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1. EXTENDED ABSTRACT

Ensemble control is a rather new research area of con-
trol theory which is concerned with a whole parameter-
dependent “family of systems” (= ensemble) instead of a
single one. Here, the major challenge is to achieve classical
control task simultaneously, i.e. for the entire ensemble
via controls that are independent of the system param-
eter. Thus the topic of ensemble control is located at
the crossroad of finite- and infinite-dimensional control
theory, operator theory and approximation theory. From
a mathematical point of view, this intimate interplay of
various disciplines is expected to lead to deep results with
impact far beyond control theory.

The problem of simultaneous stabilization of parameter-
ized families of linear systems falls into this setting. In
this context, parameter-dependent pole-shifting has been
addressed in the 1980s and 1990s. We note that the contri-
butions used rather different methods. On the one hand,
in Hautus and Sontag (1986); Sontag (1985); Sontag and
Wang (1990) the algebraic theory of systems over rings is
used. On the other hand, for the simultaneous stabilization
problem a frequency domain approach using function theo-
retic methods was proposed by various authors. For details
and more references we refer to the comprehensive mono-
graph Blondel (1994). Moreover, more recent contributions
are Guth et al. (2023); Ryan (2014). In this work, we
will use tools from functional analysis and approximation
theory to study the possibilities and limits of ensemble
feedback methods for families of one-parameter families of
linear systems.

1.1 Setting and Notation

We consider parameterized system, where the parameter
space P ⊂ C. It is assumed that P is compact with
empty interior and that C\P is connected. The parameter-
dependent systems under consideration are of the form

∂
∂tx(t, θ) = A(θ)x(t, θ) +B(θ)u(t) (1)

or in discrete-time

x(t+ 1, θ) = A(θ)x(t, θ) +B(θ)u(t), (2)

where x(0, θ) = x0(θ) ∈ Cn denotes the initial conditions
and the matrices A(θ) ∈ Cn×n depend continuously on the
parameter θ. We consider the families of states {x(θ) | θ ∈

P} in (1) as functions from the parameter space P to
Cn located in a suitable separable Banach space. The
formal definition of the state space is as follows. Let X(P)
denote an arbitrary separable Banach space of functions
defined on P with values in C and let Xn,m(P) consist of
all (n × m)-matrices with entries in X(P). Furthermore,
set Xn(P) := Xn,1(P). Thus Xn(P) is simply the n-fold
Cartesian product of X(P) and therefore again a Banach
space. Unless stated otherwise, we assume that Xn(P) is
equipped with the maximum norm of the entrywise norms,
i.e. ∥x∥Xn(P) := max1≤i≤n ∥xi∥X(P). In this paper, despite
of treating the general case, we consider the Banach space
of continuous functions. We note that for other cases, e.g.
the space of integrable functions Xn(P) := Lq

n(P) the
corresponding Lq-construction might be a better choice.
Moreover, we assume that the matrices B(θ) ∈ Cn×m to
lie in Xn,m(P).

In the following, we denote the space of continuous func-
tions f : P → C by C(P) and then Cn(P) respectively
Cn,m(P) denote the spaces of n-vectors, n × m-matrices,
whose entries are continuous functions on P.

For fixed A ∈ Cn,n(P) we always assume that the induced
multiplication operator

A : Xn(P) → Xn(P), Af(θ) := A(θ)f(θ) (3)

is well-defined, linear and bounded. Also, for any B ∈
Xn,m(P) the input operator

B : Cm → Xn(P), (Bv)(θ) := B(θ)v

is well-defined, linear and bounded as it is a multiplication
operator with finite dimensional domain Cm. In terms of
these matrix multiplication operators, the dynamic equa-
tions (1) and (2) are equivalent to the (infinite dimen-
sional) linear control systems

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Xn(P) (4)

and correspondingly

x(t+ 1) = Ax(t) + Bu(t), x(0) = x0 ∈ Xn(P) . (5)

To handle the continuous and discrete-time case at the
same time we take x0 = 0 and we will denote for T ≥ 0
the set of inputs by U(T ). That is, in continuous-time one
has U(T ) := L1([0, T ],Cm) and in discrete-time U(T ) :=
(Cm)T+1 From now on T ≥ 0 is either a nonnegative
real or a natural number depending on the system under
consideration. Moreover, we denote the solutions to (1)
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and (2) by φ
(
T, u, x0

)
(θ) := φ

(
T, u, x0(θ), θ

)
, i.e. in the

continuous-time case it holds

φ
(
T, u, 0

)
(θ) =

∫ T

0

e(T−τ)A(θ)B(θ)u(τ) dτ

and in discrete-time we have

φ
(
T, u, 0

)
(θ) =

T−1∑
k=0

A(θ)T−1−kB(θ)u(k).

A central notion of this paper is the following version of
reachability. We refer to standard literature for the defi-
nition of the notion of reachability for finite-dimensional
linear systems, e.g. (Sontag, 1998, Chapter 3).

Definition 1. A pair (A,B) ∈ Cn,n(P)×Xn,m(P) is called

(i) pointwise reachable, if for all θ ∈ P the pair
(A(θ), B(θ)) ∈ Cn×n × Cn×m is reachable.

(ii) ensemble reachable with respect to Xn(P), if for all
f ∈ Xn(P) and ε > 0 there exist T ≥ 0 and an input
u ∈ U(T ) such that

∥φ(T, u, 0)− f∥Xn(P) < ε.

(iii) uniformly ensemble reachable if it is ensemble reach-
able with respect to Cn(P).

It is shown in (Triggiani, 1975a, Theorem 3.1.1), that a
pair (A,B) ∈ Cn,n(P) × Xn,m(P) is ensemble reachable
with respect to Xn(P) if and only if

span
{
ImAkB | k = 0, 1, 2, 3, ...

}
is dense in Xn(P), where Im denotes the image.

2. ENSEMBLE FEEDBACK FOR FAMILIES ON
BANACH SPACES

The goal of this paper is to start/continue with a system-
atic analysis of feedback methods for this class of systems.
Recall that a central point in ensemble reachability is that
the input u does not depend on the parameters and serves
as a simultaneous input applied for all parameters. Con-
sequently, we shall consider ensemble feedback operators
given by bounded linear operators

F : Xn(P) → Cm. (6)

We emphasize here that, because F has finite dimen-
sional range, ensemble feedback operators are automat-
ically compact, (Conway, 1990, p. 174). Natural choices
might be given by the integral operator

Ff =

∫
P

K(θ)f(θ) dθ, K ∈ Cm,n(P),

or the weighted average operator

Ff =

N∑
k=1

Kkf(θk), Kk ∈ Cm×n.

Note that, the latter serve as examples and the subsequent
analysis is not limited to these choices.

The contributions of this paper are twofold. First, we treat
ensemble defined on arbitrary separable Banach spaces
and we will explore classical system-theoretic properties
for ensemble feedback operators.

Let Xn(P) denote a separable Banach space of functions
from the parameter space P to Cn. Also We assume that

the multiplication operators A : Xn(P) → Xn(P) and
B : Cm → Xn(P) are bounded linear. Then, using an
bounded linear ensemble feedback operator F : Xn(P) →
Cm, the overall systems can be written as follows

ẋ(t) = (A+ BF)x(t) + Bu(t) (7)

The first result is obtained by using arguments of (Hin-
richsen and Pritchard, to appear, Chapter 8).

Theorem 1. Ensemble reachability is invariant under en-
semble feedback.

The proof will appear in a forthcoming publication.

We will now study the stabilization problem for the class of
infinite dimensional systems given by (4) and (5). We start
by considering the stability properties of the uncontrolled
system

ẋ(t) = Ax(t)

x(0) = x0.
(8)

The multiplication operator A generates the semigroup

T (t) : Xn(P) → Xn(P), T (t)f(θ) := etA(θ)f(θ). (9)

From (Engel and Nagel, 2000, Ch I Sec. 4 a,Ch II Sec. 2 b)
it follows that T (t) is uniformly continuous. Recalling that
the spectrum of a bounded linear operator L is defined as

σ(L) = {λ ∈ C | λ− L is not a bijection},
we note the spectrum of the matrix multiplication operator
A is given by

σ(A) =
⋃
θ∈P

σ(A(θ)), (10)

where σ(A(θ)) denotes the set of eigenvalues of the matrix
A(θ), cf. (Hardt and Wagenführer, 1996, Example 2.7 2).
Moreover, from (Engel and Nagel, 2000, Ch. I, Sec. 3)
we deduce the following characterization of stability for
system (8).

Proposition 2. Let A ∈ Cn,n(P) and let A denote the
corresponding matrix multiplication operator defined on
a separable Banach space Xn(P). Then, for the linear
system (8) the following statements are equivalent.

(1) The origin is uniformly asymptotically stable, i.e. one
has

lim
t→∞

∥T (t)∥ = 0.

(2) The origin is exponentially stable, i.e. there are con-
stants M ≥ 1 and γ > 0 such that ∥T (t)∥ ≤ Me−γt.

(3) The spectrum of A is contained in the open left half
plane, i.e.

σ(A) ⊂ {z ∈ C | Re z < 0}.

Note that (Engel and Nagel, 2000, Exercise 3.4.8) gives
an example of a multiplication operator on C(R,C) which
generates an asymptotically stable semigroup in the sense
that for all x0

lim
t→∞

∥T (t)x0∥ = 0,

but the semigroup is not uniformly asymptotically stable.

From this characterization we turn to the stabilization
problem. We start with a definition of stabilizability, cf.
Pritchard and Zabczyk (1981); Triggiani (1975b).
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Definition 2. A pair (A,B) ∈ Cn,n(P) × Xn,m(P) is
called (ensemble) stabilizable if there is exists an ensemble
feedback operator F : Xn(P) → Cm such that the closed-
loop system defined by A+ BF is exponentially stable.

Theorem 3. Suppose the pair (A,B) ∈ Cn,n(P)×Xn,m(P)
is not exponentially stable. Then, it cannot be exponen-
tially stabilized by any ensemble feedback, i.e. for any
ensemble feedback operator F : Xn(P) → Cm the closed-
loop system A− BF is not exponentially stable.

The proof will appear in a forthcoming publication. The
main argument is that the essential spectrum (in the sense
of Kato) of a bounded linear operator is invariant under
compact perturbations. To this end we recall relevant
notions concerning the spectra of bounded operators. As
in (Engel and Nagel, 2000, Ch. IV, 1.20) we call

σess(A) = {λ ∈ C | λ−A is not a Fredholm operator}
the essential spectrum (in the sense of Kato) of A. We
note that there are various different definitions for the
essential spectrum, which do not coincide in general.
For a comprehensive summary of spectra of bounded
operators and their relation, we refer to (Appell et al.,
2004, Chapter 1) and the references therein. However, in
our context it holds that σess(A) = σ(A).

3. RELAXED ENSEMBLE FEEDBACK FOR
CONTINUOUS FAMILIES

Motivated by the disappointing result of Theorem 3, we
now intend to study a larger class of feedback operators.
The second contribution of this paper is to show that
feedback using multiplication operators can be used for
stabilization.

For ensembles defined on the space of continuous func-
tions, we will study relaxed feedback operators given by
multiplication operators, i.e. feedback operators of the
form

K : Xn(P) → Xm(p), Kx(θ) = K(θ)x(θ), (11)

where K ∈ Xm,n(P). This class of feedback operators
was recently considered in Schönlein (2021), where also
the case K(θ) ≡ K ∈ Rm×n is considered for the con-
trolled harmonic oscillator. For relaxed feedback opera-
tors in Theorem 7 provides new sufficient conditions so
that a continuous ensemble becomes uniformly ensemble
reachable by applying a mixture of open-loop inputs and
relaxed feedback operators of the form

u(t, x(t, θ)) = u(t) +K(θ)x(t, θ), K ∈ Cm,n(P).

We note that this result improves Theorem 3 in Schönlein
(2021), as Theorem 7 does not require the application of
transformations in the state-space and the input space.

To overcome the limitations of ensemble feedback methods
we consider in this section feedback operators of the form

K : Xn(P) → Xm(P)

Kf(θ) = K(θ) f(θ), K ∈ Cm,n(P).

It is readily seen, that the range of these operators is infi-
nite dimensional and one might expect to get results that
are in line with finite-dimensional linear systems theory.
More precisely, we are aiming for extension of (Schönlein,

2021, Theorem 3) in the sense that transformations in the
state and input variables are not required.

A crucial step in the construction procedure is the follow-
ing ensemble version of Heymann’s Lemma. To state the
first result, we start with a recap. For a pair (A,B) ∈
Rn×n × Rn×m, we consider the list (a permutation of
columns the Kalman matrix of (A,B))

b1 Ab1 · · ·An−1b1 · · · bm Abm · · · An−1bm.

Then, we select from left to right the first linear indepen-
dent columns

b1, . . . , A
h1−1b1, . . . , bm, . . . , Ahm−1bm.

The corresponding exponents h1, ..., hm are called the
Hermite indices of (A,B), where hi := 0 if bi is not
selected, see also Fuhrmann and Helmke (2015). It may
be shown that the columns thus selected are of the form

bl1 , ..., A
hl1

−1bl1 , bl2 , ..., A
hl2

−1bl2 , . . . , blµ , ..., A
hlµ−1blµ

with n =
∑µ

j=1 hlj . For brevity, we write

MA,B =:
(
bl1 . . . Ahl1

−1bl1 . . . blµ . . . Ahlµ−1blµ
)
.

The following generalizes to the ensemble case a lemma
which is frequently used as a preparatory step in the proof
of Heymann’s lemma, Heymann (1968).

Lemma 4. Let (A,B) ∈ Cn,n(P) × Cn,m(P) be pointwise
reachable and suppose that the Hermite indicies are con-
stant. Then, there are v1, ..., vn ∈ Rm such that the vectors
x1(θ), ..., xn(θ) defined by

xk(θ) := A(θ)xk−1(θ) +B(θ)vk(θ), x0(θ) := 0

are linearly independent in Cn(P).

Corollary 5. Let (A,B) ∈ Cn,n(P) × Cn,m(P) be point-
wise reachable and suppose that the Hermite indices are
constant. Then, for the vectors x1(θ), ..., xn(θ) constructed
in Lemma 4 we have

det (x1 . . . xn) = detMA,B .

Another result we will use in this work concerns sufficient
conditions for uniform ensemble reachability that are ver-
ifiable just in terms of the matrices A(θ) and B(θ). The
next result is a mild refinement of (Dirr and Schönlein,
2021, Corollary 4) in the sense that it puts weaker assump-
tions on the properties of the parameter space. We note
that this is partially contained in Danhane et al. (2024).

Proposition 6. Let P be compact with empty interior such
that C \ P is connected. Then, a pair (A, b) ∈ Cn,n(P) ×
Cn(P) is uniformly ensemble reachable if the following
conditions are satisfied:

(a) (A(θ), b(θ)) is reachable for all θ ∈ P.
(b) For all distinct parameters θ, θ′ ∈ P, the spectra

σ
(
A(θ)

)
and σ

(
A(θ′)

)
are disjoint.

(c) For each θ ∈ P, the eigenvalues of A(θ) are simple.

A proof of this and the next statement will be provided
in a forthcoming publication. Lemma 4 is essential for the
verification of the following main result of this section.

Theorem 7. Suppose (A,B) ∈ Cn,n(P)×Cn,m(P) is point-
wise reachable and has constant Hermite indices. Then,
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there is aK ∈ Cm,n(P) such that (A−BK,B) is uniformly
ensemble reachable.

Compared to (Schönlein, 2021, Theorem 3), Theorem 7
puts weaker assumptions on the matrix pair (A,B). More
precisely, the strong assumption that the Kronecker indices
are constant is removed. In addition, for the parameter
space P it is only assumed that C \P is connected (which
is the case if P is a Jordan arc). In addition, the assertion
of Theorem 7 is stronger than that of (Schönlein, 2021,
Theorem 3) as the result shows that it is sufficient to use
a continuous feedback matrix F (θ), whereas in (Schönlein,
2021, Theorem 3) a restricted feedback transformation is
required, (i.e. additional similarity transformations on the
input space Rm and the state space Rn).

Using Theorem 7 together with Proposition 2 it is not hard
to obtain the following result on exponential stabilization.

Corollary 8. Suppose (A,B) ∈ Cn,n(P) × Cn,m(P) is
pointwise reachable and has constant Hermite indices.
Then, there is a relaxed ensemble feedback K : Cn(P) →
Cm(P) such that A− BK is exponentially stable.

4. CONCLUSIONS

We have considered ensemble feedback for one-parameter
families of linear systems and discussed different feedback
methods. One the one hand, it is observed that feedback
operators with finite-dimensional range cannot be used
for stabilization. Consequently treated relaxed feedback
methods by considering multiplication feedback operators.
In this context we proved a version of Heymann’s Lemma
for continuous families of systems with constant Hermite
indices. In future research we will investigate how this
condition can be weakened.
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