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Abstract: For nonlinear time-delay systems, characterizations of input-to-state stability (ISS) are
investigated. While general ISS superposition theorems for infinite-dimensional systems can be applied
in this context, the criteria provided by such theorems are unnecessarily demanding. It is shown
that for time-delay systems, relaxed characterizations can be obtained. While recovering some ISS
characterizations known for ordinary differential equations, we also highlight specific obstructions posed
by time-delay systems. In particular, the boundedness of finite-time reachability sets becomes a central
property in this context. As it turns out, this assumption cannot be relaxed in a meaningful sense. With
this assumption, however, several uniformity properties may be derived for time-delay systems.
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1. INTRODUCTION

During the last decade, significant progress has been made
both in the understanding of input-to-state stability (ISS) for
general infinite-dimensional systems (see Mironchenko and
Prieur (2020) for an overview), and of the peculiarities of ISS
for time-delay systems (see Chaillet et al. (2023) for a survey).

One of the important questions in the theory of ISS is in which
way it may be characterized by other dynamic properties of a
given system. An important point in this respect is the char-
acterization through Lyapunov functions, see, e.g., Sontag and
Wang (1995). Another central result is an ISS superposition
theorem Sontag and Wang (1996), which states in particular
that ISS is equivalent to the various combinations of other
dynamic properties of the system. One such characterization
states that ISS is equivalent to local stability and the limit prop-
erty. The latter notion essentially imposes that, in response to a
bounded input, all solutions eventually visit a neighborhood of
the origin whose size is “proportional” to the amplitude of the
applied input. The results of Sontag and Wang (1996) have been
(partially) extended in Mironchenko and Wirth (2018) to ab-
stract infinite-dimensional control systems, including evolution
PDEs, differential equations in Banach spaces, switched sys-
tems, etc. In that general class, the infinite-dimensional result is
tight, but for the specific class of time-delay systems, it has been
open for some time how to obtain minimal characterizations.
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The possibility of establishing ISS by proving a number of
apparently weaker properties has proved very useful for the
development of other fundamental results. This technique has
been employed with much success in areas such as ISS
small-gain theorems for ODEs Dashkovskiy et al. (2007),
hybrid systems Cai and Teel (2009); Dashkovskiy and Kos-
mykov (2013), or, in the context of time-delay systems, for
Lyapunov-Razumikhin Teel (1998); Dashkovskiy et al. (2012)
and Lyapunov-Krasovskii Ito et al. (2010, 2013) approaches
and non-coercive Lyapunov functions theory Mironchenko and
Wirth (2019); Jacob et al. (2020), to name a few examples.

Whereas there are several criteria for ISS of time-delay systems
in terms of Lyapunov functions Karafyllis (2006), Qiao and
Guang-Da (2010), obtaining tight ISS superposition theorems
for time-delay systems remained an open problem. Several
difficulties appear on this way:

(i) noncompactness of closed bounded balls in infinite-
dimensional normed linear spaces, which prevents the
extended use of finite-dimensional arguments in many
places.

(ii) the convergence rate for solutions of globally asymptoti-
cally stable infinite-dimensional systems is not necessarily
uniform, as was shown for nonlinear time-delay systems
in Chaillet et al. (2024).

(iii) reachability sets of delay systems may be unbounded even
for nonuniformly globally asymptotically stable nonlin-
ear systems, as demonstrated in Mancilla-Aguilar and
Haimovich (2023).

This makes time-delay systems strikingly different from non-
linear ODE systems, where all these problems do not arise.
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In this paper, we provide tight ISS superposition theorems for
time-delay systems. That is, we give equivalent characteriza-
tions of ISS, which cannot be essentially weakened in the sense
that the required properties are independent of each other.
More precisely, we show that for delay systems which have
bounded finite-time reachability sets (are BRS), the limit prop-
erty is uniform over bounded sets of initial states and inputs.
This result allows for a substantial simplification of the su-
perposition theorem when compared to the general infinite-
dimensional case. On the other hand, it is an essential re-
quirement to assume that the time-delay system is BRS. This
is in strong contrast to the ODE case where boundedness of
reachability sets is a consequence of forward completeness of
the system. We highlight the key role played by the BRS prop-
erty by referring to recent counter-examples from the literature
Mancilla-Aguilar and Haimovich (2023); Chaillet et al. (2024).

In Theorem 1, we prove our main result showing that ISS is
equivalent to a combination of the limit property, boundedness
of reachability sets, and uniform local stability.

For systems without inputs, this result recovers a recent charac-
terization of uniform global asymptotic stability of a time-delay
system as a combination of (non-uniform) global asymptotic
stability with the boundedness of reachability sets, (Karafyllis
et al., 2022, Theorem 1).

The problem of getting the ISS characterizations for delay
systems was stated and discussed in the conference paper
Mironchenko and Wirth (2017). In particular, in Mironchenko
and Wirth (2017), some technical lemmas have been derived
that can be useful on this way. Here, we give a decisive answer
to the problem posed in Mironchenko and Wirth (2017).

We proceed as follows. In Section 2, we define the general
class of nonlinear time-delay systems with bounded delays that
are considered in this paper. Our general assumptions are such
that standard hypotheses of solution theory are satisfied. In
Subsection 2.1, we introduce the various stability, attractivity,
and limit properties that are required for our characterizations.
Section 3 contains the main result, which lists a number of
statements that are equivalent to input-to-state stability. We
conclude in Section 4.

2. PRELIMINARIES

We consider retarded differential equations of the form
ẋ(t) = f (xt ,u(t)), (1)

where xt ∈ X := C([−θ ,0],Rn) for some n ∈ N \ {0}, and
θ > 0 is the fixed maximal time-delay involved in the dynamics.
u ∈ U denotes an exogenous input. For system (1), we use the
following assumption concerning the vector field f .
Assumption 1. The vector field f : X ×Rm →Rn is continuous,
jointly in both variables, satisfies f (0,0) = 0, and is Lipschitz
continuous in its first argument on bounded subsets of X and
Rm, uniformly with respect to the second argument, i.e., for all
r > 0, there exists ℓ(r)> 0 such that for all x1,x2 ∈ BX (r,0) and
all v ∈ Rm with |v| ≤ r, it holds that

| f (x1,v)− f (x2,v)| ≤ ℓ(r)∥x1 − x2∥. (2)

By (Chaillet et al., 2023, Theorem 2), Assumption 1 implies
that, for any initial condition x0 ∈ X and any input u ∈U , there
exists a unique maximal solution of (1), defined on some time
interval [0,T max

x0,u ) with T max
x0,u ∈ (0,+∞]. This solution is denoted

by x(·;x0,u). Given t ∈ [0,T max
x0,u ), xt(x0,u) ∈ X then refers to

its history function at time t and it holds that ∥xt(x0,u)∥ =
maxs∈[−θ ,0] |x(t + s;x0,u)|. The system is called forward com-
plete if for all x0,u we have T max

x0,u = ∞, i.e., solutions may be
continued for all positive times.

If we denote the flow induced by system (1) by φ : (t,x0,u(·)) 7→
xt(x0,u(·)), then the triple (X ,U ,φ) defines an abstract control
system in the sense of Mironchenko and Wirth (2018), which
satisfies the boundedness-implies-continuation (BIC) property,
i.e., every maximal bounded solution is defined on R+ (Chaillet
et al., 2023, Theorem 2).

2.1 Stability Concepts

The objective of this paper is to provide links between different
stability and robustness notions. These notions can be seen
as natural extensions to time-delay systems of the properties
addressed in Sontag and Wang (1996). We start with stability
notions for systems with inputs.
Definition 2.1. System (1) is called

• uniformly locally stable (ULS) if there exist σ ,γ ∈K∞ and
r > 0 such that for all x0 ∈ X with ∥x0∥ ≤ r and all u ∈ U
with ∥u∥ ≤ r, its solution satisfies

∥xt(x0,u)∥ ≤ σ(∥x0∥)+ γ(∥u∥) ∀t ≥ 0. (3)
• uniformly globally stable (UGS), if there exist σ ,γ ∈ K∞

such that the estimate (3) holds for all x0 ∈ X and all
u ∈ U .

• uniformly locally stable for zero input (0-ULS), if there
exist σ ∈ K∞ and r > 0 such that, for all x0 ∈ X with
∥x0∥ ≤ r,

∥xt(x0,0)∥ ≤ σ(∥x0∥) ∀t ≥ 0. (4)

Next, we define (uniform) attractivity for systems with inputs.
Definition 2.2. System (1) has

• an asymptotic gain (AG) if there exists γ ∈K∞ ∪{0} such
that, for all ε > 0, all x0 ∈ X and all u ∈ U , there exists
τ = τ(ε,x0,u)< ∞ such that

∥xt(x0,u)∥ ≤ ε + γ(∥u∥) ∀t ≥ τ(ε,x0,u). (5)
• a strong asymptotic gain (SAG) if for (5), there exist

τ(ε,x0,r)<∞, r ≥ 0, such that τ = τ(ε,x0,u)≤ τ(ε,x0,r)
for all ε > 0,x0 ∈ X ,u ∈ U with ∥u∥ ≤ r.

• a uniform asymptotic gain (UAG) if there exists γ ∈ K∞ ∪
{0} such that, for all ε,r > 0, there is a τ = τ(ε,r) < ∞

such that, for all x0 ∈ X with ∥x0∥ ≤ r and all u ∈ U with
∥u∥ ≤ r,

∥xt(x0,u)∥ ≤ ε + γ(∥u∥) ∀t ≥ τ(ε,r). (6)

Both AG and UAG impose that solutions are eventually in a
neighborhood of the origin, with a size is depending continu-
ously on the magnitude of the input. For UAG it is required
that this attractivity is uniform over bound sets of initial states
and inputs. While the inequalities (5) and (6) seem to suggest
the same estimate, the point is that in the uniform case the time
beyond which the estimate is valid cannot depend on the initial
condition, but only on its norm. We also point out that neither
of the properties is local in nature but refers to globally (in the
state space) valid attractivity properties. It is less demanding to
require that solutions eventually reach this neighborhood, this
leads to different versions of the limit property, which are again
global properties in the state space.
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Definition 2.3. We say that (1) has the

• limit property (LIM), if there exists γ ∈ K∞ ∪ {0} such
that, for all ε > 0, all x0 ∈ X and all u ∈ U , there is a
t = t(ε,x0,u)≥ 0 such that

∥xt(x0,u)∥ ≤ ε + γ(∥u∥).
• strong limit property (SLIM), if there exists γ ∈ K∞ ∪
{0} such that for all ε,r > 0 and all x0 ∈ X , there is a
τ = τ(ε,x0,r) ≥ 0 such that, for all u ∈ U with ∥u∥ ≤ r,
there exists t ∈ [0,τ] such that

∥xt(x0,u)∥ ≤ ε + γ(∥u∥). (7)
• uniform limit property (ULIM), if there exists γ ∈ K∞ ∪
{0} so that, for all ε,r > 0, there exists a τ = τ(ε,r) ≥ 0
such that, for all x0 ∈ X with ∥x0∥ ≤ r and all u ∈ U with
∥u∥ ≤ r, there is a t ∈ [0,τ] such that

∥xt(x0,u)∥ ≤ ε + γ(∥u∥).

It clearly holds that ULIM ⇒ SLIM ⇒ LIM. A further impor-
tant property in our characterization is that finite-time reacha-
bility sets are bounded.
Definition 2.4. We say that (1) has bounded reachability sets
(is BRS), if for all r > 0 and all τ > 0, it holds that

sup
{
∥xt(x0,u)∥ : ∥x0∥ ≤ r, ∥u∥ ≤ r, t ∈ [0,τ]

}
< ∞.

Recently, an important example has been provided in Mancilla-
Aguilar and Haimovich (2023) which shows that forward com-
pleteness does not ensure BRS 1 . This contrasts the finite-
dimensional case for which the implication holds, see Lin et al.
(1996). The class of time-delay system does provide a continu-
ity property of the flow at the equilibrium position (x∗,u∗) =
(0,0). This is the content of the next statement.
Definition 2.5. We say that (1) is continuous at the equilibrium
(CEP) if, for every ε,h > 0, there exists a δ = δ (ε,h) > 0, so
that its solutions satisfy

t ∈ [0,h], ∥x0∥ ≤ δ , ∥u∥ ≤ δ ⇒ ∥xt(x0,u)∥ ≤ ε. (8)

As we will shortly recall, continuity at the equilibrium point
was an important point for general infinite-dimensional sys-
tems. In our case, however, we have the following result.
Lemma 2.6. Let Assumption 1 hold. If (1) is BRS, then it is
CEP.

We omit the proof for reasons of space.

We finally recall the notion of input-to-state stability, originally
introduced for finite-dimensional systems Sontag (1989, 2008);
Mironchenko (2023) but also well documented in the context
of time-delay systems Chaillet et al. (2023).
Definition 2.7. System (1) is called input-to-state stable (ISS),
if there exist β ∈K L and γ ∈K∞∪{0} such that for all x0 ∈X
and all u ∈ U , it holds that

∥xt(x0,u)∥ ≤ β (∥x0∥, t)+ γ(∥u∥), ∀t ≥ 0. (9)

Although not stated explicitly in the acronym, the ISS property
is uniform both in the initial state and the input.

3. ISS SUPERPOSITION THEOREM FOR TIME-DELAY
SYSTEMS

The numerous characterizations of ISS proposed in Sontag and
Wang (1996) provide a superposition theorem for ISS in a
1 Note, however, that for some alternative state spaces, forward completeness
implies BRS, see Karafyllis et al. (2022); Brivadis et al. (2024)

finite-dimensional context, in the sense that ISS is established
based on the combination of internal stability properties and
attractivity-like notions for systems with exogenous inputs. In
Mironchenko and Wirth (2018), these characterizations have
been partially extended to abstract control systems, includ-
ing ODEs, time-delay systems, evolution partial differential
equations, and broad classes of evolution equations in Banach
spaces. The following was established:

ISS ⇔ ULIM ∧ ULS ∧ BRS ⇔ UAG ∧ CEP ∧ BRS.

In this general class of control systems, this theorem is tight.
However, when focusing on time-delay systems, we can use
the special structure of these systems to achieve a stronger ISS
characterization.

Before stating our main result, we need to establish the equiv-
alence of LIM and ULIM for systems that are BRS. This ob-
servation is based upon (and extends) the corresponding result
for systems without inputs shown in (Karafyllis et al., 2022,
Theorem 7).
Theorem 3.1. Assume that (1) is BRS and satisfies Assump-
tion 1. If it is SLIM with a given gain γ ∈ K∞ ∪{0}, then it is
ULIM with the same gain γ .

The proof is omitted for reasons of space. We stress that the
result is false, if the assumption of BRS is dropped. By an
example in Chaillet et al. (2024), there exists a time-delay
system with trajectories in R4 with two point delays with
unbounded reachability sets, which is SLIM but not ULIM.
Recall that for (forward complete) ODE systems, it was already
shown in Mironchenko and Wirth (2018) that LIM and ULIM
are equivalent.

3.1 Superposition theorem for ISS

Our main result is the following characterization of ISS.
Theorem 1. For a time-delay system (1) satisfying Assumption
1, the following properties are equivalent:

i) ISS
ii) ULIM ∧ UGS

iii) UAG ∧ BRS
iv) SLIM ∧ 0-ULS ∧ BRS
v) SAG ∧ 0-ULS ∧ BRS

Proof.

i) ⇔ ii). This was shown in Mironchenko and Wirth (2018) in
a more general infinite-dimensional context.

i) ⇔ iii). In Mironchenko and Wirth (2018), it was shown
that ISS is equivalent to UAG ∧ CEP ∧ BRS. In view of
Proposition 2.6, the CEP assumption can be removed, as it
results from BRS.

i) ⇔ iv). By Theorem 3.1, SLIM ∧ BRS implies ULIM. Fur-
thermore, ULIM ∧ 0-ULS ∧ BRS (applied for u ≡ 0) ensures
that the system (1) is 0-UGAS (Mironchenko and Wirth, 2018,
Proposition 14). By (Palumbo et al., 2013, Theorem 6), 0-
UGAS delay systems (1) satisfying Assumption 1 are locally
ISS (meaning satisfying the ISS estimate (9) for ∥x0∥ and ∥u∥
small enough) and hence ULS. Overall, SLIM ∧ 0-ULS ∧ BRS
is equivalent to ULIM ∧ ULS ∧ BRS, which is itself equivalent
to ISS due to Mironchenko and Wirth (2018).
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i) ⇔ v). Clearly, i) ⇒ v). Moreover, since SAG ⇒ SLIM, we
have that v) ⇒ iv) ⇒ i). 2
Remark 2. It is instructive to compare the statement of Theo-
rem 1 to (some of) the results obtained in Sontag and Wang
(1996). In this reference, the authors consider control systems
of the form

ẋ = f (x,u),
where f : Rn ×Rm → Rn is locally Lipschitz continuous and
f (0,0) = 0. Under these assumptions it is shown that we have
the equivalence

ISS ⇔ LIM ∧ ULS ⇔ UAG ⇔ AG ∧ ULS.

(Note that what we call ULS here is precisely the property
referred to as LS in Sontag and Wang (1996).) By comparing
the statement, it becomes clear that the main missing ingredient
to obtain a characterization of ISS for time-delay systems is
the boundedness of reachability sets. By the result of Mancilla-
Aguilar and Haimovich (2023), BRS is an independent property
which is not implied by other easy properties. To obtain a com-
plete picute however, the relation of LIM and SLIM for time-
delay systems still needs to be clarified. For general infinite-
dimensional systems further uniformity assumptions are re-
quired in any case.

4. CONCLUSION

We have shown that it is sufficient to extend the known criteria
for ISS for ODE systems by BRS to obtain characterizations
of ISS for time-delay systems. This significantly improves on
general conditions for infinite-dimensional systems.
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