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Abstract: We show that the joint spectral radius is pointwise Hölder continuous. This extends
results from classical perturbation theory of single matrices to the setting of compact sets of
matrices. The results are new for reducible matrix sets, as Lipschitz continuity of the joint
spectral radius restricted to irreducible matrix sets was already shown by the second author in
Wirth (2002).
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1. INTRODUCTION

The joint spectral radius of a given set of (real or complex)
square matrices measures the worst case growth rate
among all possible products of matrices taken from the set.
The quantity is of interest in the context of discrete-time
switched systems as it characterizes exponential stability
under arbitrary switching. The quantity has also been of
interest in further applications in wavelet theory, coding,
graph theory to name a few. It has been known for a long
time that the joint spectral radius is a continuous function
of the data. In this paper we study further regularity
properties.

The interest in continuity properties of the joint spec-
tral radius stems from numerical considerations on the
one hand, as error estimates for numerical schemes typ-
ically rely on some sort of continuity property. Also in
the context of robustness analysis of dynamical systems,
regularity properties provide a tool for the assessment of
sensitivity with respect to the system data.

The simplest incarnation of the joint spectral radius is
the spectral radius ρ(M) of a single matrix M ∈ Cd×d.
The growth rate of the powers of a square matrix is
determined by the spectral radius of the matrix, i.e. the
largest modulus of an eigenvalue of M . Studying the
dependence of this quantity on the entries of a matrix is
a central topic in perturbation theory. It is easy to see
that the spectral radius of a matrix does not depend in a
Lipschitz continuous manner on the entries of the matrix
by considering the perturbation of the lower left entry of an
upper triangular Jordan block. Nevertheless, the following
classical theorem of Elsner shows that in dimension d the
spectral radius is locally Hölder continuous with exponent
1
d , see (Stewart and Sun, 1990, Theorem IV.1.3). In the
following ∥ ·∥2 denotes the spectral norm, i.e. the operator
norm induced by the Euclidean norm.

Theorem 1. (Elsner). For A,B ∈ Cd×d we have

|ρ(A)− ρ(B)| ≤ (∥A∥2 + ∥B∥2)
(d−1)/d ∥A−B∥1/d2 .

Corollary 2. The spectral radius ρ : Cd×d → [0,∞) is
locally 1

d -Hölder continuous.

Our aim in this work is to prove a similar result for
compact sets of non-commuting matrices. The maximal
growth rate of products in this case is controlled by
the joint spectral radius introduced in Rota and Strang
(1960). For the last 20 years this quantity has received
considerable attention and a extensive body of results has
been obtained in this area, see the monograph Jungers
(2009), the milestone papers Berger and Wang (1992);
Gurvits (1995); Lagarias and Wang (1995); Bousch and
Mairesse (2002); Hare et al. (2011), the surveys Margaliot
(2006); Shorten et al. (2007) and references therein.

In this setting we obtain the following analogue of The-
orem 1. Let H(d) denote the space of compact sets of
complex d×dmatrices endowed with the Hausdorff metric,
which we denote by dH .

Theorem 3. The joint spectral radius ρ : H(d) → [0,∞) is
pointwise 1

d2+d -Hölder-continuous.

After we unwrap the definitions, the previous theorem says
that for every M ∈ H(d) there are constants η > 0 and
C > 0 such that for every N ∈ H(d) with dH(M,N ) ≤ η

we have |ρ(N )− ρ(M)| ≤ CdH(M,N )1/(d
2+d). In gen-

eral, it is necessary to distinguish between local and point-
wise Hölder continuity. As C can depend on M our result
claims a weaker statement than local Hölder continuity of
ρ. We stress that while the spectral radius of matrices is
locally Hölder continuous (i.e. the constant C may be cho-
sen uniformly on suitable neighborhoods) we only obtain
pointwise Hölder continuity for the joint spectral radius.

The exponent 1
d2+d is probably not optimal and is a

consequence of our methods. If we restrict our attention to
finite sets of matrices, we can improve the Hölder exponent
to the almost optimal 1

d+ε for arbitrary ε > 0.

Continuity of the joint spectral radius was shown in
Barabanov (1988). Local Lipschitz continuity on the set
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of irreducible compact subsets of Cd×d was obtained in
Wirth (2002). A different proof which also yields concrete
estimates for the Lipschitz constants is due to Kozyakin,
Kozyakin (2010). The property was extended to the set of
positive inclusions with a strongly connected system graph
in Mason and Wirth (2014).

Our proof of pointwise Hölder continuity is split into
proving a lower and an upper bound for the joint spectral
radius of a perturbed matrix set. We use very different
methods for these two types of bounds. The upper bound is
obtained using ε-inflation and extremal norms. The lower
bound on the other hand uses quantitative Berger-Wang
estimates and classical perturbation theory in the form of
Elsner’s theorem.

2. DEFINITIONS AND NOTATION

Let ∥·∥ be an arbitrary fixed norm on Cd. For a matrix
A ∈ Cd×d we denote by ∥A∥ the corresponding operator
norm of A. The joint spectral radius of M ∈ H(d) is
defined as

ρ(M) := lim
n→∞

sup{∥An . . . A1∥1/n ; A1, . . . , An ∈ M}.

The equivalence of all norms on finite dimensional vector
spaces shows that this definition is independent of the
choice of ∥·∥. Rota and Strang (1960) gave another charac-
terization of the joint spectral radius in terms of operator
norms. For a given norm |||·||| on Cd×d define

|||M||| := max{|||A|||;A ∈ M}.
Then we have

ρ(M) = inf{|||M||| ; |||·||| is an operator norm}. (1)

A norm ∥·∥ on Cd is called extremal for M, if for the
corresponding operator norm we have ρ(M) = ∥M∥.
Recall that M ∈ H(d) is called reducible, if there is a
nontrivial subspace X ⊆ Cd such that X is A-invariant
for all A ∈ M. For a reducible M there is a maximal flag
{0} = F0 ⊊ F1 ⊊ · · · ⊊ Fm = Cd such that every subspace
Fj , j = 0, . . . ,m, is A-invariant for all A ∈ M. We will
call the lengthm of this maximal flag the reducibility index
of M. Note that with this convention a reducibility index
of 1 means that the system is in fact irreducible, i.e. no
nontrivial joint invariant subspace exists.

An extremal norm ∥·∥ is called a Barabanov norm, if in
addition for every x ∈ Cd there exists an A ∈ M such
that

∥Ax∥ = ρ(M) ∥x∥ .
A sufficient condition for the existence of Barabanov norms
is that the set M is irreducible, Barabanov (1988); Wirth
(2002).

3. THE UPPER BOUND USING ε-INFLATION

In this section we study the behavior of the joint spectral
radius under the addition of a ball of radius ε to a matrix
set. This will give us an upper bound on the joint spectral
radius of a perturbed matrix set. For a norm ∥·∥ on Cd

let B∥·∥ = {A ∈ Cd×d ; ∥A∥ ≤ 1} be the unit ball of the
corresponding operator norm. By ε-inflation we mean the
study of the increasing set-valued map

ε 7→ M+ εB∥·∥,

where M ∈ H(d) and the addition is in the sense
of Minkowski. For this case, the following result shows
Hölder-continuity of the joint spectral radius as a function
of ε.

Proposition 4. Let ∥·∥ be a norm on Cd and let M ∈ H(d)
have index of reducibility m. Define

M∥·∥
ε := M+ εB∥·∥,

:= {A+ εB ; A ∈ M, B ∈ B∥·∥}, ε > 0.

Then

r : ε 7→ ρ
(
M∥·∥

ε

)
is increasing. In addition, it is Hölder continuous at 0 with
exponent 1/m. In particular, for any η > 0 there exists a
constant Cη such that

r(ε)− r(0) ≤ Cηε
1/m, ε ∈ [0, η]. (2)

Proof. It is clear that r is increasing. For reducibility
index m = 1 we are in the irreducible case and the result
follows from Wirth (2002).

Let M have reducibility index m ≥ 2. It is sufficient to
prove the result for one specific norm.

By the equivalence of norms, for given norms v1 and v2
there is a constant D such that εBv2

V ⊆ DεBv1
V and so

ρ(Mv2
ε ) ≤ ρ(Mv1

Dε). Thus if the result is known for v1 with
a constant Cη on the interval η, then we have on [0, η/D]
that

ρ(Mv2
ε )− ρ(M) ≤ ρ(Mv1

Dε)− ρ(M) ≤ CηD
1/mε1/m. (3)

We thus begin by fixing a suitable norm. Let (F0, . . . , Fm)
be a flag corresponding to the reducibility index of M and
choose pairwise orthogonal spaces X1, . . . , Xm such that

Fi−1 ⊕Xi = Fi, i = 1, . . . ,m. (4)

Let πi : Cd → Xi be the orthogonal projection and
ıi : Xi → Cd the canonical injection. We define

Mij := {πiAıj ; A ∈ M} , 1 ≤ i, j ≤ m. (5)

The sets Mii of the restrictions of πiA to Xi, A ∈ M,
are irreducible or equal to {0} and so, Barabanov (1988);
Wirth (2002), we may choose Barabanov norms vi forMii,
i = 1, . . . ,m. In particular, we have (see also (Berger and
Wang, 1992, Lemma 2))

ρ(M) = max
i=1,...,m

ρ(Mii) = max
i=1,...,m

vi(Mii). (6)

Define a norm v on Cd by

v(x) = ∥(v1(π1(x)), . . . , vm(πm(x)))∥2 . (7)

A calculation shows that the operator norm induced by v
satisfies

v(A) ≤

∥∥∥∥∥∥∥
 v11(π1Aı1) . . . v1m(π1Aım)

...
...

vm1(πmAı1) . . . vmm(πmAım)


∥∥∥∥∥∥∥
2

(8)

for any A ∈ Cd×d, where we denote by vij the induced
operator norm from (Xj , vj) to (Xi, vi).

By similarity scaling we may assume without loss of
generality that

vij(Mij) ≤ 1, 1 ≤ i < j ≤ m.

On the other hand of course Mij = {0} for i > j.
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It suffices to show that there exist ε0 > 0 and C > 0 such
that for all ε ∈ [0, ε0] we have

ρ(Mv
ε)− ρ(M) ≤ Cε1/m.

The full claim then follows by an easy calculation.

Using the properties of v, for ε > 0 we then have for the
blocks of the matrices A ∈ Mv

ε that

vij(Mε,ij) ≤

{
(1 + ε)ρ(Mii) for i = j,

(1 + ε) for i < j,
ε for i > j.

(9)

As the joint spectral radius is invariant under similarity
transformation, we can now rescale via a diagonal trans-
formation of the form

Tε = diag(I1, δI2, . . . , δ
m−1Im),

where Ij is the identity matrix of dimension dimXj ,
j = 1, . . . ,m and

δ = m
√
ε. (10)

A calculation shows for any matrix in A ∈ T−1
ε Mv

εTε that

v(A) ≤

∥∥∥∥∥∥∥∥∥∥


(1 + ε)ρ(M11) . . . (1 + ε)ε(m−1)/m

ε(m−1)/m
...

... (1 + ε)ε1/m

ε1/m . . . (1 + ε)ρ(Mmm)


∥∥∥∥∥∥∥∥∥∥
2

. (11)

Denoting the matrix on the right by Q(ε) = (qij(ε))
m
i,j=1,

we see that the diagonal entries of Q(ε) are of the form

qjj(ε) = (1 + ε)ρ(Mjj), j = 1, . . . ,m,

while we have for the off-diagonal entries that

0 ≤ qij(ε) ≤ 2ε1/m, i ̸= j,

for ε ∈ [0, 1]. We also note that

ρ(M) = max
i=1,...,m

ρ(Mii) = ∥Q(0)∥2 .

Consequently, we have

ρ(Mv
ε)− ρ(M) = ρ(T−1

ε Mv
εTε)− ρ(M)

≤ v(T−1
ε Mv

εTε)− ρ(M)

≤ ∥Q(ε)∥2 − ∥Q(0)∥2
≤ ∥Q(ε)−Q(0)∥2 ≤ Cε1/m

for all 0 ≤ ε ≤ 1 and a suitable positive constant C. 2

For the particular case of ε-inflation the previous result
allows for the following stronger statement in which we
even obtain a local Hölder continuity result.

Theorem 5. Let M ∈ H(d) be of reducibility index m ≥ 1.
The map r : [0,∞) → R

r(ε) := ρ(Mv
ε)

is locally 1
m+1 -Hölder continuous, if m ≥ 2, and locally

Lipschitz continuous if m = 1.

For a proof we refer the reader to Epperlein and Wirth
(2023).

Finally, we have the following bound which provides the
upper estimate in the pointwise Hölder estimate.

Theorem 6. Let M ∈ H(d). For every η > 0 there is a
constant Cη such that ρ(N ) ≤ ρ(M) + CηdH(M,N )1/d

for all N ∈ H(d) with dH(M,N ) ≤ η.

Proof. The result follows directly from the previous

Proposition 4 and the fact that N ⊆ M∥·∥
ε for ε =

dH(M,N ).

Note that with the previous result we have already ob-
tained pointwise Hölder continuity in all M ∈ H(d) with
the property that ρ(M) = 0.

4. THE LOWER BOUND USING BERGER-WANG
ESTIMATES

To get a lower bound on the joint spectral radius of
a perturbed matrix set, we use approximations of the
joint spectral radius from below by the spectral radius
of a sufficiently long product. An application of Elsner’s
theorem, Theorem 1, to this product then yields the result.

For the required estimates we need to collect a few results
from the literature.

The statement of the following proposition is basically
contained in the introduction of Morris (2010), but we need
slightly more explicit estimates.

Proposition 7. There is a constant Λd depending only on
the dimension d such that for all bounded sets of matrices
M in Cd×d we have

max
1≤k≤n

sup
A1,...,Ak∈M

ρ(Ak . . . A1)
1/k ≥ ρ(M)

(
1− Λd

n

)
.

The following exponential-polynomial growth bound can
be found in Varney and Morris (2022) and is also an
immediate consequence of (Guglielmi and Zennaro, 2001,
Theorem 3.1). The idea is to use the fact (due to Bara-
banov) that a family of matrices with joint spectral radius
equal to 1 and unbounded growth must be reducible.

Lemma 8. Let M ∈ H(d) be a compact set of matrices
with ρ(M) > 0. There is a constant Θ > 0 depending on
M such that

∥Ak . . . A1∥ ≤ Θkd−1ρ(M)k (12)

for all k ∈ N, Ai ∈ M, i = 1, . . . , k.

The next lemma is obtained by rather elementary norm
estimates.

Lemma 9. Let M ∈ H(d) be a compact set of matrices
with ρ(M) = 1. Let Θ be the constant from Lemma 8 for
the matrix set M. Then

∥(Ak + εBk) · · · (A1 + εB1)−Ak · · ·A1∥ ≤ 2Θ2εk2d−1

for all k ≥ 1, ε < 1
Θk−d, Ai ∈ M, ∥Bi∥ ≤ 1, i = 1, . . . , k.

With this preparation in hand, we are ready to prove the
central result in this section.

Theorem 10. Let M ∈ H(d). For every η > 0 there is a

constant Cη such that ρ(N ) ≥ ρ(M)−CηdH(M,N )1/(d
2+d)

for all N ∈ H(d) with dH(M,N ) ≤ η.

Proof. (Sketch) It is enough to show the theorem for some
η ≤ 1. For ρ(M) = 0 the conclusion of the theorem is
trivially satisfied. By rescaling we may assume ρ(M) = 1.

We set η := n
−(d2+d)
0 for a sufficiently large positive integer

n0, which will be specified later. Let N be a compact set
of matrices with dH(M,N ) =: ε ≤ η.
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Next pick a positive integer n ≥ n0 such that

ε ∈
(

1

(2n)d2+d
,

1

nd2+d

]
. (13)

By Proposition 7 we can find k ≤ n and matrices
A1, . . . , Ak ∈ M with ρ(Ak . . . A1) ≥ ρ(M)(1 − Λd

n ). By
the definition of the Hausdorff distance there are matrices

Ã1, . . . , Ãk ∈ N with
∥∥∥Ai − Ãi

∥∥∥ ≤ ε, i = 1, . . . , k. To

simplify notation, set Sk := Ak . . . A1 and S̃k := Ãk . . . Ã1.

Using the lemmas collected so far, we get the following
inequalities where c1, . . . , c5 are appropriately chosen con-
stants only depending on M, d and not on N , n0 or ε.

By the Berger-Wang theorem, (Berger and Wang, 1992,
Theorem IV), we have

ρ(N )k ≥ ρ(S̃k).

By Elsner’s theorem we get

ρ(N )k ≥ ρ(Sk)− (∥S̃k∥2 + ∥Sk∥2)
(d−1)/d∥S̃k − Sk∥1/d2 .

For n0 sufficiently large we can apply Lemma 9 and
continue with

ρ(N )k ≥ (1− c1
n
)k − c2(k

d−1)(d−1)/d(εk2d−1)1/d

= (1− c1
n
)k − c2(εk

d2

)1/d

≥ (1− c1
n
)k − c2(εn

d2

)1/d

≥ (1− c1
n
)k − c3

n
.

Depending on c1 and c3 we can now choose n0 large enough
such that a short calculation gives us

ρ(N ) ≥ 1− c4
n

≥ ρ(M)− c5ε
1/(d2+d).

Given the choice of ε in (13) this yields the assertion. 2

Combining Theorem 10 with Theorem 6 we get:

Corollary 11. Let M ∈ H(d). For every η > 0 there is a
constant Cη such that

|ρ(N )− ρ(M)| ≤ CηdH(M,N )1/(d
2+d)

for all N ∈ H(d) with dH(M,N ) ≤ η.

This is just another formulation of Theorem 3.

For finite sets of matrices M, Morris obtained in Morris
(2010) a better convergence speed in Proposition 7 of the
form O(nα) for arbitrary real α > 0. With this estimate it
is possible to improve the Hölder exponent for finite sets
of matrices to 1

d+ε for arbitrary ε > 0, see Epperlein and

Wirth (2023) for details.

5. CONCLUSIONS

In this paper we have continued the study of the regularity
of the joint spectral radius as a function of the data,
i.e. the defining matrix set. It has been shown that the
joint spectral radius is pointwise Hölder continuous with
a constant 1/(d2 + d). We expect that better results can
be obtained. On the one hand it is just the lower bound
of our estimates which is responsible for the degradation
of the constant.

On the other hand it would be much more desirable to
obtain results on local Hölder continuity. In the context of

ε-inflation this can be done, but this is a very restricted
setting. In dimension 2, it is possible to obtain local Hölder
continuity by a more careful tracking of the dependence of
the constants and using an improved version of Lemma 8.
We refer to Epperlein and Wirth (2023) for this statement.
The extension of this result to higher dimensions is the
topic of ongoing research.
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radius is pointwise Hölder continuous. arXiv preprint
arXiv:2311.18633.

Guglielmi, N. and Zennaro, M. (2001). On the asymptotic
properties of a family of matrices. Linear Algebra and
its Applications, 322(1-3), 169–192.

Gurvits, L. (1995). Stability of discrete linear inclusion.
Linear Algebra and its Applications, 231, 47–85.

Hare, K.G., Morris, I.D., Sidorov, N., and Theys, J. (2011).
An explicit counterexample to the Lagarias–Wang
finiteness conjecture. Advances in Mathematics, 226(6),
4667–4701.

Jungers, R. (2009). The Joint Spectral Radius: Theory and
Applications. Springer-Verlag.

Kozyakin, V. (2010). An explicit Lipschitz constant
for the joint spectral radius. Linear Algebra and its
Applications, 433(1), 12–18.

Lagarias, J.C. and Wang, Y. (1995). The finiteness
conjecture for the generalized spectral radius of a set
of matrices. Linear Algebra and its Applications, 214,
17–42.

Margaliot, M. (2006). Stability analysis of switched sys-
tems using variational principles: an introduction. Au-
tomatica, 42(12), 2059–2077.

Mason, O. and Wirth, F. (2014). Extremal norms for
positive linear inclusions. Linear Algebra and its Ap-
plications, 444, 100–113.

Morris, I.D. (2010). A rapidly-converging lower bound
for the joint spectral radius via multiplicative ergodic
theory. Advances in Mathematics, 225(6), 3425–3445.

Rota, G.C. and Strang, W.G. (1960). A note on the joint
spectral radius. Nederl. Akad. Wet., Proc., Ser. A, 63,
379–381.

Shorten, R., Wirth, F., Mason, O., Wulff, K., and King,
C. (2007). Stability criteria for switched and hybrid
systems. SIAM review, 49(4), 545–592.

Stewart, G.W. and Sun, J.g. (1990). Matrix Perturbation
Theory. Academic Press.

Varney, J. and Morris, I.D. (2022). On marginal growth
rates of matrix products.

Wirth, F. (2002). The generalized spectral radius and
extremal norms. Lin. Alg. Appl., 342(1), 17–40.

MTNS 2024
19-23 August 2024, Cambridge, UK

8


