Narrative didactics in mathematics
Narrative Didactics
Jerome Bruner already contrasted the logical-discursive argumentation ("logico-scientific mode") with the "narrative mode" of thought (Bruner, 1986). Through a methodical networking of mathematical content with narrative-theoretical approaches, not only the rational-deductive area primarily addressed in mathematics lessons, but also the affective area can be included, whereby a stronger "rooting-in" (Wagenschein, 1968) in the mathematical topic can take place (Brandl & Vinerean, 2023). By expanding the narrative methodology (e.g., Klassen, 2006, 2009; Kubli, 2005a, 2005b; Norris et al., 2005) with pictorial elements (Baptist, 2008; Brandl, 2016, 2017), a fruitful integration of the visual arts can also be achieved in the context of a STEAM-approach. In addition to the further development of the theoretical foundations of narrative mathematics didactics (Brandl, 2009, 2010, 2016, 2017), relevant teaching units or narrative teaching and learning elements are developed. Also the project "Digital Interactive Mathematical Maps" (DIMM) regarding certain aspects of a holistic teaching strategy is included (Brandl & Vinerean, 2023).
References
Baptist, P. (2008) (Hrsg.). Alles ist Zahl. Kölner Universitäts-Verlag.
Brandl, M. (2017). Narrative Didaktik als Vernetzungsinstrument: die Schule von Athen. In T. Borys, M. Brandl & A. Brinkmann (Hrsg.), Mathe vernetzt – Anregungen und Materialien für einen vernetzenden Mathematikunterricht. Band 6. (pp. 7–20). Schriftenreihe des GDM-Arbeitskreises ‚Vernetzungen im Mathematikunterricht’ (A. Brinkmann, Ed.). Verlag Bücherbunt im MUED e.V..
Brandl, M. (2016). Narrative Mathematik-Didaktik mittels Elementen bildender Kunst. In Institut für Mathematik und Informatik der Pädagogischen Hochschule Heidelberg (Ed.), Beiträge zum Mathematikunterricht 2016. (pp. 1415 – 1418). WTM-Verlag.
Brandl, M. (2010). Narrative Didactics in Mathematical Education: an innovative Didactical Concept. In T. Bianco & V. Ulm (Ed.), Mathematics Education with Technology – Experiences in Europe. (pp. 103 – 110). University of Augsburg.
Brandl, M. (2009). The vibrating string – an initial problem for modern mathematics; historical and didactical aspects. In I. Witzke (Ed.), Mathematical Practice and Development throughout History: Proceedings of the 18th Novembertagung on the History, Philosophy and Didactics of Mathematics. (pp. 95–114). Logos Verlag.
Brandl, M. & Vinerean, M. (2023). Narrative Didactics in Mathematics Education: Results from a University Geometry Course. Open Education Studies, 5(1), 20220186. https://doi.org/10.1515/edu-2022-0186
Bruner, J. (1986): Actual Minds, Possible Worlds. Harvard University Press.https://archive.org/details/actualmindspossi00jero
Klassen, S. (2009). The Construction and Analysis of a Science Story: A Proposed Methodology. Science & Education, 18, 401–423. https://doi.org/10.1007/s11191-008-9141-y
Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37, 1–2, 31–61. https://doi.org/10.1007/s10780-006-8399-8
Kubli, F. (2005a). Science Teaching as a Dialogue – Bakthin, Vygotsky and some Applications in the Classroom. Science & Education, 14, 501–534. https://doi.org/10.1007/s11191-004-8046-7
Kubli, F. (2005b). Mit Geschichten und Erzählungen motivieren: Beispiele für den mathematisch-naturwissenschaftlichen Unterricht. Aulis Deubner.
Norris, S., Guilbert, M., Smith, M., Shahram, H. & Phillips, L. (2005). A theoretical framework for narrative explanation in science. Science Education, 89, 4, 535–554. https://doi.org/10.1002/sce.20063
Wagenschein, M. (1968). Verstehen lernen (8. erg. Aufl., 1989). Beltz Verlag.