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Abstract: For compact sets of complex matrices it is shown that there always exists a similarity
transformation such that in the transformed set all entries of all matrices are bounded in absolute
value by the joint spectral radius. The key tool for this is that every extremal norm of a matrix set
has an Auerbach basis. The result implies in particular that all diagonal entries, or equivalently
all one-dimensional principal submatrices, are upper bounded by the joint spectral radius. It is
shown that the corresponding statement for higher dimensional principal submatrices is false.
More precisely, there are finite matrix sets, such that for all points in the similarity orbit the
joint spectral radii of all higher dimensional principal submatrices are strictly larger than the
joint spectral radius of the original matrix set.
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1. INTRODUCTION

The joint spectral radius of a compact set of matrices
describes the maximal exponential growth rate of products
of matrices from this set. Interest in this quantity has
been driven by applications in wavelet theory, Daubechies
and Lagarias (1992), Lagarias and Wang (1995). Also for
switched systems, it characterizes the exponential stability
of a discrete-time linear switched system with arbitrary
switching, Shorten et al. (2007). For a background on the
joint spectral radius see Jungers (2009).

It was already noticed in the original paper by Rota and
Strang (1960) that norms are instrumental in the analysis
of the joint spectral radius, and this has been reconfirmed,
e.g. in Elsner (1995), Barabanov (1988), Wirth (2002),
Morris (2010), Bochi and Laskawiec (2023).

In this paper we study the relation of the entries the
matrices in a given matrix sets and the joint spectral
radius. Of course, the trace of all matrices may be 0 and
the joint spectral radius be arbitrarily large. Similarly,
there are bounded matrix sets with joint spectral radius
1 and arbitrarily large entries. So at first glance there is
no relation. The problem is whether it is possible to find a
representation of a given matrix set in its similarity orbit
so that the entries of all matrices in the transformed set are
bounded by the joint spectral radius. For matrix sets with
positive joint spectral radius this is possible and the idea
of proof is to show that it is always possible to transform
the matrix set in such a way that there is an extremal
norm sandwiched between the 1- and the ∞-norm.

The results relate to an approximation theorem due to
Ando and Shih (1998) where it was shown to which
extent quadratic norms can be used to approximate the
joint spectral radius. In general, many of the numerical

procedures available for the computation of the joint
spectral radius can be interpreted in terms of extremal
norms, see e.g. Guglielmi and Zennaro (2008), Guglielmi
and Protasov (2013)

To place our problem in the context of the normal form
problem, note that the general linear group acts on the
space of compact matrix sets and the joint spectral radius
is an invariant of this action. The normal form problem is
to find canonical representatives of the orbits of the action,
but this problem seems as yet elusive, even for finite matrix
sets. We may interpret the result as the identification
of an interesting subset of the similarity orbit, in which
canonical forms could be looked for.

Our first result is that if the joint spectral radius is strictly
positive, then the similarity orbit of the matrix set contains
an instance in which all entries of all matrices are less
or equal to the joint spectral radius in absolute value.
This result is obtained in Section 3. Our main tool for
this are extremal norms and their associated Auerbach
bases. Auerbach bases are a tool from the theory of
the geometry of finite-dimensional Banach spaces. They
are given by biorthogonal sequences with unit norm in
the norm, respectively the dual norm. Their existence
was first shown by Auerbach with independent proofs
by Day (1947) and Taylor (1947). More recently, Weber
and Wojciechowski (2017) have shown that for d > 2
there exist at least (d − 1)d/2 + 1 such bases, ignoring
permutations of the basis vectors or multiplication by
scalars of modulus 1. As it turns out, Auerbach bases
of extremal norms can be used to define a similarity
transformation that yields the desired rescaling of the
matrix set.

It might be hoped that this approach can be carried
further and that also for higher dimensional submatrices,
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a similarity transformation can be found such that the
joint spectral radius of these submatrices is bounded by
that of the original matrix set. In Section 4 we show that
this is in general not possible. There are finite matrix
sets such that for the entire similiarity orbit all joint
spectral radii corresponding to principal submatrices of
order 2, ..., d− 1 are bounded away from the joint spectral
radius of the given matrix set. We believe this to be a
rather interesting and maybe surprising negative result
that provides a further facet of the intricate theory of the
joint spectral radius.

2. PRELIMINARIES

Let N be the set of natural numbers including 0. The real
and complex field are denoted by R, C and R≥0 := [0,∞).
The Euclidean norm on Rd,Cd is denoted by ∥·∥2 and this
also denotes the induced operator norm, i.e., the spectral
norm on Rd×d,Cd×d. We write K if the field is either real or
complex. The general linear group (of invertible matrices)
in Kd×d is denoted by GLd(K). Where convenient, we use
the abbreviating notation d = {1, . . . , d}.

Let d ≥ 1. For a bounded, nonempty set of matrices
M ⊂ Kd×d we consider the set of arbitrary products of
length t defined by

St := {A(t− 1) . . . A(0) ; A(s) ∈ M, s = 0, . . . , t− 1} .
The joint spectral radius of M is defined as

ρ(M) := lim
t→∞

sup{∥S∥ ; S ∈ St}1/t. (1)

It is known that taking the closure of M does not change
the value of the joint spectral radius. Thus we will assume
that M is compact from now on.

A helpful formulation of the joint spectral radius is in
terms of operator norms. Given a norm ∥ · ∥ on Kd and
its induced operator norm also denoted by ∥ · ∥, we define

∥M∥ := max{∥A∥;A ∈ M}.
Then it is known, Rota and Strang (1960), that

ρ(M) = inf{∥M∥; ∥ · ∥ is an operator norm}. (2)

A norm ∥ · ∥ on Kd is called extremal for M, if ρ(M) =
∥M∥. An extremal norm is called a Barabanov norm, if
in addition for every x ∈ Kd there exists an A ∈ M such
that

∥Ax∥ = ρ(M)∥x∥.
A sufficient condition for the existence of Barabanov norms
is that the set M is irreducible, i.e. only the trivial
subspaces {0} and Kd are invariant under all A ∈ M,
Barabanov (1988); Wirth (2002).

3. AUERBACH BASES AND BOUNDS ON THE
ENTRIES OF THE MATRICES

In this section we investigate how the entries of a given
compact set of matrices may be uniformly smaller than
the joint spectral radius. We need some preliminary state-
ments for this.

Given a norm v on Kd, the dual norm is defined by

v∗(y) := max{|⟨y, x⟩| | v(x) ≤ 1}, y ∈ Kd. (3)

A vector y ∈ Kn is called a dual vector of x ∈ Kd, if

⟨x, y⟩ = v(x)v∗(y). (4)

We will call x self-dual, if x is a dual vector to itself.

Definition 1. Let v be a norm on Kd. A set of pairs
(xi, yi)

d
i=1 in Kd ×Kd is called a biorthogonal basis of Kd,

if ⟨xi, yj⟩ = δij . If, in addition, v(xi) = v∗(yi) = 1, i ∈ d,
then (xi, yi)

d
i=1 is an Auerbach or biorthonormal basis.

It was shown by Auerbach that every finite dimensional
normed real or complex space has a biorthonormal basis.
We note the following small lemma, the proof is omitted.

Lemma 2. Let v be a norm on Kd with Auerbach basis
(xi, yi)

d
i=1. Let T ∈ Kd×d with columns xi, i = 1, . . . , d.

Then vT (·) := v(T ·) is a norm for which the standard basis
vectors form an Auerbach basis (ei, ei)

d
i=1. In particular,

∥ · ∥∞ ≤ vT (·) ≤ ∥ · ∥1. (5)

Theorem 3. Let M ⊂ Kd×d be compact and nonempty. If
ρ(M) > 0, then there exists a T ∈ GLd(K) such that

ρ(M) ≥ max{|aij | ; A = (aµν)dµ,ν=1 ∈ T−1MT, i, j ∈ d}.
Proof. We first consider the case that M is irreducible.
Then we may choose an extremal norm v for M. Let
(xi, yi)

d
i=1 be an Auerbach basis for v and let T be the

invertible matrix from Lemma 2 such that the norm vT
has an Auerbach basis (ei, ei)

d
i=1. Note that vT is extremal

for T−1MT because for all A ∈ M and the corresponding
induced norm we have

vT (T−1AT ) = max
x ̸=0

vT (T−1ATx)

vT (x)
= max

x̸=0

v(ATx)

v(Tx)

= v(A) ≤ ρ(M) = ρ(T−1MT ).

Using (5) we get for arbitrary A ∈ T−1MT and j =
1, . . . , d that

ρ(M) = ρ(T−1MT ) ≥ vT (Aej) ≥ ∥Aej∥∞ = max
i=1,...,d

|aij |.
As j was arbitrary, this shows the assertion.

For the remainder of the proof, note that if M is reducible,
then a similarity transformation brings all matrices A ∈
M into upper block triangular form and the previous
argument may be applied on the diagonal blocks as they
are irreducible or 0. The entries in the off-diagonal blocks
can then be made small by similarity scaling. We leave the
details to the reader. 2

Note that the previous Theorem 3 has no chance of being
true in the case ρ(M) = 0, as this condition only means
that all matrices in M are nilpotent.

In addition, we point out that the same argument applies
to all S ∈ St, as vT is an extremal norm. Thus

ρ(M) ≥
sup{|aij |1/t ; A ∈ St(T

−1MT ), i, j ∈ d, t ≥ 1}. (6)

The statement of (6) can be strengthened. Indeed, Theo-
rem 3 may be used to obtain the following characterization
of the joint spectral radius. This builds on a characteriza-
tion of the joint spectral radius in terms of trace due to
Chen and Zhou (2000).

Proposition 4. Let ∅ ≠ M ⊂ Kd×d be compact. Then

ρ(M) =

min
T∈GLd(K)

sup
t≥1

max{|⟨ei, Sei⟩|1/t | i ∈ d, S ∈ TStT
−1}.

Proof. If ρ(M) = 0, then it is known that there is a
similarity transformation that brings all A ∈ M simulta-
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neously in upper triangular form with zero diagonal. The
statement is then evident.

Assume ρ(M) > 0. Then we may apply Theorem 3
and with the T constructed therein we see that for all
S ∈ TStT

−1 we have (as (ei, ei) is a dual pair for vT ) that

ρ(M)t ≥ vT (Sei) ≥ |⟨ei, Sei⟩|, i = 1, . . . , d.

This shows ≥.

For the converse recall that by Chen and Zhou (2000) we
know that

ρ(M) = lim sup
t→∞

max
S∈St

| traceS|1/t. (7)

Let T ∈ GLd(K) be arbitrary and recall that ρ(M) =
ρ(TMT−1). If there exists a c > 0 such that

ρ(M) − c ≥
sup
t≥1

max
{
|⟨ei, Sei⟩|1/t ; i ∈ d, S ∈ TStT

−1
}
,

then

ρ(M) − c ≥ sup
t≥1

{∣∣∣∣1d traceS

∣∣∣∣1/t ; S ∈ TStT
−1

}
.

As (1/d)1/t → 1 this yields a contradiction to (7). Note
that we have also shown that the minimum in the claim is
attained, as the T provided by Theorem 3 is a minimizer.
The proof is complete. 2

4. HIGHER DIMENSIONAL PRINCIPAL
SUBMATRICES

It seems natural to ask for a generalization of the results
of the previous section to larger submatrices. The question
is then whether we can use a similarity transformation
to ensure that the joint spectral radius of all principal
submatrices is bounded by the joint spectral radius of
the whole matrix set. The aim of this section is to show
that this is in general only possible up to a multiplicative
constant and that this question has intricate connections
to convex geometry and the local theory of Banach spaces.

We begin by fixing some necessary notation. Let ∅ ≠
J ⊂ {1, . . . , d}. For A ∈ Kd×d we denote by AJ,J the
principal submatrix of A obtained by deleting all rows
and columns with index not in J . Similarly, for a set of
matrices M ⊂ Kd×d we define MJ,J := {AJ,J ; A ∈ M}.

We start with a negative result which shows that the direct
generalization of Theorem 3 to larger submatrices is false.

Theorem 5. For every d ≥ 3 there is a finite set M ⊂ Rd×d

with ρ(M) = 1 and a constant C > 1 such that for all
T ∈ Gld(R) and for every index set J with cardinality in
{2, . . . , d− 1} we have ρ((T−1MT )J,J) ≥ C.

We omit the proof of this result for reasons of space.
Nonetheless, some comments are in order. The key ingre-
dients for this result is the following lemma and a result
from Banach space theory by Bosznay and Garay (1986).

Lemma 6. Let ν be a norm on Rd whose unit ball is a
polytope K. For every vertex v and face F of K there is
a rank one matrix A with operator norm ν(A) ≤ 1 which
maps F to v.

For a finite dimensional normed space Y and a linear sub-
space X ⊂ Y , the (relative) projection constant λ(X,Y )

is defined as the minimal operator norm that a projection
from Y to X can have.

Theorem 7. (Bosznay and Garay (1986)). For every d ≥ 3
there are a constant C > 1 and a d-dimensional real
normed space with polytopal unit ball such that every k-
dimensional subspace with 2 ≤ k ≤ d − 1 has projection
constant at least C.

An explicit example of such a polytopal normed space
in dimension 3 can be constructed by chopping off the
vertices of a regular dodecahedron in a specific manner,
see (Singer, 1970, Chapter II, Theorem 1.1, p. 217).

We can nevertheless obtain for example the following
upper bounds for the joint spectral radius of submatrices.

Theorem 8. Let M ⊂ Kd×d be a nonempty, compact
set of matrices. There is a T ∈ GLd(K) such that
ρ((T−1MT )J,J) ≤ |J | ρ(M) for every non-empty index
set J ⊂ {1, . . . , d}.

Proof. If ρ(M) = 0, then all matrices in M can be
brought simultaneously into strict upper triangular form
and the result follows. On Kk×k consider the induced
∥ · ∥1 matrix norm, i.e. the maximal column sum norm.
By Theorem 3 there is a similarity transformation T such
∥T−1AT∥1 ≤ dρ(M) for all A ∈ M. Let J ⊂ {1, . . . , d}
be a non-empty set of indices. Then ∥(T−1AT )J,J∥1 ≤
|J | ρ(M) for all A ∈ M, hence ρ((T−1AT )J,J) ≤ |J | ρ(M).
2

Using John’s ellipsoids (see the reprint of the original
paper from 1948 in John (2013)) we can improve this

theorem for large submatrices (where |J | >
√
d).

Theorem 9. Let M ⊂ Rd×d be a nonempty, compact set of
matrices. There is an invertible matrix T ∈ Rd×d such that
ρ((T−1MT )J,J) ≤

√
dρ(M) for every non-empty index set

J ⊂ {1, . . . , d}.

Proof. The case ρ(M) = 0 is clear. For ρ(M) > 0
assume M is irreducible, the reducible case then follows
by induction. Assume ρ(M) = 1. Then there exists an
extremal norm ν and by applying a similarity transfor-
mation we may assume that the unit ball of ν is in
John position, i.e. the Euclidean unit ball is the ellipsoid
of maximal volume inscribed in the unit ball of ν. By
John’s theorem, see e.g. (Ball, 1997, p. 13) this implies
1√
d
∥x∥2 ≤ ν(x) ≤ ∥x∥2. Let J ⊂ {1, . . . , d} be any

index set and set V := span{ei ; i ∈ J}. Let P be the
orthogonal projection of Rd onto V . Let ν̃ be the norm
on V induced by ν. Using the basis {ei ; i ∈ J} of V
we get an isomorphism between R|J| and V . Under this
isomorphism we have ν̃(AJ,J(x)) = ν(P (Ax)) for every
x ∈ V . Let x ∈ V with ν̃(x) ≤ 1. Since ν is extremal,
we get ν(Ax) = 1. Using the assumption that the unit

ball of ν is in John position, we obtain ∥Ax∥2 ≤
√
d and

hence ν(P (Ax)) ≤ ∥P (Ax)∥2 ≤ ∥P∥2 ∥Ax∥2 ≤
√
d. Since

x was an arbitrary point in the unit ball of ν̃ we obtain
ν̃(AJ,J) ≤

√
d for all A ∈ M and thus ρ(MJ,J) ≤

√
d. 2

5. AN EXAMPLE

The following example is based on (Guglielmi and Pro-
tasov, 2023, Example 3.1). Consider M = {A1, A2} with
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A1 :=

(
6 −4
7 −4

)
, A2 :=

(
−4 4
−5 4

)
.

The joint spectral radius is ρ(M) = (48 + 16
√

5)1/5 ≈
2.4245 and a spectrum maximizing product is given by
B := A1A2A

2
1A2. Set Ãi := 1

ρ(M)Ai, i = 1, 2. Then

v1 := (1, 3+
√
5

4 )⊤ is a right eigenvector of B for the

leading eigenvalue ρ(M)5. Define v2 := Ã2v1, v3 := Ã1v2,

v4 := Ã1v3, v5 := Ã2v4, v6 := Ã2v3. The unit ball K of
an extremal norm for M is given by the convex hull of
{v1, . . . , v6,−v1, . . . ,−v6}. An Auerbach basis is given by
(v3, v6) together with its dual basis, see Figure 1.

−1 1

−1

1

Fig. 1. The unit ball K of an extremal norm

Set T := (v3 v6). Then T−1AiT , i = 1, 2 are given
approximately by(

1.7454 2.1998
−1.6163 0.2546

)
,

(
0 −1.6498

2.4245 0

)
.

The absolute values of all entries of these two transformed
matrices are now bounded by ρ(M). See Figure 2 for

Fig. 2. The transformed unit ball T−1K.

an illustration of the transformed unit ball T−1K which
clearly lies between the unit ball of the 1- and the ∞-norm.

6. CONCLUSIONS

Using the geometric theory of finite-dimensional Banach
spaces, properties of the joint spectral radius for principal
submatrices of matrix sets have been obtained. While in
the 1-dimensional case the joint spectral radius provides an
upper bound, this does not hold in the higher dimensional
case. The question of precise bounds for these results is
currently under investigation.
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