈- 9

‖G − G′‖22 . (5.1)

Since160∑
G,G ′∈- 9

‖G − G′‖22 =
∑

G,G′∈- 9

(
‖G‖22 − 2〈G, G

′〉 + ‖G′‖22
)

= 2#- 9
∑
G∈- 9
‖G‖22 − 2

∑
G,G′∈- 9

〈G, G′〉 = 2#- 9
©­«
∑
G∈- 9
‖G‖22 −

1

#- 9

∑
G,G′∈- 9

〈G, G′〉ª®¬
= 2#- 9

©­«
∑
G∈- 9
‖G‖22 −

2

#- 9

∑
G,G′∈- 9

〈G, G′〉 + 1

(#- 9)2
∑
G∈- 9

∑
G ′,G ′′∈- 9

〈G′, G′′〉ª®¬
= 2#- 9

∑
G∈- 9

©­«‖G‖22 − 2

#- 9

∑
G ′∈- 9

〈G, G′〉 + 1

(#- 9)2
∑

G ′,G ′′∈- 9
〈G′, G′′〉ª®¬

= 2#- 9
∑
G∈- 9

〈
G − 1

#- 9

∑
G ′∈- 9

G′, G − 1

#- 9

∑
G ′∈- 9

G′
〉
= 2#- 9

∑
G∈- 9

G − 1

#- 9

∑
G ′∈- 9

G′

2

2

,

we can as well minimize the distance from the respective center

2 9 :=
1

#- 9

∑
G ′∈- 9

G′, 9 = 1, . . . , ,

of the cluster - 9 which means that we can as well minimize

min
-1,...,-

 ∑
9=1

#- 9
∑
G∈- 9
‖G − 2 9 ‖22 . (5.2)

This is done by an simple alternating procedure.

Algorithm 5.1 (–means clustering). Given: - ⊂ X and ∈ N.

1. Initialize 2 9 , 9 = 1, . . . , , for example randomly in the convex hull [-].

2. Repeat

(a) Set

- 9 :=
{
G ∈ - : ‖G − 2 9 ‖2 ≤ ‖G − 2: ‖2, : ≠ 9

}
, 9 = 1, . . . , . (5.3)

(b) Recompute

2 9 :=
1

#- 9

∑
G ′∈- 9

G′, 9 = 1, . . . , . (5.4)

160And this nice identity holds in any Hilbert space.

104 5 UNSUPERVISED LEARNING AND CLUSTERING

until the value of (5.3) does not change any more.

Note that by Lemma 1.23 the step (5.4) could be seen as minimizing (5.2) for fixed
clusters with respect to the variables 2 9 while (5.3) minimizes with respect to - 9
for fixed centers. In this respect, Algorithm 5.1 is one of the heuristic alternating
optimization algorithms for the problem

min
-1,...,-

min
21,...,2

 ∑
9=1

#- 9
∑
G∈- 9
‖G − 2 9 ‖22 . (5.5)

Since in each step such algorithms reduce the target function which in turn is
bounded from below by zero, this process trivially guarantees at least convergence
of the values of the target function (5.2). However, here more is true.

Theorem 5.2. Algorithm 5.1 terminates after �nitely many steps.

Proof: There are
(#-+ −1

)
possible partitions which means that the target function

can only be improved for finitely many times. Since the partition determines the
centers, the expression (5.2) depends only on the partition. �

The –means Algorithm is known to work quite well if the clusters are ball–shaped
and uniform, but in many cases it can get stuck in a local minimum, even if the
stopping criterion

if the partition in some step has been encountered before161

is used.

Remark 5.3 (–means clustering).

1. It is well–known that the –means algorithm is very sensitive to initialization
and there are heuristic strategies to do as good a job as possible there.

2. It could even happen during the algorithm that, because of poor choice of
centers, one gets - 9 = ∅ for some 9 . Also this should be taken into account
and handled appropriately. For example, one could give the element with
largest dissipation, i.e., the solution of

max
G∈-

min
9=1,...,:

‖G − 2 9 ‖2

a cluster “of its own”.

3. Generally, –means clustering is, like many combinatorial problems, an NP
hard problem.

4. The algorithm does not provide so called certi�cates for optimality, i.e.,
a number or a condition from which one can read o� that an optimum is
reached or not when the algorithm becomes stationary.

161If this happens, the algorithm would run in a loop and the target function cannot be improved
any further by the algorithm.

5.1 –means clustering 105

The classical application of –means clustering is quantization, the task of re-
ducing a large number of measurements to a small number of values in an e�cient
way. This is a major issue in image processing.

Example 5.4 (RGB color quantization). Suppose a picture with high resolution
RGB162 has to be encoded with a color table of only 256 colors which happens for
example in the GIF graphics format and also was used in earlier PC graphics cards.
Nevertheless, each value in the table can be a high definition color description
which makes the quantization to 256 “best” colors exactly a problem of –means
clustering with = 256.

Because of its discrete structure, the –means problem cannot be accessed by
continuous methods like descent algorithms. To facilitate that, one reformulates
the modified problem of average blockwise dissipation

min
-1,...,-:

 ∑
9=1

∑
G∈- 9
‖G − 2 9 ‖22 ⇔ min

-1,...,-:

 ∑
9=1

1

#- 9

∑
G,G′∈- 9

‖G − G′‖22 (5.6)

in a continuous way for which we need some additional terminology.

De�nition 5.5 (Frobenius norm). The Frobenius norm of a matrix � ∈ R<×=,
defined as

‖�‖� :=
<∑
9=1

=∑
:=1

029 : , (5.7)

is the norm of the Hilbert space of all < × = matrices equipped with the inner
product

〈�, �〉 =
<∑
9=1

=∑
:=1

0 9 : 1 9 : . (5.8)

Note that the inner product can be rewritten for �, � ∈ R<×= as

〈�, �〉 =

<∑
9=1

=∑
:=1

0 9 :1 9 : =

=∑
ℓ=1

<∑
9=1

=∑
:=1

X:ℓ0 9 :1 9ℓ

=

=∑
:,ℓ=1

X:ℓ

<∑
9=1

0 9 :1 9ℓ︸ ︷︷ ︸
=(�) �):ℓ

=

=∑
:=1

(�)�):: = trace (�)�)

where the trace of a square matrix is defined as the sum of its diagonal elements,

trace (�) =
=∑
9=1

0 9 9 , � ∈ R=×=. (5.9)

Therefore, we can rewrite the target function 〈�- , /〉 also as trace (�)
-
/) which is,

in fact, done quite frequently.

162Red, Green, Blue, one of the standard color models; any color model is the same here, more
about color models and transformation matrices between them can, for example, be found in [13].

106 5 UNSUPERVISED LEARNING AND CLUSTERING

De�nition 5.6 (Distance matrix). The Euclidean distance matrix �- for a finite
set - ⊂ X is defined as

�- :=
[
‖G − G′‖22 : G, G′ ∈ -

]
∈ R#-×#- . (5.10)

With this terminology we can express the target function of (5.6) as

〈�- , /〉, / =

 ∑
9=1

1

#- 9
j(- 9) j(- 9)) ,

with the discrete characteristic function

R- 3
(
j(- 9)

)
G
= j(- 9) (G) =

{
1, G ∈ - 9 ,
0, G ∉ - 9 ,

9 = 1, . . . , .

Due to this definition it follows immediately that(
j(- 9) j(- 9))

)
G,G′

= j(- 9) (G) j(- 9) (G′) =
{
1, G, G′ ∈ - 9
0, otherwise,

G, G′ ∈ -.

The partition matrix / has some properties. First,

/1 =
 ∑
9=1

1

#- 9
j(- 9) j(- 9))1︸ ︷︷ ︸

=#- 9

=

 ∑
9=1

j(- 9) = 1,

which is a simple linear constraint. Moreover, we have that

/j(-:) =
 ∑
9=1

1

#- 9
j(- 9) j(- 9)) j(-:)︸ ︷︷ ︸

=#- 9 X 9:

= j(-:), : = 1, . . . , ,

hence / is a rank matrix with the –fold eigenvalue 1. In addition and obvi-
ously, /) = / and / ≥ 0 in the sense that IG,G ′ ≥ 0, G, G′ ∈ - . Another property
is

/)/ = /2 =

 ∑
9=1

1

#- 9
j(- 9) j(- 9))

 ∑
:=1

1

#-:
j(-:) j(-:))

=

 ∑
9 ,:=1

1

#- 9 #-:
j(- 9) j(- 9)) j(-:)︸ ︷︷ ︸

=X 9:#- 9

j(-:)) =
 ∑
9=1

1

#- 9
j(- 9) j(- 9)) = /,

hence / is a projection and since

H)/H =

 ∑
9=1

1

#- 9

(
H) j(- 9)

)2︸ ︷︷ ︸
≥0

≥ 0,

5.1 –means clustering 107

the matrix is also positive semide�nite.
These nondiscrete properties allow us to reformulate the clustering problem in

various ways and then to relax i.e., to drop some of the constraints and to optimize
over a larger feasible set.

In this way, we can be begin to reformulate of the optimization problem (5.6),
for example as

min 〈�- , /〉 subject to /) = /,
/1 = 1,
/ ≥ 0,

_1(/) = · · · = _ (/) = 1,
_ +1(/) = · · · = _#- (/) = 0.

(5.11)
We first note that we can drop the symmetry request: if / is a minimizer of (5.11),
then 〈

�- , /
)
〉
=

〈
�)- , /

〉
= 〈�- , /〉 ⇒

〈
�- ,

1

2
(/ + /))

〉
= 〈�- , /〉,

hence there always exists a symmetric minimizer, provided that we also require
/)1 = 1, which is again only a linear constraint. This leads to

min 〈�- , /〉 subject to
/1 = /)1 = 1,
/ ≥ 0,

_1(/) = · · · = _ (/) = 1,
_ +1(/) = · · · = _#- (/) = 0.

(5.12)

This involves a class of well–known matrices that are useful and well–studied, not
only in the world of probability.

De�nition 5.7. A square matrix / ∈ R=×= with / ≥ 0 and /1= = /)1= = 1= is
called doubly stochastic.

Relaxations and variants of the above problems are considered, for example in [43,
4]. However, the solutions of the relaxed problems may not be partition matrices
any more, and there are usually some conditions but fortunately there is another
reformulation with a relatively simple converse result. Here we consider partition
matrices of the form

. :=
 ∑
9=1

1√
#- 9

j(- 9)4)9 ∈ R#-×

where we write the characteristic vectors as columns of a matrix . . We have, in
the usual manner,

R × 3 .). =
 ∑

9 ,:=1

1√
#- 9 #-:

4 9 j(- 9)) j(-:)︸ ︷︷ ︸
=X 9:#- 9

4): =

 ∑
9=1

4 94
)
: = �,

and

R#-×#- 3 ..) =
 ∑

9 ,:=1

1√
#- 9 #-:

j(- 9) 4)9 4:︸︷︷︸
=X 9:

j(-:)) =
 ∑
9=1

1

#- 9
j(- 9)j(- 9)) = /,

108 5 UNSUPERVISED LEARNING AND CLUSTERING

hence ..)1 = /1 = 1, as well as . ≥ 0.
We can also describe the problem by means of . taking into account that,

recalling the computations that related (5.1) and (5.2),

1

2#- 9

∑
G,G ′∈- 9

‖G − G′‖22 =
∑
G∈- 9
‖G‖22 −

1

#- 9

∑
G,G′∈- 9

〈G, G′〉

and that ∑
G,G′∈- 9

〈G, G′〉 = j(- 9)) �- j(- 9), �- = [〈G, G′〉 : G, G′ ∈ -] .

Therefore,

j(-1)) �- j(-1)
#-1

. . .

j(-)) �- j(-)
#-


=

 ∑
9=1

1

#- 9
4 94

)
9 j(- 9)) �- j(- 9)

= .)�-.,

so that we can express the summed average dissimilarity of the clusters as

1

2

 ∑
9=1

1

#- 9

∑
G,G ′∈- 9

‖G − G′‖22 =
∑
G∈-
‖G‖22 − trace (.

)�.)

and minimizing the target functions in (5.6) is equivalent to

max
.

trace (.)�-.) subject to . ≥ 0,
.). = �,

..)1 = 1.
(5.13)

This is a continuous formulation but the constraints in (5.13) are chosen such that
only partition matrices are feasible.

Lemma 5.8. If � ∈ R-× is a matrix such that � ≥ 0, �) � = � and ��)1 = 1, then
� is a partition matrix.

Proof: The property �) � = � means that the columns 0 9 =
[
0G, 9 : G ∈ -

]
of

� = [01, . . . , 0] are orthogonal and since � ≥ 0 the property

0 = 0)9 0: , 9 ≠ :

can only be obtained if

(0 9)G > 0 ⇒ (0:)G = 0, 9 ≠ :.

Consequently, any row of � contains at most one nonzero element. Now

��)1 =
©­«

 ∑
9 ,:=1

0 94
)
9 4:0

)
:

ª®¬ 1 =
(
 ∑
9=1

0 90
)
9

)
1 =

 ∑
9=1

(0)9 1)0 9 ,

5.2 Spectral clustering 109

and since the supports of the 0 9 are disjoint, we have that for any G ∈ -

1 = (��)1)G =
 ∑
9=1

(0)9 1)0 9G = (0)9 (G)1)0 9 (G) ,

if and only if

0 9G > 0 ⇒ 0 9G =
1

0)
9
1
,

hence the weight is uniform for all points that belong to the 9th cluster. �

Theorem 5.9. The optimization problems (5.6) and (5.13) are equivalent.

5.2 Spectral clustering

This next clustering method was originally developed for graph theoretic consid-
erations but is nowadays used as a good initializer for –means clustering; more
precisely, –means clustering is even included as a “second step” in spectral clus-
tering methods.

De�nition 5.10 (Graphs).

1. A graph � consists of a set + of vertices and � ⊂ + × + of edges. An edge
4 = (E, E′) ∈ � connects the vertex E with the vertex E′.

2. An undirected graph is characterized by a symmetric edge set � , i.e.,
(E, E′) ∈ � i� (E′, E) ∈ � .

3. A complete graph is a graph where � = + ×+ .

4. An adjacency matrix , = [FE,E′ : E, E′ ∈ +] ∈ R+×++ defines nonnegative
weights for the edges and has to satisfy FE,E′ > 0 if (E, E′) ∈ � and FE,E′ = 0
if (E, E′) ∉ � .

The simplest adjacency matrix is given by the incidence matrix

FE,E′ =

{
1, (E, E′) ∈ �,
0, (E, E′) ∉ �, E, E′ ∈ +.

The idea is to consider the complete undirected graph with vertex set - and then
to decompose it into subgraphs. As adjacency matrix one uses

, = �- , i.e. FG,G′ = ‖G − G′‖22 , G, G′ ∈ -, (5.14)

or more generally

FG,G′ = 5

(
‖G − G′‖22

)
, G, G′ ∈ -, (5.15)

where 5 : R+ → R+ is a strictly monotonic function like 5 (G) = 4G or 4−G .

110 5 UNSUPERVISED LEARNING AND CLUSTERING

The next step is to do analysis on the graph. To that end, we recall the Laplace
operator or Laplacian, defined as

Δ 5 =

B∑
9=1

m2

mG2
9

5 , 5 ∈ �2(RB),

which is the most investigated di�erential operator and the prototype of so called
elliptic di�erential operators, cf. [14, 15]. If 5 is only defined on the grid ZB, the
(centered) discrete Laplacian is defined as163

Δ 5 =
1

B

(
B∑
9=1

5 (· + n 9) − B 5 (·)
)
.

The bivariate discrete Laplacian is used frequently in image processing as a tech-
nique for edge detection, cf. [19, 48]. This concepts is now extended to graphs.

De�nition 5.11 (Graph Laplacian). For an undirected graph � = (+, �) with
adjacency matrix164 , we define

1. the degree matrix

� := diag [3E : E ∈ +] , 3E :=
∑
E′∈+

FE,E′ . (5.16)

2. the graph Laplacian

! = Δ� = � −, ∈ R+×+ . (5.17)

Proposition 5.12. The graph Laplacian satis�es

H)!H =
1

2

∑
E,E′∈+

FE,E′ (HE − HE′)2 , H ∈ R+ (5.18)

and therefore

1. ! is symmetric positive semide�nite matrix,

2. ! has the smallest eigenvalue 0 with eigenvector 1,

3. ! has nonnegative eigenvalues 0 = _1 ≤ · · · ≤ _#+ .
163In one variable, this is the divided di�erence

[: − 1, :, : + 1] 5 = 5 (: − 1) − 2 5 (:) + 5 (: + 1)
2

.

164Keep in mind that , is influenced by � .

5.2 Spectral clustering 111

Proof: We verify (5.18) by computing

H)!H = H)�H − H),H =
∑
E∈+

3EH
2
E −

∑
E,E′∈+

FE,E′HEHE′

=
∑
E,E′∈+

FE,E′H
2
E −

∑
E,E′∈+

FE,E′HEHE′

=
1

2

∑
E,E′∈+

FE,E′H
2
E +

1

2

∑
E,E′∈+

FE,E′H
2
E′ −

∑
E,E′∈+

FE,E′HEHE′

=
1

2

∑
E,E′∈+

FE,E′
(
H2E − 2HEHE′ + H2E′

)
=
1

2

∑
E,E′∈+

FE,E′ (HE − HE′)2 ,

where we used the definition (5.16) and the fact that � is undirected. From (5.18)
the properties 1) and 3) follow directly while for 2) we note that

(!1)E = 3E −
∑
E′∈+

FE,E′ = 0,

which shows that !1 = 0. �

Proposition 5.13. The number of connected components of an undirected graph equals
the number of its zero eigenvalues. The eigenspace for 0 is spanned by the characteristic
vectors of these components.

Proof: The proof uses induction on : , the number of connected components.
If : = 1, i.e., we have a connected graph, we have to show that 1 is the only

eigenvector for the eigenvalue 0. To that end, assume that H is an eigenvector for
0, then

0 = H) !H︸︷︷︸
=0

=
1

2

∑
E,E′∈+

FE,E′ (HE − HE′)2

which can only vanish if all the summands equal zero. Since 5 is connected, we
have that FE,E′ > 0, E, E′ ∈ + , hence HE = HE′, E, E′ ∈ + , and therefore H = _1 for
some _ ≠ 0.

Now suppose that : > 1 and that +1, . . . , +: are the connected components. By
applying a suitable permutation % that orders + in the order +1, . . . , +: , and taking
into account that � is diagonal, we get that

%),% =


,1

. . .

,:

 ⇒ %)!% =


!1

. . .

!:

 ,
with , 9 , ! 9 ∈ R+ 9×+ 9 , where each ! 9 is the graph Laplacian for the connected
subgraph + 9 , hence ! 91 = 0 and 1 is the only zero eigenvalue for ! 9 as we showed
in the first part of the proof. Consequently, the eigenvectors of ! for the eigenvalue

112 5 UNSUPERVISED LEARNING AND CLUSTERING

0 are precisely

%)



0
...

0
1! 9
0
...

0


= j(+ 9), 9 = 1, . . . , :,

which completes the proof. �

In the same way as we can sum over dissimilarity or weighted dissimilarity, there
is also the concept of a normalized graph Laplacian, where one considers

! := � − �−1/2,�−1/2 or ! := � − �−1,,

where the version on the left hand side has the advantage of being symmetric.
Spectral clustering again starts with the data - ∈ R= and builds a similarity

graph from the data. There are di�erent ways to set up such a similarity graph:

1. neighborhood graph: for given Y > 0 one sets

(G, G′) ∈ � ⇔ ‖G − G′‖2 ≤ Y,

and extend the edge set symmetrically.

2. nearest neighbor: for a given index : one finds the : nearest neighbors of
G, i.e.

#: (G) := {G′ ∈ - : #{G′′ ∈ - : ‖G − G′′‖2 ≤ ‖G − G′‖2} ≤ :}

and sets
(G, G′) ∈ � ⇔ G′ ∈ #:,G (G).

Also this graph is then extended symmetrically165.

3. connected graph: one simply sets � = - × - .

Next, the weight matrix is set up according to distance. Since small distance cor-
responds to large similarity and since a cluster should contain similar objects, it is
reasonable to use

FG,G ′ = 4
−‖G−G ′‖22/f, f > 0, (5.19)

where the parameter f controls the decay of the weights or

FG,G ′ =

(
U + ‖G − G′‖22

)−V
, U, V > 0. (5.20)

Having set up the adjacency matrix one can compute the graph Laplacian and its
first166 eigenvalues _1, . . . , _ with eigenvectors F1, . . . , F . If the graph would

165“Nearest neighbor” is not a symmetric relationship.
166Smallest.

5.3 Dimension reduction by PCA 113

decompose into subgraphs, which would be the perfect clustering167, then these
eigenvalues would be of the form j(- 9) for the clusters indicated by the graph
decomposition. That means that the matrix matrix

[E1, . . . , E] = [j(-1), . . . , j(-)] ∈ R-×

has only one nonzero entry of value one in each row and this entry tells us to which
cluster the element of - that indexes this row belongs.

Normally, however, the graph Laplacian will only zero as single eigenvalue, but
nevertheless one applies the same strategy and tries to use it in a best possible way.

Algorithm 5.14 (Spectral clustering).
Given: - ⊂ X and the number of clusters.

1. Build a similarity graph � and an adjacency matrix , based on - to form a
graph Laplacian ! ∈ R-×- .

2. Compute the smallest eigenvalues168 of , and the associated eigenvectors
E1, . . . , E ∈ R- .

3. Consider the rows HG ∈ R , G ∈ -, of the matrix + = [E1, . . . , E] and cluster
them in R with a –means clustering algorithm into clusters .1, . . . , . .

4. Define clusters -1, . . . , - by

- 9 :=
{
G ∈ - : HG ∈ . 9

}
, 9 = 1, . . . , .

Result: Decomposition - = -1 ∪ · · · ∪ - with - 9 ∩ -: = ∅, 9 ≠ : .

There is much more to spectral clustering than the above heuristical argument that
shows that if the graph decomposes properly then the spectral clustering finds this
decomposition. In fact, spectral clustering is closely related to graph cutting, see
e.g. [29] but that would, unfortunately, lead to far for this lecture here.

5.3 Dimension reduction by PCA

One of the most classical methods to extract features or important components
from data is the so called principal component analysis or PCA for short. It
tries to eliminate linear relations between the data.

Example 5.15. Suppose we have data in R= but all this data lies in the G1–G2–
plane, that is, all points are of the form G = (G1, G2, 0, . . . , 0). This should be
detected before clustering the points. Of course, this should work for any lower
dimensional linear space.

167For example because by accident the Y had been chosen perfectly in a neighborhood graph
168This is a standard though nontrivial task of Numerical Linear Algebra, cf. [16].

114 5 UNSUPERVISED LEARNING AND CLUSTERING

The starting point is data - ⊂ R= that is grouped into a matrix

- =

[
G 9 :

G ∈ -
9 = 1, . . . , =

]
∈ R-×=.

The main mathematical concept behind the PCA is a classical matrix decomposi-
tion from Numerical Linear Algebra, see [16, 21, 49].

Theorem 5.16 (SVD). For any matrix � ∈ R<×= there exist orthogonal matrices169
* ∈ R<×< and + ∈ R=×= and a diagonal matrix170 Σ ∈ R<×= such that

� = *Σ+) , f11 ≥ · · ·f:: ≥ 0, : := min(<, =). (5.21)

De�nition 5.17 (SVD). The decomposition (5.21) is called singular value de-
composition or SVD of �. The numbers f9 = f9 9 , 9 = 1, . . . ,min(<, =), are
called the singular values of � and the columns171 of * and + are called left or
right singular vectors respectively.

Remark 5.18. There are several properties of the SVD that make it an important
tool in any sort of matrix computations.

1. There exist e�cient algorithms to compute the SVD, see [16] and this is much
easier than determining all the eigenvalues of the matrix �. Matlab contains
a function svd for that purpose.

2. The rank of the matrix can be read o� the SVD as the number of positive
singular values: if

f1 ≥ · · · ≥ f: > f:+1 = · · · = fmin(<,=) = 0,

then the rank of � is : . This can also be used for numerical rank detection
of a matrix by thresholding the singular values.

3. Since the Frobenius norm of a matrix � is orthogonally invariant it follows
immediately that

‖�‖2� = ‖*) �+ ‖22 = ‖Σ‖
2
2 = trace (Σ)Σ) =

min(<,=)∑
9=1

f2
9 . (5.22)

4. The Euclidean operator norm

‖�‖2 := sup
G≠0

‖�G‖2
‖G‖2

= max
‖G‖2=1

‖�G‖2 = max
‖G‖2=1

√
G) �) �G

is also orthogonally invariant:

‖&�&′‖22 = max
‖G‖2=1

‖&�&′G‖22 = max
‖&′G‖2=1

G) � &)&︸︷︷︸
=�

�G = max
‖G‖2=1

‖�G‖22 = ‖�‖
2
2 .

169A square matrix � is called an orthogonal matrix if �) � = ��) = �, i.e., if its row and
column vectors are orthonormal, respectively.
170A nonsquare matrix � is called diagonal if 0 9: = 0 whenever 9 ≠ : .
171This is the reason for the “+) ” in (5.21): we can then speak of the columns in both cases.

5.3 Dimension reduction by PCA 115

Therefore,

‖�‖2 = ‖*Σ+) ‖2 = ‖Σ‖2 = max
9=1,...,min(<,=)

f9 = f1.

Rewriting (5.21) with respect to the rows and columns of* and + , we can rephrase
Theorem 5.16 in the following way.

Corollary 5.19 (SVD revisited). For any matrix � ∈ R<×= of rank A = A (�) there
exist orthonormal vectors D1, . . . , DA ∈ R< and E1, . . . , EA ∈ R= as well as positive real
numbers f1 ≥ · · · ≥ fA > 0 such that

� =

A (�)∑
9=1

f9 D 9E
)
9 . (5.23)

The SVD plays a fundamental role in the problem of approximating linear sub-
spaces by linear subspaces of lower dimension. The first concrete question is how
to determine so called best fit subspaces that explore the range of a matrix in a best
possible way or, in other words, find the dominant lower dimensional subspace of
the space defined by the columns of the matrix. And the answer is the SVD.

De�nition 5.20. A subspace , ⊂ R= of dimension : ≤ = is called a best �t
subspace of dimension : for � ∈ R<×= if it solves

max
,=[F1,...,F:]

:∑
9=1

‖�F 9 ‖22 , subject to ,), = � . (5.24)

The constraint in (5.24) requests that the F 9 form an orthonormal basis for the
:–dimensional subspace ,R: .

Proposition 5.21. The best �t subspace of dimension : ≤ A (�) for � = *Σ+) is
+: = [E1, . . . , E:] and it is unique if f: > f:+1.

Proof: The first observation is that

:∑
9=1

‖�F 9 ‖22 =
:∑
9=1

‖�,4 9 ‖22 =
:∑
9=1

4)9 ,
) �) �,︸ ︷︷ ︸
∈R:×:

4 9 = trace (,) �) �,),

that is
:∑
9=1

‖�F 9 ‖22 = ‖�, ‖
2
� . (5.25)

Using the SVD, we next find that

‖�F 9 ‖22 = ‖*Σ+
)F 9 ‖22 = F

)
9+Σ *

)*︸︷︷︸
=�

Σ+)F 9 ‖22 = F
)
9+Σ

2+)F 9 = ‖Σ+)F 9 ‖22

i.e.,

‖�F 9 ‖22 =
A (�)∑
ℓ=1

f2
ℓ

(
E)ℓ F 9

)2
(5.26)

116 5 UNSUPERVISED LEARNING AND CLUSTERING

where

1 = ‖F 9 ‖22 = F
)
9 ++

)︸︷︷︸
=�

F 9 = ‖+)F 9 ‖22 =
=∑
ℓ=1

(
E)ℓ F 9

)2
.

After these preliminaries, we use induction on : . In the case : = 1 we have to
optimize (5.26) and since

‖�F‖22 =
A (�)∑
ℓ=1

f2
ℓ︸︷︷︸
≤f1

(
E)ℓ F

)2
≤ f1

A (�)∑
ℓ=1

(
E)ℓ F

)2
︸ ︷︷ ︸

=1

= f1 = ‖�E1‖22 ,

the vector E1 is a minimizer and it is unique i� f1 > f2. For the induction step
: → : + 1, : ≥ 1, we suppose that , ∈ R<×:+1 maximizes (5.25). Since the
homogeneous linear system

0 = +):,︸︷︷︸
∈R:×:+1

G, G ∈ R:+1

has at least one nontrivial solution, , ∩+⊥
:
≠ {0} and we can assume that F:+1 ⊥

+: . Then, be the induction hypothesis

‖�, ‖2� =
:∑
9=1

‖�F 9 ‖22 + ‖�F:+1‖
2
2 ≤

:∑
9=1

‖�E 9 ‖22 + ‖�F:+1‖
2
2 ,

and [+ F:+1] performs as least as good as , and, since E)
9
F:+1 = 0, 9 = 1, . . . , : ,

‖�, ‖2� =
:∑
9=1

f2
9 +

A (�)∑
ℓ=:+1

f2
ℓ︸︷︷︸

≤f:+1

(
E)ℓ F:+1

)2
which is maximized for F:+1 = E:+1. Uniqueness172 follows like above. �

Theorem 5.22 (Best approximation of lower rank). Let � = *Σ+) ∈ R<×= and
: ≤ min(<, =) be given. Then the solution of the problem

min
�
‖� − �‖2 subject to rank � = :, (5.27)

is given by

� = �: := *Σ:+
) := *



f1
. . .

f:
0

. . .

0


+) . (5.28)

The solution of (5.27) is unique i� f: > f:+1 and the error is

‖� − �‖2 = f:+1. (5.29)
172In terms of subspaces, not in term of matrices!

5.3 Dimension reduction by PCA 117

Proof: The proof is taken from [16]. We can restrict ourselves to : < A (�) as
otherwise � := � is the obvious solution of (5.27).

We first note that due to the orthogonal invariance of the Euclidean norm the
matrix �: from (5.28) satisfies

‖� − �: ‖22 = ‖* (Σ − Σ:)+
) ‖22 = ‖Σ − Σ: ‖

2
2 = max

9>:
f2
9 = f

2
:+1.

Now let � ∈ R<×= be any matrix of rank : < A (�). This means173 that there
exist orthonormal vectors G1, . . . , G=−: such that �G 9 = 0. Since : < A (�) we have
f1 ≥ · · · ≥ f:+1 > 0 and

span {G1, . . . , G=−: } ∩ span {E1, . . . , E:+1} ≠ {0}

since otherwise the two bases in R= would span an =+1–dimensional space. Hence,
there exists

I ∈ span {G1, . . . , G=−: } ∩ span {E1, . . . , E:+1} , ‖I‖2 = 1.

Since E:+2, . . . , EA (�) ∈ +⊥:+1, we have that

�I =

A (�)∑
9=1

f9D 9E
)
9 I =

:+1∑
9=1

f9D 9E
)
9 I

it follows that

‖� − �‖22 ≥ ‖(� − �)I‖22 = ‖�I‖
2
2 = (�I)

) �I =

(
:+1∑
9=1

f9D 9E
)
9 I

) (
:+1∑
ℓ=1

fℓDℓE
)
ℓ I

)
=

:+1∑
9 ,ℓ=1

f9fℓI
)E 9 D

)
9 Dℓ︸︷︷︸
=X 9 ,ℓ

E)ℓ Iℓ =

:+1∑
9=1

f2
9 (E)9 I)2 ≥ f:+1

:+1∑
9=1

(E)9 I)2︸ ︷︷ ︸
=‖I‖22=1

= f:+1

which shows that ‖� − �: ‖2 ≤ ‖� − �‖2 for any matrix � of rank : . �

An analogy for Theorem 5.22 also holds in terms of the Frobenius norm. We state
it without proof next.

Theorem 5.23 (Best approximation of lower rank). Let � = *Σ+) ∈ R<×= and
: ≤ min A (�) be given. Then the solution of the problem

min
�
‖� − �‖� subject to rank � = :, (5.30)

is given by
� = �: := *Σ:+

) . (5.31)

The solution of (5.30) is unique i� f: > f:+1 and the error is

‖� − �‖2� =
A (�)∑
9=:+1

f2
9 . (5.32)

173The well–known result from Linear Algebra that the rank and the dimension of the kernel
always add up to the dimension of the space multiplied to a matrix.

118 5 UNSUPERVISED LEARNING AND CLUSTERING

Therefore, the SVD is an answer to the problem of approximating a vector space,
represented by the matrix of a generating system, by a subspace of dimension : :
Compute the SVD of the matrix

� =

A (�)∑
9=1

f9D 9E
)
9

and keep

�: =

:∑
9=1

f9D 9E
)
9 = *:Σ:+

)
: , *: ∈ R<×: , Σ: ∈ R:×: , +: ∈ R<×: .

Then the columns of *: are still orthonormal, i.e., **) = � but not necessarily
) = �, and span the best :–dimensional subspace of �R<, while the columns of
+: define the projection onto that space.

Figure 5.1: The three grayscale images

Figure 5.2: The subsampled images.

Example 5.24. As an example, we apply the SVD to the three images of Fig. 5.1,
more precisely to the subsampled174 versions of Fig. 5.2. The results are depicted in
Fig. 5.3. The first and third singular vector show common structure and di�erence
of the two first, very similar images while the one in the middle is more or less the
third image which is recognized as “di�erent”.

174For serious learning applications one needs more sophisticated image processing routines.

5.3 Dimension reduction by PCA 119

Figure 5.3: The singular vectors of the image matrix. The respective singular
values are 2.1×104, 2.8×103 and 1.2×103, hence the first image part dominates
significantly.

Thus, the PCA serves as a dimension reduction by projecting any vector G on the
subspace spanned by *: via +: . This can be used to attribute objects to learned
objects, for example testing a picture with the result that it is “60% image one and
40% image two”.
There is a simple reason why the images were downsampled as in Fig 5.2: octave
was refusing to compute the SVD since the columns were too large with 750000
entries; the original image size is 750 × 1000. On the other hand, especially for
huge matrices with big high dimensional data, we are not interested in computing
all singular values but only the leading, i.e., largest ones. This can be done by the
following greedy procedure.

Algorithm 5.25 (Greedy SVD).
Given: matrix � ∈ R<×=.

1. Set �0 := � and : = 1.

2. Repeat

(a) Solve the optimization problem175

min
D,E

D) �:E subject to ‖D‖2 = ‖E‖2 = 1,

and call the solutions D: and E:

(b) Set f: := D): �:E: .

(c) Set176

�:+1 := �: − f:D:E):
and replace : by : + 1.

until f: = 0.

175This is minimizing a bilinear form, however not necessarily an inner product which would
require � to be symmetric and (strictly) positive de�nite.
176Of course this step is only performed if f: ≠ 0.

120 5 UNSUPERVISED LEARNING AND CLUSTERING

Result: SVD

� = [D1, . . . , D:]

f1

. . .

f:

 [E1, . . . , E:]
) .

A particular advantage of this algorithm is that it can be stopped even if f: ≠ 0,
for example if this number is su�ciently small since then we automatically have an
estimate on the quality of the approximation with respect to the Euclidean operator
norm, see Theorem 5.22.

Theorem 5.26 (Greedy SVD). The greedy algorithm177 5.25 computes the SVD.

Proof: Beginning with the first step, we note that there must be Lagrange mul-
tipliers _E, _F such that

0 = �E − 2_D D,
0 = �)D − 2_E E.

If � ≠ 0, the maximum must be positive178 and therefore _D_E ≠ 0. Hence,

D =
1

2_D
�E and E =

1

2_E
�)D

so that179

D) �E = 2_D D
)D = 2_D = 2_E ⇒ _D = _E =

f

2
,

and

D =
1

4_D_E
��)D =

1

f2
�) �D, E =

1

4_D_E
��)E =

1

f2
��)E.

Therefore we set f1 = f, D1 = D and E1 = E with �E = fD and �)D = fE.
Now suppose that after : steps of the greedy iteration we computed f9 , D 9 and

E 9 where the D 9 and the E 9 are mutually orthonormal180. Moreover, with

�ℓ := � −
ℓ∑
9=1

f9 D 9E
)
9 , ℓ = 1, . . . , :,

we also assume that

f9 := max
‖D‖=‖E‖=1

D) � 9−1E and � 9−1E 9 = f9D 9 , �)9−1D 9 = f9E 9 ,

177A greedy algorithm optimizes a subproblem or a local problem in each step. In general greedy
algorithms cannot be guaranteed to converge to a global optimum, but under some circumstances
they do. Like here.
178If it were negative, multiply either D or E by −1; that’s the beauty of bilinear forms, even of

multilinear forms in general.
179By symmetry and definition of f.
180Which is trivially satisfied for : = 1 where it was only a normalization issue.

5.3 Dimension reduction by PCA 121

and that D 9 and E 9 are eigenvectors of � 9−1�)9−1 and �
)
9−1� 9−1, respectively, for the

eigenvalue f2
9
, 9 = 1, . . . , : . All that has been ensured for : = 1. Since the optimal

solution D, E satisfies

f := D) �:E = D
) �E −

:∑
9=1

f9 (D)9 D) (E)9 E), (5.33)

the Laplace multiplier requirements become

0 =

(
� −

:∑
9=1

f9 D 9E
)
9

)
E − 2_D D,

0 =

(
� −

:∑
9=1

f9 D 9E
)
9

))
D − 2_E E

and _E = 0 would imply

�)D =

:∑
9=1

f9 (D)9 D)E 9 ⇒ D) �E =

:∑
9=1

f9 (D)9 D) (E)9 D).

Plugging this into (5.33) results in D) �:E = 0 and therefore �: = 0. Hence f > 0
again implies that _D_E ≠ 0. Consequently,

D =
1

2_D
�:E ⇒ E =

1

4_D_E
�): �:E,

and also 2_E = �
)
:
D. Again,

f = D) �:E = 2_DD
)D = 2_EE

)E ⇒ _D = _E =
f

2
,

and D and E are the eigenvectors of �:�): and �
)
:
�: for the eigenvalue f2, respec-

tively. Since �: = �:−1 − f: D:E): , orthogonality gives

�): �: =

(
�:−1 − f: D:E):

)) (
�:−1 − f: D:E):

)
= �):−1�:−1 + f

2
: E:E

)
: − f:

(
�):−1D:E

)
: + E:D

)
: �:−1

)
= �):−1�:−1 + f

2
: E:E

)
: − f:

(
f:E:E

)
: + f:E:E

)
:

)
= �):−1�:−1 − f

2
: E:E

)
: ,

so that181, by induction,

�): �: = �
) � −

:∑
9=1

f2
9 E 9E

)
9 , �:�

)
: = ��

) −
:∑
9=1

f2
9 D 9D

)
9 . (5.34)

181The second formula is proved in an analogous fashion.

122 5 UNSUPERVISED LEARNING AND CLUSTERING

It follows that

�) �E 9 =

(
�)9−1� 9−1 +

9−1∑
ℓ=1

f2
ℓ EℓE

)
ℓ

)
E 9 = f

2
9 E 9 ,

which yields together with

f2E = �): �:E = ��
)E −

:∑
9=1

f2
9

(
E)9 E

)
E 9

that, for 9 = 1, . . . , : ,

f2E)9 E = E
)
9 ��

)E −
:∑
ℓ=1

f2
ℓ

(
E)ℓ E

)
(E)ℓ E 9) = f9E

)
9 E − f9E)9 E = 0.

A symmetric argument for D extends orthogonality to : + 1 and the choice

f:+1 = f, D:+1 = D, E:+1 = E

advances the induction. �

In summary, the PCA can be used for the following purposes:

Dimension reduction: The PCA gives the best projection on low(er) dimensional
subspaces spanned by the left singular vectors D1, . . . , D: and the dual vec-
tors that have to be used for this projection, namely the right singular vec-
tors E1, . . . , E: . It is then equivalent to work in R: , replacing G ∈ R= by
Ĝ = Σ:+

)
:
G ∈ R: . Only for interpretation of the result the vectors *: Ĝ ∈ R<

should be used.

Clustering: For a clustering into groups compute the leading singular values
and then put G into the cluster 9 for which (Σ +) G) 9 becomes maximal,
either in value or in absolute value. Note, however, that usually the clusters
according to large singular values will contain more elements than the clusters
corresponding to small singular values.

5.4 Independent component analysis

There is another interpretation of the SVD that should be mentioned briefly. Again,
we have measurements - ⊂ R3 which we arrange into a matrix

- = *Σ+) = �+) = �,, � := *Σ, , = +) . (5.35)

Hence, any column G ∈ - can be written as

G = �FG , FG ∈ R=, G ∈ -,

so that � explains the behavior of the measured variable G in terms of the “hidden”
variable FG . Since , ist orthogonal, i.e., � = ,), = ,,) these variables are
uncorrelated provided that the measurement have zero mean:

0 =
∑
G∈-

G = -1 ⇒ FG1 = 0.

5.4 Independent component analysis 123

In that case the matrix ,,) = � means that the variables FG are independent
which is the reason why the decomposition from (5.35) is called independent
component analysis or ICA for short. For more details see, for example [6, 20].

Of course, this lecture could only be a small introduction to Learning Theory,
i.e., the mathematics behind machine learning. It is far from complete and just
one angle from which the issue can be looked at. But for those who are inter-
ested in more: There are books, some of them even listed in the references.

124 REFERENCES

References A
[1] A. G. Aitken, On interpolation by iteration of proportional parts, without the use of

di�erences, Proc. Edinburgh Math. Soc. 3 (1932), 56–76.

[2] M. Anthony, Discrete mathematics of neural networks. selected topics, Monographs
on Discrete Mathematics and Applications, SIAM, 2001.

[3] V. I. Arnol’d, The representation of functions of several variables, Mat. Prosvešč 3
(1958), 41–61.

[4] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnawasmy, S. Villar, and
R. Ward, Relax, no need to round: integrality of clustering formulations, (2015),
arXiv:1408.4045v5.

[5] J. Bauschinger, Interpolation, Encyklopädie der Mathematischen Wissenschaft-
en, Bd. I, Teil 2, B. G. Teubner, Leipzig, 1900, pp. 800–821.

[6] Ch. M. Bishop, Pattern recognition and machine learning, Springer, 2006.

[7] C. de Boor, A practical guide to splines, Springer–Verlag, New York, 1978.

[8] C. de Boor, Splinefunktionen, Lectures in Mathematics, ETH Zürich,
Birkhäuser, 1990.

[9] F. Cucker and D. X. Zhou, Learning Theory: An Approximation Theory viewpoint,
Cambridge Monographs on Applied and Computational Mathematics, Cam-
bridge University Press, 2007.

[10] P. J. Davis, Interpolation and approximation, Dover Books on Advanced Mathe-
matics, Dover Publications, 1975.

[11] R. A. DeVore and G. G. Lorentz, Constructive approximation, Grundlehren der
mathematischen Wissenschaften, vol. 303, Springer, 1993.

[12] Ke-Lin Du and M. N. S. Swamy, Neural networks and statistical learning,
Springer, 2014.

[13] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer graphics, 2nd ed.,
Addison Wesley, 1990.

[14] O. Forster, Analysis 3. Integralrechung im R= mit Anwendungen, 3. ed., Vieweg,
1984.

[15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Di�erential Equations of Sec-
ond Order, 2. ed., Grundlehren der mathematischen Wissenschaften, Springer–
Verlag, 1983.

REFERENCES 125

[16] G. Golub and C. F. van Loan, Matrix computations, 3rd ed., The Johns Hopkins
University Press, 1996.

[17] P. Halmos, I want to be a mathematician. an automathography, MAA Spectrum
Series, Mathematical Association of America, 1988.

[18] R. W. Hamming, Digital �lters, Prentice–Hall, 1989, Republished by Dover
Publications, 1998.

[19] H. Handels, Medizinische bildverarbeitung, B. G. Teubner, 2000.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, 2.
ed., Springer, 2009.

[21] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,
1985.

[22] R. A Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, 1991.

[23] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons,
1966.

[24] S. Karlin, Mathematical methods and theory in games, programming and economics,
Dover Phoenix Editions, Addison–Wesley, 1959, Dover Reprint 2003.

[25] , Total positivity, Stanford University Press, Stanford CA, 1968.

[26] Y. Katznelson, An introduction to harmonic analysis, 2. ed., Dover Books on
advanced Mathematics, Dover Publications, 1976.

[27] A. N. Kolmogoro�, On the representation of continuous functions of several variables
by superposition of continuous functions of one variable and addition, Dokl. Akad.
Nauk. SSSR 114 (1957), 369–373.

[28] E. Kreyszig, Introductionary functional analysis with applications, John Wiley &
Sons, 1978.

[29] E. Lawler, Combinatorial optimization. networks and matroids, Holt, Rinehart &
Winston, 1974, Dover reprint 2001.

[30] M. Leshno, V. Ya. Lin, and A. Pinkus, Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function, Neural Networks
6 (1993), 861–867.

[31] G. G. Lorentz,Metric entropy, widths, and superpositions of functions, Amer. Math.
Monthly 69 (1962), 469–485.

[32] G. G. Lorentz, Approximation of functions, Chelsea Publishing Company, 1966.

[33] S. Mallat, A wavelet tour of signal processing, 2. ed., Academic Press, 1999.

126 REFERENCES

[34] , A wavelet tour of signal processing: The sparse way, 3rd ed., Academic
Press, 2009.

[35] , Group invariant scattering, Commun. Pure Appl. Math. 65 (2012),
1331–1398.

[36] , Understanding deep convolutional networks, Phil. Tran. R. Soc. A 374
(2016), 1–16.

[37] C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally
positive de�nite functions, Constr. Approx. 2 (1986), 11–22.

[38] , Mathematical aspects of geometric modeling, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, vol. 65, SIAM, 1995.

[39] C. A. Micchelli and M. Pontil, Learning the kernel function via regularization,
Journal of Machine Learning Research 2005 (2005), 1099–1125.

[40] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Annalen 100 (1928),
295–320.

[41] J. von Neumann and O. Morgenstern, Theory of games and economic behavior,
sixth paperback printing, 1990 ed., Princeton University Press, 1944.

[42] J. Nocedal and S. J Wright, Numerical optimization, Springer Series in Opera-
tions Research, Springer, 1999.

[43] J. Peng and Y. Wei, Approximating :–means clustering via seminde�nite program-
ming, SIAM J. Optim. 18 (2007), 186–205.

[44] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Nu-
merica 8 (1999), 143–195.

[45] M. J. D. Powell, Some global convergence properties of a variable matric algorithm for
minimization without exact line searches, SIAM–AMS Proceedings 9: Nonlinear
Programming (1976), 53–72.

[46] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[47] R. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, Psychological Review 65 (1985), 386–408.

[48] T. Sauer, Einführung in die Bild- und Signalverarbeitung, Vorlesungsskript, Uni-
versität Passau, 2012.

[49] , Einführung in die Numerische Mathematik, Vorlesungsskript, Univer-
sität Passau, 2013.

[50] , Optimierung, Vorlesungsskript, Universität Passau, 2013.

[51] , Analysis 1, Vorlesungsskript, Universität Passau, 2014.

REFERENCES 127

[52] , Analysis 2, Vorlesungsskript, Universität Passau, 2015.

[53] , Geometric modeling, Vorlesungsskript, Universität Passau, 2015.

[54] B. Schölkopf and A. J. Smolka, Learning with kernels, The MIT Press, 2002.

[55] P. Spellucci, Numerische Verfahren der nichtlinearen Optimierung, Internationale
Schriftenreihe zu Numerischen Mathematik, Birkhäuser, 1993.

[56] D. A. Sprecher, On the structure of continuous functions of several variables, Trans.
Amer. Math. Soc. 115 (1965), 340–355.

[57] , A representation theorem for continuous functions of several variables, Proc.
Amer. Math. Soc. 16 (1965), 200–203.

[58] , An improvement in the superposition theorem of kolmogorov, J. Math. Anal.
Appl. 38 (1972), 208–213.

[59] I. F. Ste�ensen, Interpolation, Chelsea Pub., New York, 1927.

[60] J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I,
Springer Verlag, 1970.

[61] M. Vetterli and J. Kovačević, Wavelets and subband coding, Prentice Hall, 1995.

[62] P. Wolfe, Convergence conditions for ascent methods, SIAM Review 11 (1969),
220–228.

[63] Yinyu Ye, Interior points algorithms. Theory and analysis, John Wiley & Sons,
1997.

[64] K. Yosida, Functional Analysis, Grundlehren der mathematischen Wis-
senschaften, Springer–Verlag, 1965.

Index B
0–norm, 98
 –means clustering, 112
?–norms, 14

Fréchet derivative, 20

activation function, 82
active constraints, 32
adjacency matrix, 108, 109
a�ne subspace, 20
algebraic dual, 31
Armijo condition, 40
augmented system, 61
average, 21
average dissimilarity, 107
average loss, 9

B–spline recurrence, 77
backpropagation, 87
backpropagation algorithm, 92
ball, 52
bandlimited function, 69
barycenter, 20
basis, 45
basis pursuit, 45
best approximation, 17
best fit subspace, 114
bias, 8, 69, 82
bilinear form, 13, 49, 118
biorthogonal, 42
Boolean function, 85
Borel measure, 57, 59
boundary, 28

cardinal tensor product B–Spline, 56
Cauchy sequence, 16
Cauchy–Schwarz inequality, 16
center, 102
certificates, 103
chain rule, 87, 90
characteristic function, 105

classification problems, 3
clustering, 101
CNN, 98
coe�cient vector, 18
collocation matrix, 5, 60
color table, 104
compact, 52
complete graph, 108
completely monotone, 57
completely monotonic, 57
concatenation, 87
concave, 35, 36
conjugate gradients, 39
connected graph, 111
constrained, 31
constraints, 30
convex, 16, 27, 35, 36, 80
convex combination, 17
convolution, 55, 98, 99
cost function, 46
covering number, 65
critical, 39

data driven, 3
data fidelity, 46
decision function, 69
deep convolutional neural network, 98
deep learning, 83, 85
degree, 56
degree matrix, 109
dense, 97
depth, 82
derivative, 26
descent, 39
descent direction, 39, 40, 87
diagonal matrix, 113
di�erentiable, 26, 30
di�erential quotients, 97
directional derivative, 42
directionally di�erentiable, 26, 29

128

INDEX 129

discrete Laplacian, 109
discrete metric, 48
discriminant function, 3, 4
dissimilarity, 101
distance, 15
distance matrix, 105
divided di�erence, 109
domain, 25
dot product, 52
dot product kernel, 52, 58, 69, 80
doubly stochastic, 106
downsampling, 99
dual, 42
dual form, 23
dual problem, 36, 37, 70, 71

edge, 108
eigenvalue, 105
elliptic di�erential operators, 109
empirical error, 60, 61
energy functional, 46, 79
equality constraint, 61
equality constraints, 31, 44
Euclidean norm, 14
even function, 54
expanding dilation matrix, 99

Farkas–Lemma, 33, 34
feasible, 31, 72
feasible set, 31, 44
feedforward neural network, 82
filter, 98, 99
filterbank, 99
FIR filter, 99
fires, 84
flat, 86
Fourier transform, 54
Frobenius norm, 104, 113, 116

Gateaux variation, 26
Gaussian, 58
Gaussian distribution, 12
generating system, 18
global minimum, 25, 30
gradient, 10, 26, 33
Gram matrix, 18
Gramian, 18, 60

graph, 108
graph cutting, 112
graph Laplacian, 109, 112
greedy algorithm, 119
greedy procedure, 118

Hadamard product, 62, 90
half spaces, 20
Hessian, 10
hidden layer, 82, 85
Hilbert space, 16, 51, 104
Hippocampus, 81
hyperplane, 20, 83
Hölder continuous, 96

ICA, 122
image processing, 15
impulse response, 99
incidence matrix, 108
independent component analysis, 122
induced, 16
inequality constraints, 31, 35
inhibition, 86
inner product, 13
input layer, 82
integral transform, 59
intensity, 15
interpolant, 4, 5
interpolate, 4
interpolation, 4
interpolation problem, 5
inverse Fourier transform, 54, 68
inverse multiquadrics, 58
invertible, 5

Jacobian, 31, 42
jump function, 84

kernel, 24, 49, 71
kernel learning, 24
KKT conditions, 23, 33, 37, 38, 70
Kolmogoro� criterion, 17
Kolmogorov’s theorem, 83, 96
kriging, 79
Kronecker product, 90
Kuresh–Kuhn–Tucker conditions, 33

label, 3

130 INDEX

labels, 59, 101
Lagrange functions, 63
Lagrange multiplier, 45
Lagrange multipliers, 21, 31, 33, 46, 119
Lagrangian, 21, 34, 44, 70
Laplace operator, 109
Laplace transform, 57
Laplacian, 109
least squares, 11
left singular vectors, 121
lex parsimoniae, 7
LICQ, 37
likelihood, 12
linear, 26
linear constraint, 105
linear operator, 49
linear regression, 8
linear system, 5, 42
linearizing cone, 33
linearly independent, 64
Lipschitz continuous, 41, 96
local convergence, 43
local minimum, 25, 30
locally finite, 99
loss function, 8, 19, 44, 46, 47

Machine Learning, 3
margin, 22, 69
maximal loss, 9
maximum, 28, 34
mean, 12
mean value theorem, 41
Mercer kernel, 49, 57, 61, 66, 79
metric, 15, 48
metric completion, 51
metric space, 48, 53, 58
minimax theorem, 80
minimum, 34
model space, 10, 45, 60
multinomial theorem, 53

nearest neighbor, 111
necessary condition, 70
neighborhood graph, 111
neural network, 82
neuron, 81
Newton direction, 43

Newton directions, 39
Newton’s method, 41
nodal functions, 63, 66
Nomography, 93
nonnegative measure, 57
nonsingular, 37
norm, 8, 14
normal, 20, 69
normal form, 72
normal form equations, 10, 18
normalized, 22
normalized graph Laplacian, 111
NP hard, 103

Occam’s razor, 7
o�set, 20
operator norm, 64, 66, 113
optimal separation, 22
orthogonal matrix, 113
orthogonal projection, 16, 61
orthogonally invariant, 113
orthonormal, 113, 117
orthonormal basis, 18, 42, 62, 114
output layer, 82
overlearning, 8, 11

packing number, 65
partition matrix, 105
PCA, 112
penalty function, 44
perceptron, 87
pixel, 99
point evaluation, 55
polynomial interpolation, 63
polynomials, 6
pooling, 99
positive definite, 118
positive normal cone, 31
positive semidefinite, 49, 106
Powell conditions, 40
primal, 37
primal problem, 36, 38, 69–71
principal component analysis, 112
probability density, 12, 19
projection, 105, 117
PSNR, 15

quadratic form, 9

INDEX 131

quadratic loss, 10
quadratic programming, 72
quadratically convergent, 43
quantization, 104
quasi Newton methods, 43

radial basis function, 57
radial basis functions, 60
radial function, 56
radial kernel, 56
radial Mercer kernel, 58
radius, 52
rank, 5, 113, 114
RBF, 57
real valued functions, 5
reflexive, 26
reflexivity, 42
regularization, 45
regularizer, 46
reproducing kernel Hilbert space, 50
ridge function, 54, 83, 98
Riesz representation theorem, 51
right singular vectors, 121
RKHS, 50

saddle point, 38
scalar product, 13
scattering transform, 99
secant method, 41
self adjoint, 59
semivariogram, 80
separating hyperplane, 87
separating hyperplanes, 69
separation function, 69
separation of variables, 58
shift invariant, 54
side conditions, 30
sigmoid function, 84, 85
sigmoidal function, 84
sign function, 6
signal space, 98
similarity graph, 111
singular value decomposition, 113
singular values, 113
singular vectors, 113
slack variables, 35
small data, 45

Smith chart, 94
sparse solution, 47
spectral theorem, 59
square loss, 60
starting point, 43
stationary, 54
stationary kernel, 67, 79
stationary Mercer kernel, 67, 69
steepest descent, 39, 40
stepsize, 39, 43
strict, 25
strict minimum, 43
strictly convex, 16, 38
strong Wolfe conditions, 40
subdi�erentiable, 29
subdi�erential, 29
subgradient, 29
subspace, 20
superposition, 96
supervised learning, 3, 101
support vector, 23
support vector machine, 69
SVD, 113
symmetric, 108, 118
symmetric matrix, 62

tangent cone, 31
tensor product, 58
threshold, 21, 84
topological vector space, 17
topology, 25
totally nonnegative, 54
trace, 104
training data, 3, 59, 101
training set, 79

unconstrained, 30
unconstrained optimization, 38
uncorrelated, 121
undirected graph, 108, 109
uniformly bounded, 65
unit cube, 56
unsupervised learning, 4, 101

variance, 12
variogram, 79
vector space, 5, 26

132 INDEX

weak duality, 37
weak form, 42
weight, 82
weight vector, 83
Wolfe conditions, 40

zero mean, 121

